

COMUNE DI BELLIZZI

(Provincia di Salerno)

PIANO URBANISTICO COMUNALE

STUDIO GEOLOGICO TECNICO

(Legge Regione Campania n° 9/1983 e Legge Regione Campania n° 16/2004)

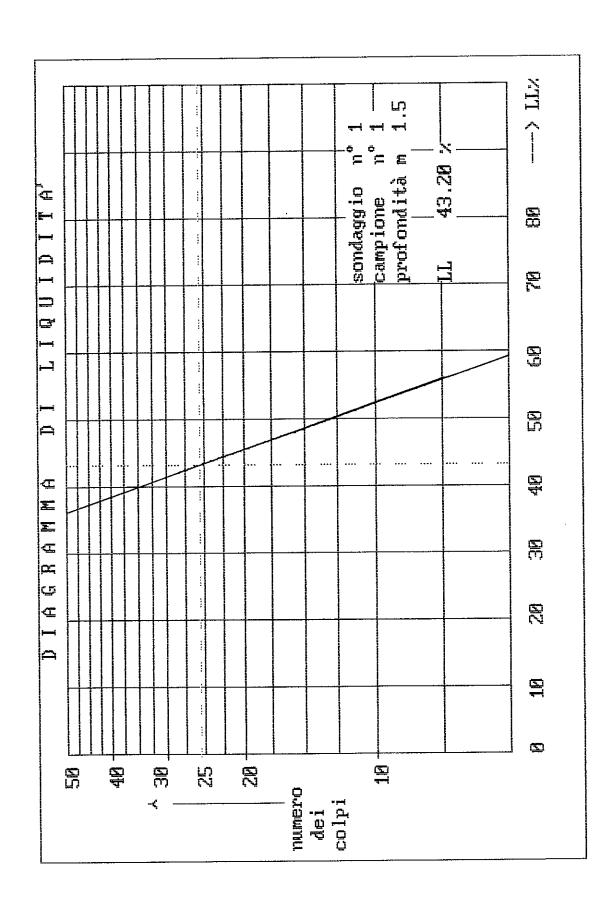
G 02.1 Documentazione delle indagini geognostiche disponibili - Indagini dirette in sito e di laboratorio

AMMINISTRAZIONE COMUNALE

IL GEOLOGO

Dott.ssa Mariateresa BASSI

GIUGNO 2017



Via Comone dello Statuto, 4 84090 Montecorvino Pugliano (SA) Tel: 393 9446236 Mail: mtbassi@alice.it - Pec: mariateresabassi@epap.sicurezzapostale.it

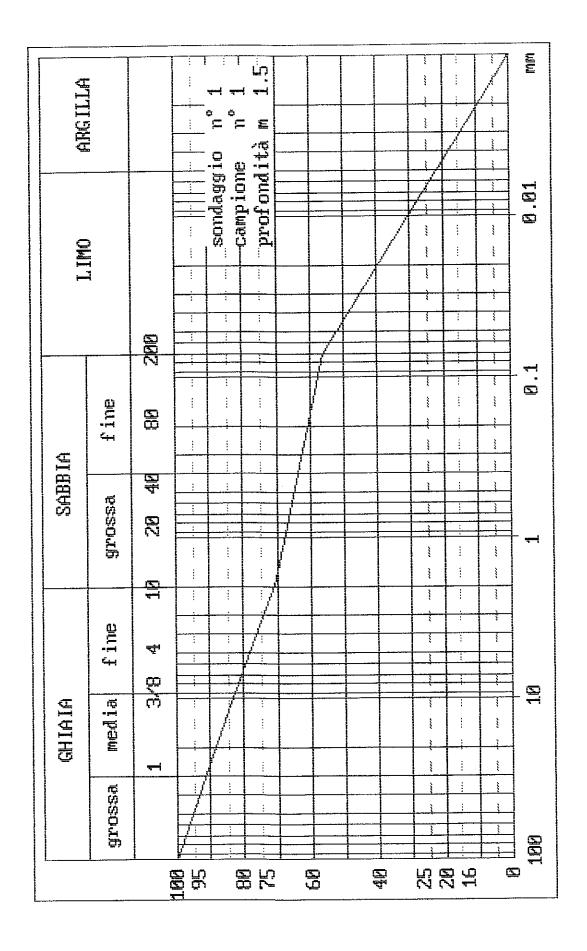
COMUNE D	0 : gone	degglo m	accan loo			COMMITT.	': SS n' 164 - km 2,000 : Amministrazione Comunale
3 PROFONDITA	SPESSORI	STRATIOR	FALDA H20	% CAROTAGGIO	Noolpt SPT	Campione DIR	DESCRIZIONE
2 3.2	3.2				2. 5 9 12 3	1.5	argilia limosa con incluso pezzame di natura calcareo-dolomitica
6	3.6		6		5 19 16 14		argilla limasa intercalata a lenti ghialose di apprezzabile epeccore
6.8 (77.2)	4.5			į			argilla limosa intercelata a lenti di materiale piroclastico
11.4 (72.6)	4.6						arglila ezzurra compatia
18 18.3	2.2						eabbla ilmo-argiliosa frammista a rado ghisistio
22 22	3.7						ghleis in mairice limo-sabbioso
(62)	.	ii(178		west no on a		<u></u>	

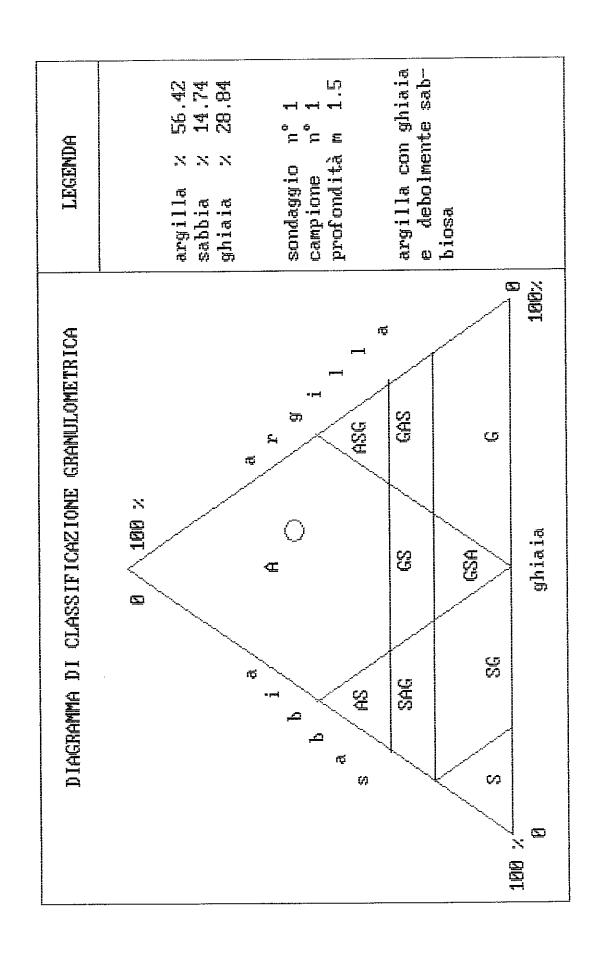
```
SCHEDA DI ANALISI GEOTECNICA
dati generali
                       Bellizzi (SA)
- Comune
                       SS n° 164 - km 2.000
- Località
                       Amministrazione Comunale
- Committente
- Punto di indagine
                   n° 1
                    n° 1
- Campione
- Profondità di prelievo m 1.5
Tipo di campione indisturbato
     indici fisici
                                            Ga t/mc
                                                     1.782
- Peso unita' di volume
                                                     2.733
                                               t/mc
                                            Gr
- Peso specifico dei grani
                                               t/mc
t/mc
                                                    1.320
                                              t/mc
- Densita' secca
                                            Gd
                                                    1.837
                                            Gs
- Peso di volume saturo
                                               t/mc 0.837
- Peso di volume sommerso
                                            1.070
n % 51.691
Wn % 39.151
Sr % 04
- Indice dei vuoti
- Porosita'
- Contenuto in acqua allo stato naturale
- Grado di saturazione
                                                    0.049
- Grado di aereazione
                                            Sa
            limiti di Atterberg
a) Condizioni di prova
                                          33
                               10
                                    18
  - numero delle cadute
                                    41.67 49.11
                                               24.27
                                                     24.58
                               51.48
  - peso lordo campione umido
                           gr
                                    32.46 42.00 22.61
                                                     22.87
                               42.70
  - peso lordo campione secco
                           gr
                                    9.21
                                          7.11
                                               1.66
                                                     1.71
                               8.78
  - peso acqua
                           gr
  - peso tara recipiente
                           gr
                               26.95
                                    12.56
                                          25.11
                                               16.24 16.64
                           gr 15.75
                                    19.90 16.89 6.37
                                                     6.23
  - peso netto secco
                                    46.28 42.10 26.06
                              55.75
                                                     27.45
                            %
  - contenuto in acqua
b) Risultati
                                                     43.20
                        LL %
  - Limite liquido
                                                     29.97
  - Limite plastico
                        LP
                                                     13,23
  - Indice di plasticita'
                        ΙP
                                                     0.69
  - Indice di consistenza
                         IC
                        IL
                                                      0.31
  - Indice di liquidita'
```


		į	<u>ي</u> ق	<u>0</u>	Ð	.– ñ 25 æ))	E E	<u>S</u>	<u></u>	í í	S N	į	<u>=</u>	4			<u>Т</u>
		IP = 0.73 * (LL - 20)	•	1		A. A		I	41	i		I	i		~	110	— <u>*</u> LL%	
		-18 . 73*		-		·····	Advantage of the second								7	1.00	-	, d
	j	II.					١									<u>2</u>	forte	
T P	તામિત	⊕						\					F			딾	<u>.</u>	7 1 C
						ပ			À	N. A.						70		⊢ Ç
STI										Ž					_	68		
ΙÀ	Ē									<u> </u>						58 58	ΨĞ	
	med ia				౪							,	Ö	¥ 0 \	-	40	med i a	Ç
														7	- المحمد المحمد	86		
	bassa															28	ig.	Additional Principles
						ς	ن									18	(A)	
Carta di	Casagrande	assifica	U.S.B.R.	id. n. 1		prof. m 1.5	/MC EF T	IP 13.23%		ar saurios.	biose di media	mpressibili-	ed a media	plasticità 7			<u> </u>	<u>t</u>

L'elaborazione della curva granulometrica e' stata eseguita in aderenza alla teoria di Folk e Ward

legenda


- % passante quantita' percentuale di terreno passante al setaccio
- diametro dei grani - d (mm)
- logaritmo negativo in base 2 di d(mm)
- frazione granulometrica significativa - Mz
- deviazione dal diametro medio -- Ss
- tendenza della curva a disperdersi da un lato rispetto a Mz - Sk
- scostamento dalla distribuzione gaussiana - Ks
- variazione significativa rispetto al diametro efficace d10 - Uu
- gradazione dell'assortimento granulometrico


%	d	D	
5 10 16 25 30 50 60 75 84	0.002 0.002 0.003 0.007 0.010 0.045 0.181 3.218 13.245	9.334 8.875 8.261 7.228 6.685 4.464 2.466 -1.686 -3.727	
95	48.896	-5.612	

INDICI GRANULOMETRICI

1 - composizione percentuale del campione:

- limo-argilla sabbia ghiaia	% % %	56.420 14.740 28.840
2 - diametro medio	Μz	2.999
3 - classazione	Ss	-5.261
4 - asimmetria	\$k	0.358
5 - curtosis	Ks	0.687
6 - coeff. di uniform	ita' Uu	84.977
7 - coeff. di curvatu	ra Cc	0.245

1 - Generalità

Committente Comune Località Amministrazione Comunale Bellizzi (SA) SS n° 164 - km 2,000

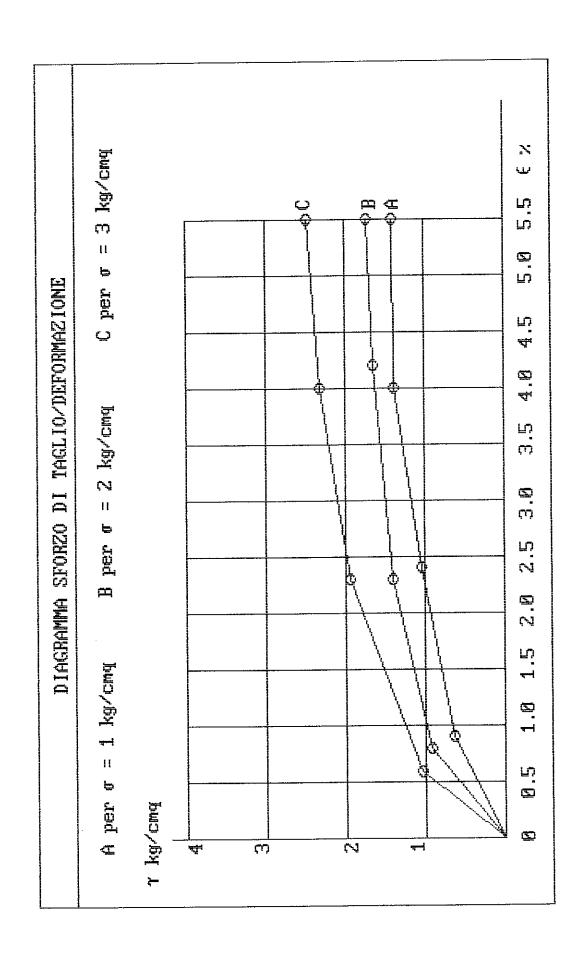
sondaggio campione tipo di campione profondità di prelievo n° 1 n° 1 indisturbato m 1.5

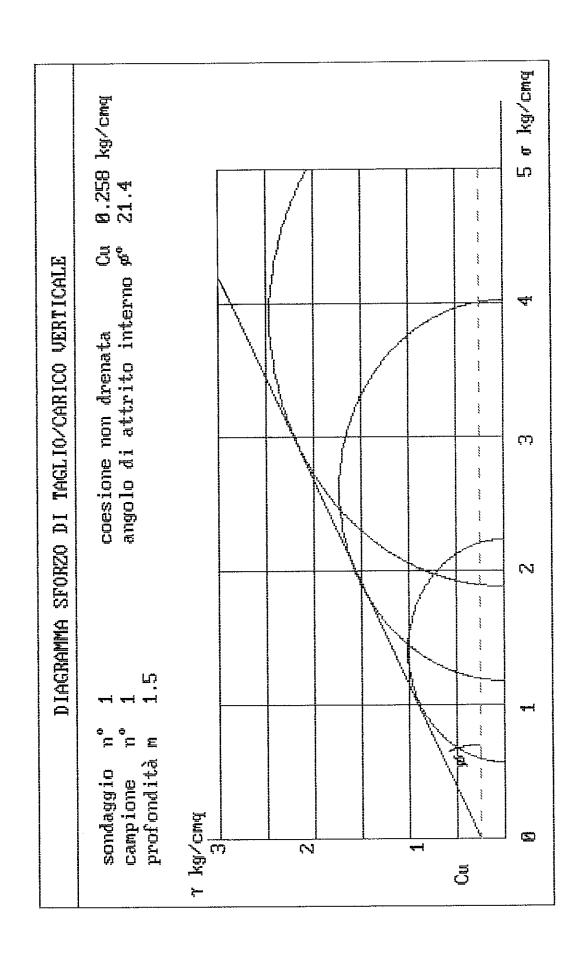
2 - Condizioni di prova

1 egenda

```
P numero del provino
Øi sezione del provino in mm
H altezza del provino in mm
St tempo di consolidazione in ore
SH cedimento del provino in mm
o pressione verticale in kg/cmq
v velocità di deformazione in mm/min
t tempo di sollecitazione in ore
E deformazione trasversale in %
t deformazione tangenziale in mm
```

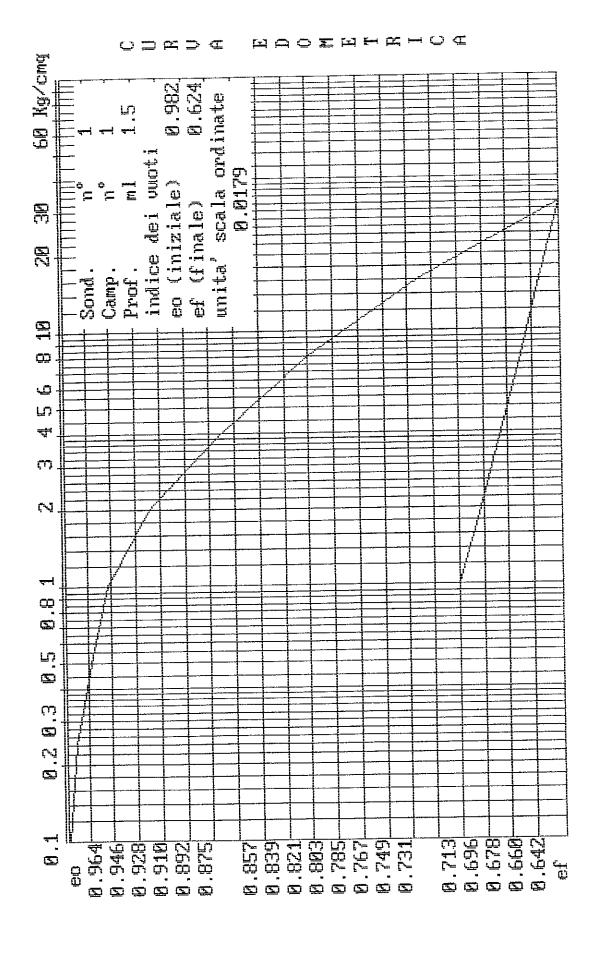
```
: dimens.: fase di : fase di :
: iniziali: consolidamento : rottura :
: P : Øi : H : δt : δh : σ : ν : t : σ :
: 1 : 60 : 20 : 18 : 2.660 : 1 : 0.008 : 5.00 : 1 :
: 2 : 60 : 20 : 18 : 3.523 : 2 : 0.008 : 5.00 : 2 :
: 3 : 60 : 20 : 18 : 4.098 : 3 : 0.008 : 5.00 : 3 :
```

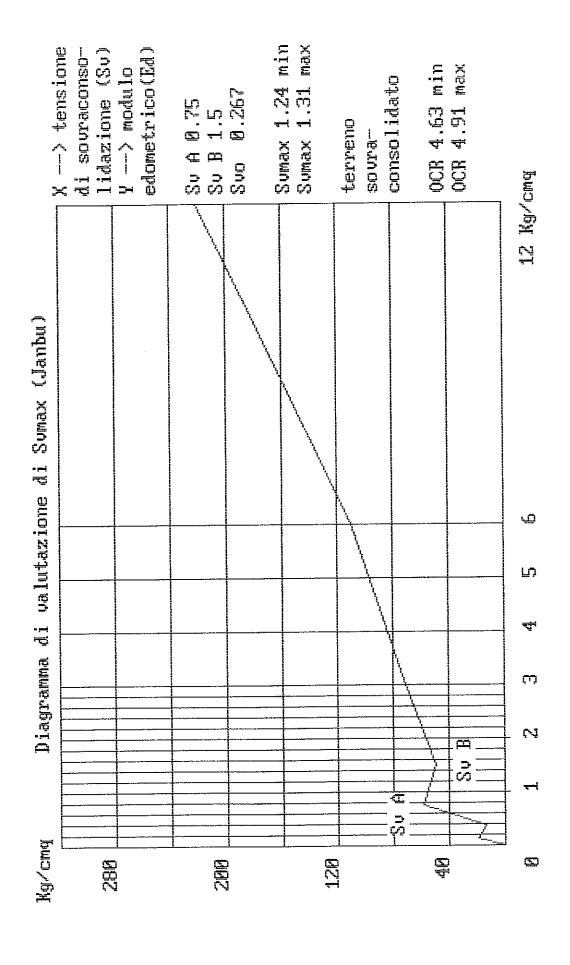

```
: 1° carico : 2° carico : 3° carico : rottura : P : \in : \tau :
```


3 - Risultati

a) coesione non drenata

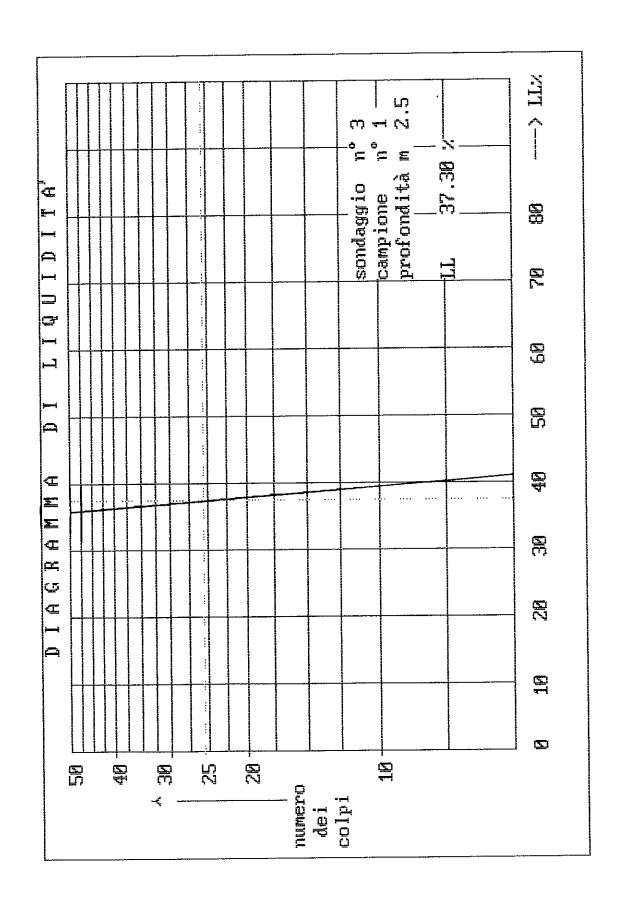
b) angolo di attrito interno


Cu 0.258 kg/cmq Ø 21.4 gradi


CA	LCOLO DEI PARAMETRI	DI COMPRESSI	BILITA'			
	dati gene					. Name was from cost factor
- Località	Amministrazione Com SS n° 164 - km 2.00 Bellizzi (SA)					
- sondaggio - campione - profondità		n° n° m	1 1 1.5			
- altezza del prov - diametro del prov - indice dei vuot - indice dei vuot - indice dei vuot	ovino i del campione i iniziale i finale			Ho f e eo ef		19 50 1.070 0.982 0.624
4,0 000 000 000 000 000 000 000 000 000	dati strum	entali				
- indice dei vuot	arico el provino ercentuali del prov i corrispondente			dS dH e% e	kg mm	
ds	dH	e%			8	
1 - Fase di compr	essione					
0.125 0.250 0.500 1.000 2.000 4.000 8.000 16.000 32.000	0.138 0.265 0.621 0.784 1.176 1.715 2.411 3.102 3.788	0.726 1.395 3.268 4.126 6.189 9.026 12.689 16.326 19.937		0 . 0 : 0 : 0 : 0 :	.968 .954 .917 .900 .859 .803 .730 .658	
2 - Fase di scari	СО					
32.000 16.000 8.000 4.000 2.000 1.000	3.788 3.842 3.421 3.251 3.012 2.636	19.937 20.221 18.005 17.111 15.853 13.874		0 0 0 0	.624 .796 .658 .587 .685	

من الله الله الله الله الله الله الله الل	that have made you the back but have made you had been some that have been some one		gg qu au
	dati dalla curva	edometrica	
indice dei vuotpressione corripressione corri	i inizio tratto rett ^a spondente in er spondente in ef	sr	kg 0.863 kg 4.000 kg 32.000
param e	tri di co	mpressibil	i t a'
	ineo della curva compressione li compressione	Cc Cr	0.265 0.134
	ile della curva ricompressione Hi ricompressione	C q R r	0.078 0.039
	arico della curva rigonfiamento Hi rigonfiamento	Cs Rr	0.171 0.086
i n d	ici di co	mpressibil	i t a'
1 e g e			
incrementi diIndice di compCoefficiente dModulo di comp		са	dS kg av cmq/kg mv cmq/kg Ed kg/cmq
dS	av	M V	Ed
0.125 0.250 0.500 1.000 2.000 4.000 8.000	0.10598 0.14855 0.03401 0.04089 0.02811 0.01815 0.00901 0.00447	0.05347 0.07495 0.01716 0.02063 0.01418 0.00916 0.00455 0.00226	18.701 13.343 58.282 48.469 70.501 109.195 219.971 443.149

GRADO DI CONSOLIDAZIONE - valori dei moduli di compressibilità edometrica per: 18.70 kg/cmq $\delta s = 0.125 \text{ kg}$ ---> Εd ---> Ed ---> Ed kg/cmq 13.34 $\delta s = 0.250 \text{ kg}$ 58.28 kg/cmq $\delta s = 0.500 \text{ kg}$ 48.47 kg/cmq ---> Εď $\delta s = 1.000 \text{ kg}$ ---> 70.50 kg/cmq $\delta s = 2.000 \text{ kg}$ Εd Εd 109.20 kg/cmq $\delta s = 4.000 \text{ kg}$ Εd 219.97 kg/cmq $\delta s = 8.000 \text{ kg}$ 1.50 m - profondità di verifica 1.782 t/mc - peso unità di volume Га 0.267 kg/cmg- tensione litostatica in D σVO 0.75 kg/cmq - tensione di consolidazione (min) ova 1.50 kg/cmq σvb - tensione di consolidazione (max) - tensione di sovraconsolidazione (min) ovmin 1.24 kg/cmq 1.31 kg/cmq - tensione di sovraconsolidazione (max) ovmax 4.63 - grado di consolidazione (min) OCR 4.91 0 C R - grado di consolidazione (max) 4.77 - grado di consolidazione medio 0 C R


terreno sovraconsolidato

·								
	COMUNE D SONDAGGI	I : Bell O : conc	lzzi (Sa daggio m	A) ecoan loc	n 12		LOCALITA	': SS n' 164 - 1m 0,500 : Amministrozione Comunale
3	PROFONDITA	PLESPORT	STRATIOR	FALDA H20	x CAROTAGGIC		Comptone DIR	DESCRIZIONE
2 4	(61)	55				2.5 p 11 12		orgilla sobblosa
6	6.5	1.5	4" # 5" " # 6" " # 1" " # 1" " # 1"			6.6 6 12 15		sabble ! Imose con ghieletto
8	(64.5) O	1.5	新期					sabbia i ima-argilicaa
	9.3 (61.7)	1.3			ż			angtila plumbea
10		2.3						ang lila • abb toe a
8 4 6	11.7 (49.3)	6.8		13				eabbla Ilmoea
20	(42.5)	3.5						ghlata in matrice ilmo-eabblosa
1	(39)			1				1

acanzo insediamento IACF strazione Comunale	's in adiacanzo in : Amministrazione	OCALITA			n′ 3		izzi (6. daggio m			
ESCRIZIONE	DESCR	Complant DIR				FALDA		SPESSORI	PROFONDITA	3
sebbloso-terrose passante a in mairice limo-eebbloea	coltre sabbloso- ghlala in matric		1.5 8 16 18					2.2	(61)	2
÷	· .	2.5							(60.8)	4
	1 tma		5.2 464	÷		7_		7.1		6
			9.4 15.915						9.3	18
tercalato da frequenti oriz: Largilla e detrito minuto	limo intercalato zonti di argille							5		12
		-							14.4	14
g liio-sabbiloso	limo argillo-sab							4.8		16
cobb (coa	argilla cobbicad							2.7	19.2 (41.8)	20
cobl	argilla sobi							2.7	22	22

```
经数据保证 解释 医抗性性性性性 化环状性 化环状性 化环状性 医耳样性 医环状性 医环状性 医红斑性 医红斑性 医红斑 医红斑 医红斑 化二甲基苯甲基甲基苯甲基
 SCHEDA DI ANALISI GEOTECNICA
dati generali
                          Bellizzi (SA)
- Comune
                          adiacenze insediamento IACP
- Località
- Committente
                          Amministrazione Comunale
- Punto di indagine n° 3
- Campione n° 1
- Campione
- Profondità di prelievo m 2.5
                         indisturbato
- Tipo di campione
                  indici fisici
                                                  Ga t/mc
                                                           1.806
- Peso unita' di volume
                                                  Gr t/mc
                                                           2.782
- Peso specifico dei grani
                                                          1.412
1.905
                                                  Gd t/mc
- Densita' secca
- Peso di volume saturo
                                                     t/mc
                                                  Gs
                                                     t/mc 0.905
                                                  G *
- Peso di volume sommerso
                                                           0.970
- Indice dei vuoti
                                                      % 49.239
% 34.867
                                                  'n
- Porosita'
                                                  Wn
- Contenuto in acqua allo stato naturale
                                                  Sr
                                                       % 90.022
- Grado di saturazione
                                                           0.087
                                                  Sa
- Grado di aereazione
              limiti di Atterberg
a) Condizioni di prova
                                    3
                                         9
                                               16
   - numero delle cadute
                                               51.12 27.06
                                                            26.88
   - peso lordo campione umido gr
                                   53.36
                                         44.25
                              gr 46.47
                                         36.19
                                                     25.10
                                                            24.86
                                                44.01
   - peso lordo campione secco
                                               7.11 1.96
                                                            2.02
                                   6.89
                                         8.06
                              gr
   - peso acqua
                                                            17.03
                                               25.87 16.92
                                         13.11
                                   27.03
                              gr
   - peso tara recipiente
                                   19.44 23.08 18.14 8.18 7.83
                                gr
   - peso netto secco
                                   35.44 34.92 39.20 23.96
                                                            25.80
                                %
   - contenuto in acqua
b) Risultati
                                                            37.30
                           L L
   - Limite liquido
                                                            24.67
   - Limite plastico
                           LP %
                                                            12.63
   - Indice di plasticita'
                           Ιb
                                                             0.19
   - Indice di consistenza
                            ΙC
                                                             0.81
                            ΙL
   - Indice di liquidita'
```


		<u>Ş</u>	898	, B	å 0, 8 8	S 5	<u></u> 4		- ¢	7.7.7
STICITA	alta	(E)—+ IP=0.73*(LL-20)	p	The same of the sa		II -0		68 78 8 8 9 8 108 118	for	RESSIBILITA:
4 7 4	med ia		Ç		•	Q.		8 48 SB		C O I
and a second of the first of the first of the first of the second of the			Ç	2			Control of the state of the sta	10 20 30	scarsa	
; [classifica U.S.B.R.	sond. n° 3 camp. n° 1 prof. m 2.5	LL 37.30x IP 13.23x	limi sabbiosi e argille sab-	compressibili-	plasticità 7-	1		

L'elaborazione della curva granulometrica e' stata eseguita in aderenza alla teoria di Folk e Ward

legenda

- Uu

- Cc

quantita* percentuale di terreno passante al setaccio - % passante

diametro dei grani - d (mm)

logaritmo negativo in base 2 di d(mm) - D

frazione granulometrica significativa - Mz

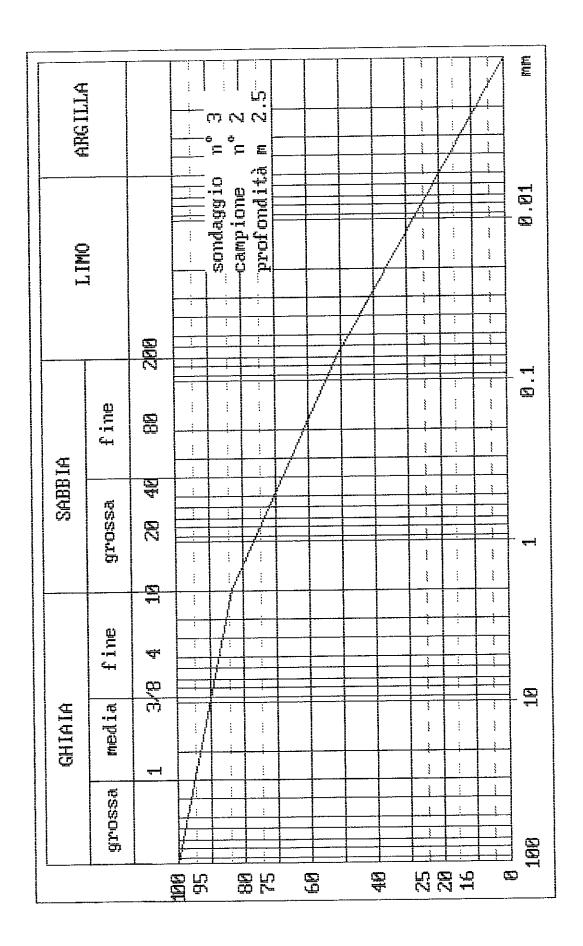
deviazione dal diametro medio - Ss

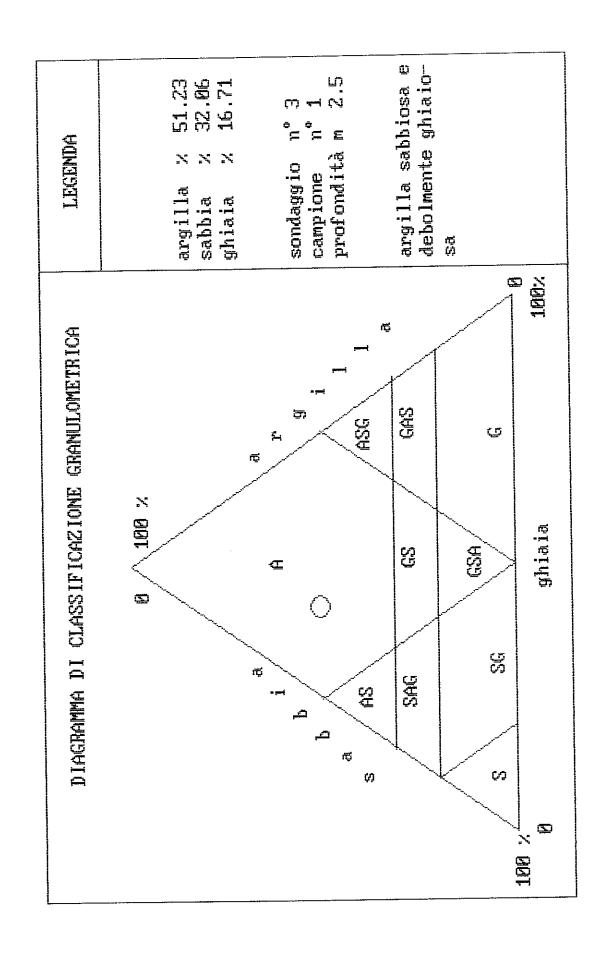
tendenza della curva a disperdersi da un lato rispetto a Mz - Sk

scostamento dalla distribuzione gaussiana - Ks

variazione significativa rispetto al diametro efficace d10

gradazione dell'assortimento granulometrico


8	d	Ď	
5 10 16 25 30 50	0.005 0.002 0.004 0.008 0.013 0.063 0.183	7.688 8.777 8.028 6.973 6.254 3.979 2.450	
75 84 95	0.800 2.654 28.623	0.322 -1.408 -4.839	


GRANULOMETRICI

1 - composizione percentuale del campione:

		limo-argilla sabbia ghiaia	% % %	51.230 32.060 16.710
2	_	diametro medio	Μz	3.533
3		classazione	Ss	-4.257
4		asimmetria	Sk	0.275
5		curtosis	Кs	0.772
6		coeff. di uniformita'	Uu	80.263

7 - coeff. di curvatura Cc 0.411

1 - Generalità

Committente Comune Località Amministrazione Comunale Bellizzi (SA) adiacenze insediamento IACP

sondaggio campione tipo di campione profondità di prelievo

n° 3 n° 1 indisturbato m 2.5

2 - Condizioni di prova

legenda

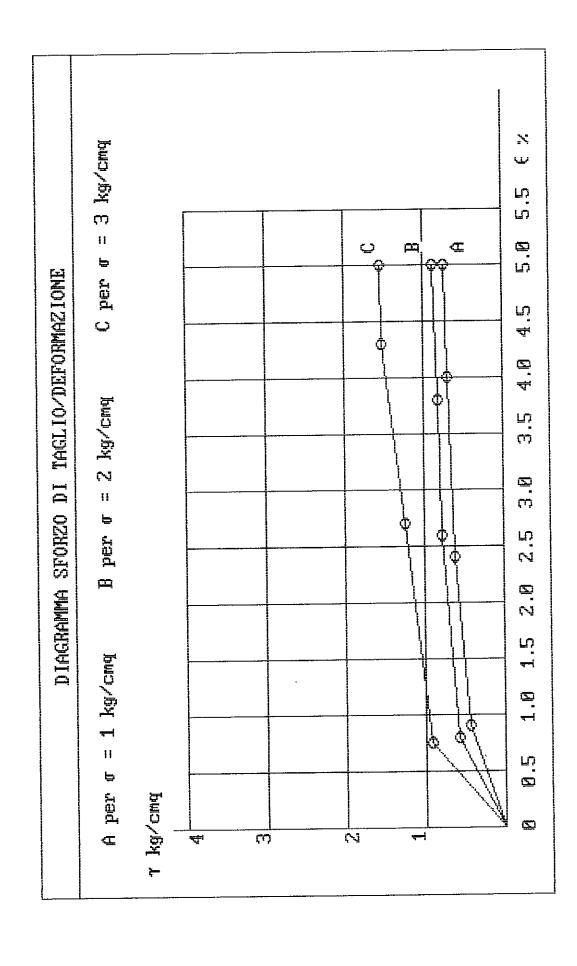
P numero del provino
Øi sezione del provino in mm
H altezza del provino in mm
St tempo di consolidazione in ore
SH cedimento del provino in mm
o pressione verticale in kg/cmq
v velocità di deformazione in mm/min
t tempo di sollecitazione in ore
deformazione trasversale in %
t deformazione tangenziale in mm

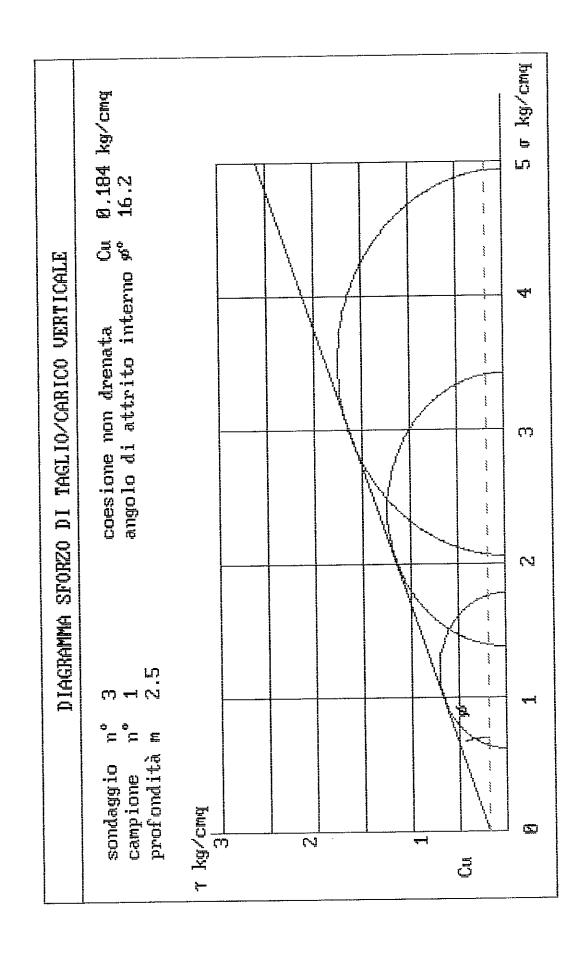
```
: dimens.: fase di : fase di : iniziali: consolidamento : rottura : 

: P : Øi : H : δt : δh : σ : ν : t : σ : 

: 1 : 60 : 20 : 18 : 2.968 : 1 : 0.004 : 4.00 : 1 : 

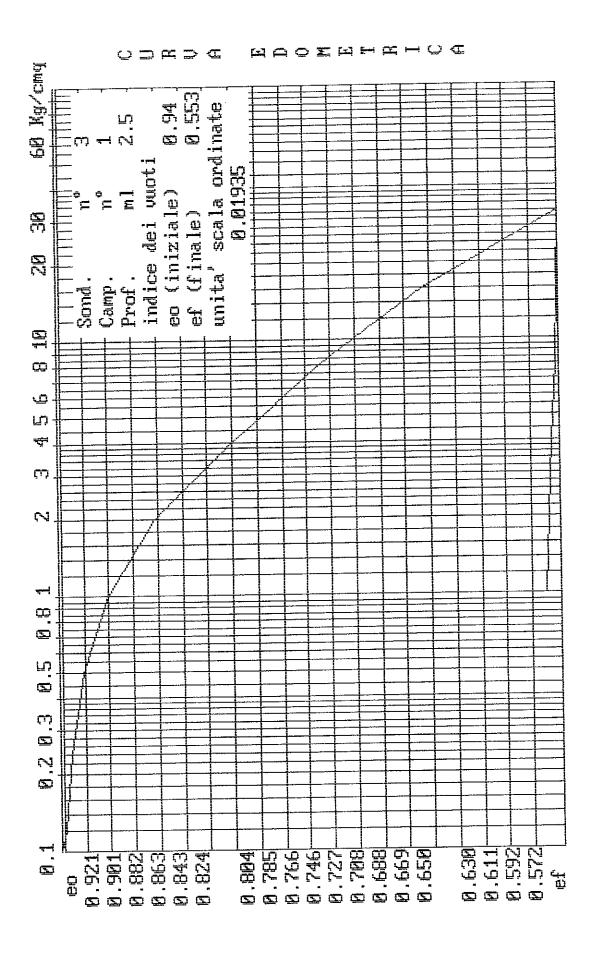
: 2 : 60 : 20 : 18 : 3.456 : 2 : 0.004 : 4.00 : 2 : 

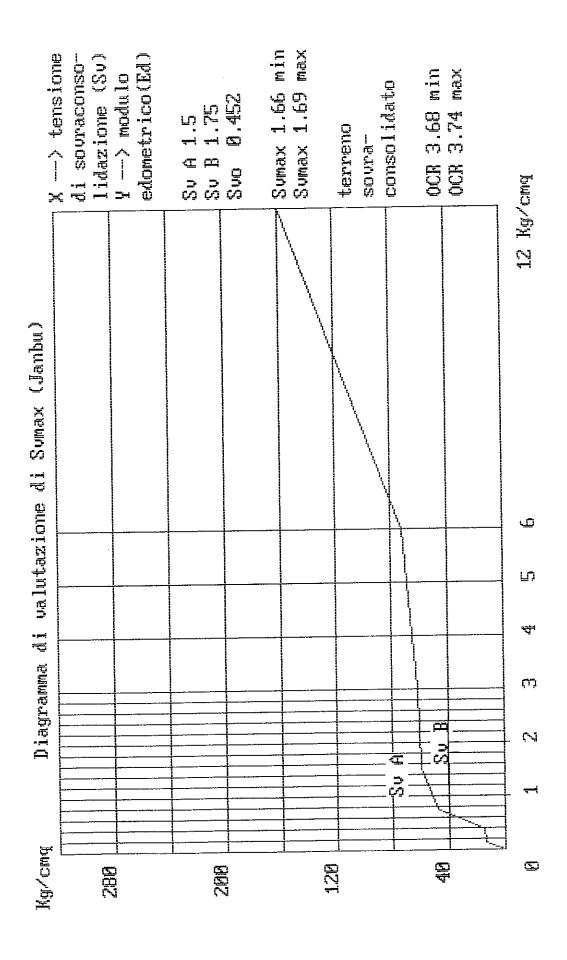

: 3 : 60 : 20 : 18 : 4.124 : 3 : 0.004 : 4.00 : 3 :
```


```
: 1° carico : 2° carico : 3° carico : rottura : : P : \in : \tau : \tau : \in : \tau : \tau : \in : \tau :
```

3 - Risultati

- a) coesione non drenata
- b) angolo di attrito interno

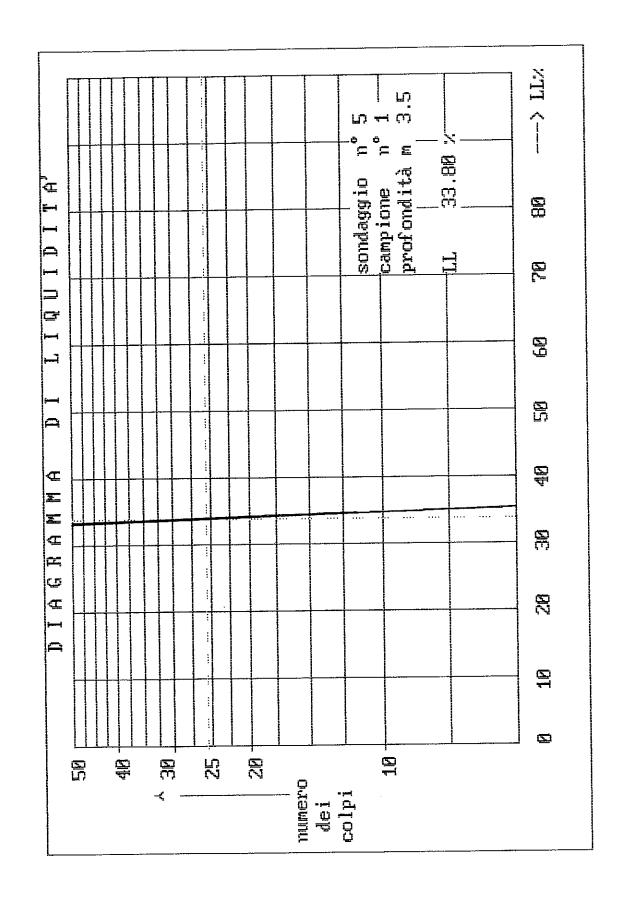

Cu 0.184 kg/cmq ø 16.2 gradi


CALCOLO DEI PARAMETRI DI COMPRESSIBILITA* dati generali Amministrazione Comunale - Committente adiacenze insediamento IACP - Località Bellizzi (SA) - Comune n° 3 - sondaggio n° 1 campione m 2.5 - profondità 19 Ho mm - altezza del provino 50 f e m m - diametro del provino 0.970 0.940 - indice dei vuoti del campione eо - indice dei vuoti iniziale 0.553 ef - indice dei vuoti finale dati strumentali 1 egenda kg - incrementi di carico dΗ m m - accorciamenti del provino e% - accorciamenti percentuali del provino - indice dei vuoti corrispondente e% 1 - Fase di compressione 0.921 0.979 0.186 0.125 0.902 1.953 0.371 0.250 0.867 3.742 0.711 0.500 0.847 4.784 0.909 1.000 0.814 6.479 1.231 2.000 9.753 0.751 1.853 4.000 0.641 15.395 2.925 8.000 0.544 20.405 3.877 16.000 0.553 24.384 4.633 32,000 2 - Fase di scarico 0.553 24.384 4.633 32.000 0.726 20.658 3,925 16.000 0.544 19.168 3.642 8,000 0.467 18.200 3.458 4.000 0.561 16.921 3.215 2.000 0.564 15,300 2.907 1.000

	dati dalla curva	edometrica	
indice dei vuotpressione corripressione corri	i inizio tratto rett spondente in er spondente in ef	ilineo er sr sf	
n ~ r ~ m @	tri di co	mpressib [†]	ilita'
1 - Tratto rettil * Indice di * Rapporto d	ineo della curva compressione li compressione	Cc Cr	0.256 0.132
2 - Tratto inizia * Indice di * Rapporto d	ale della curva ricompressione di ricompressione	C q R r	0.062 0.032
* Indice di	arico della curva rigonfiamento ji rigonfiamento	Cs Rr	0.193 0.099
ind	ici di c	mpressib	i 1 i t a t
1 e g e	n d a		
- Modulo di comp	ressibilita' i compressibilita' ressibilita' edometr		dS kg av cmq/kg mv cmq/kg Ed kg/cmq
40	av	m∨	Εd
0.125 0.250 0.500 1.000 2.000 4.000 8.000 16.000	0.15112 0.13886 0.04043 0.03288 0.03175 0.02736 0.01215 0.00482	0.07789 0.07158 0.02084 0.01695 0.01637 0.01411 0.00626 0.00249	12.838 13.971 47.980 59.006 61.093 70.896 159.664 402.116

GRADO DI CONSOLIDAZIONE - valori dei moduli di compressibilità edometrica per: ---> Ed ---> Ed ---> Ed ---> Ed ---> Ed ---> Ed 12.84 kg/cmq $\delta s = 0.125 \text{ kg}$ 13.97 kg/cmq $\delta s = 0.250 \text{ kg}$ 47.98 kg/cmq $\delta s = 0.500 \text{ kg}$ 59.01 kg/cmq $\delta s = 1.000 \text{ kg}$ 61.09 kg/cmq $\delta s = 2.000 \text{ kg}$ 70.90 kg/cmq $\delta s = 4.000 \text{ kg}$ 159.66 kg/cmq $\delta s = 8.000 \text{ kg}$ 2.50 m - profondità di verifica - peso unità di volume D $1.806 \, t/mc$ Га 0.452 kg/cmqσVO - tensione litostatica in D kg/cmq - tensione di consolidazione (min) - tensione di consolidazione (max) 1.50 σva 1.75 kg/cmq σvb 1.66 kg/cmq - tensione di sovraconsolidazione (min) ovmin - tensione di sovraconsolidazione (max) ovmax 1.69 kg/cmq 3.68 OCR - grado di consolidazione (min) 3.74 - grado di consolidazione (max) 0 C R 3.71 0 C R - grado di consolidazione medio

terreno leggermente sovraconsolidato


	COMUNE D	I : Bel	l tzzt (S	A)			LOCALITA	: SS n' 18 - tm 71,600
—			daggio m					: Amministrazione Comunate
3	PROFONDITA 1.000.SLDM	SPESSORI	STRATIOR	H20	% CAROTAGGIO		DIR	DESCRIZIONE
2	3.2	3.2				2		coltre argilloso-terroso paseante a orgilla eabbiosa bruna
4	(62.0)	5. 3		7		5.5 14 19 19		eabble Ilmoee con interceleti frequenti ilvelli di ghieletto
18	12.4	3.8				9.6 • 11 •		Ilmo sabbioso
16	(43.0)	7.6						ghlala in matrice ilmo-ergilicea
20 22	20 (36)	2						orgilla sobbiosa

SG-005

	COMUNE D			A) weed te) n´ 5		LOCALITA COMMITT.	': SS n' 18 - im 70,200 : Amministrazione Comunale
3	PROFONDITA	SPESSORI			% CAROTAGGIO		Comptone DIR	DESCRIZIONE
2	(611)	4.5				2,5	3.5	ooltre argliioso-terrosa passante a Ilmo sabbloso saturo
4	4.5 (46.6) 5.2 (46.8)	.6 						engille grigia satura ghiele in metrice ilmo-sebblose
6	6 (45)							
	6.6 (44.4)	.5	7:30				_	engilla grigia
D	9. 8	3.2		7.4		8.4 914 22		ghiala in matrice limo-sebbiosa
18			X040 73a					in the state of th
12		3.1						argilia grigia
	13							

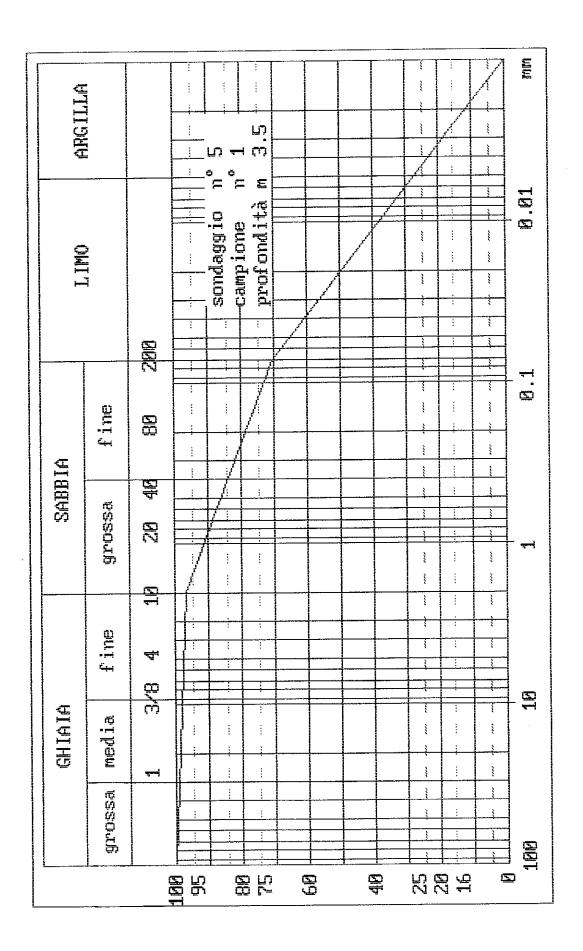
```
SCHEDA DI ANALISI GEOTECNICA
dati generali
                Bellizzi (SA)
- Comune
                        SS n° 18 - km 70.200
- Località
- Committente
                        Amministrazione Comunale
- Punto di indagine
                    n°5
- Campione n° 1
- Profondità di prelievo m 3.5
                       indisturbato
- Tipo di campione
                indici fisici
                                              Ga t/mc
                                                       1.848
- Peso unita' di volume
                                                  t/mc 2.511
                                              Gr
- Peso specifico dei grani
                                              Gd t/mc 1.463
- Densita' secca
- Peso di volume saturo
                                              Gs t/mc 1.881
                                               G' t/mc
                                                      0.881
- Peso di volume sommerso
                                                       0.716
                                               е
- Indice dei vuoti
                                                    % 41.725
                                              n
- Porosita'
                                                  % 28.515
- Contenuto in acqua allo stato naturale
                                              ₩n
                                                   % 95.951
                                               Sr
- Grado di saturazione
                                                       0.035
                                               Sa
- Grado di aereazione
              limiti di Atterberg
a) Condizioni di prova
                                     12
                                            26
  - peso lordo campione umido gr 54.32 46.11

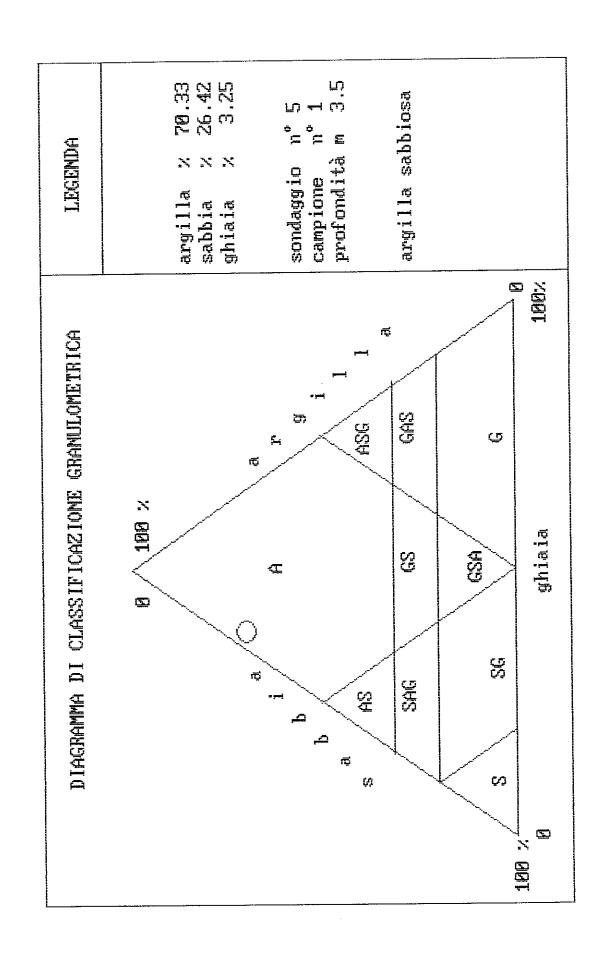
- peso lordo campione secco gr 46.99 37.46
  - numero delle cadute
                                                        29.77
                                            53.26
                                                  28.14
                                                        28.04
                                                  26.59
                                      37.46 46.35
                                                        1.73
                                                  1.55
                             gr
                                7.33
                                      8.65
                                            6.91
  - peso acqua
                            gr 26.18 13.02 26.12
gr 20.81 24.44 20.23
                                                  17.03
                                                       16.68
  - peso tara recipiente
                                                  9.56 11.36
                            gr 20.81
  - peso netto secco
                                                       15.23
                             § 35.22 35.39 34.16
                                                  16.21
  - contenuto in acqua
b) Risultati
  - Limite plastico
                                                        33.80
                         LL.
                                                        23.73
                         LΡ
                                                        10.07
  - Indice di plasticita'
                             ò
                         ΙP
                                                        0.52
   - Indice di consistenza
                         ΙC
                                                         0.48
   - Indice di liquidita'
                         ΙL
```


		<u>0</u>	B (의)전 명	S	<u> 충</u> 없	C)	SQ 4		_ A	1. L. X.
TICITA'	alta	(D)—— IP=0.73*(LL-20)	d L	The same are the same and the s				68 78 88 98 188 118		
PLAS	med i a		Ç.		3			30 40 50	Q	
month of the spirit of the second state of the second state of the second second second second second second s	Date Sa		Û						SCarsa	
Carta di		classifica U.S.B.R.	sond. n° 5 camp. n° 1 prof. m° 1.5	LL 33.86% IP 10.07%	limi sabbiosi e argille sab-	biose di media compressibili- tà ed a media	plasticità 7	Ħ	1 1	

L'elaborazione della curva granulometrica e' stata eseguita in aderenza alla teoria di Folk e Ward

legenda


- % passante quantita' percentuale di terreno passante al setaccio diametro dei grani - d (mm)
- logaritmo negativo in base 2 di d(mm) - D
- frazione granulometrica significativa - Mz
- deviazione dal diametro medio - Ss
- tendenza della curva a disperdersi da un lato rispetto a Mz - Sk
- scostamento dalla distribuzione gaussiana - Ks
- variazione significativa rispetto al diametro efficace d10 - Uu
- gradazione dell'assortimento granulometrico - Cc


%	d	υ	
			هري مورد المدين المريد المدين المريد المريد المريد المريد المدين المريد
5	0.002	8.733	
10	0.008	6.925	
16	0.003	8.604	
25	0.004	7.832	
30	0.006	7.374	
50	0.020	5.630	
60	0.039	4.688	
75	0,139	2.847	
8.4	0.417	1.262	
95	1.648	-0.721	

INDICI GRANULOMETRICI

1 - composizione percentuale del campione:

_		· limo-argilla · sabbia · ghiaia	010 010 010	70.330 26.420 3.250
2	•••	diametro medio	Μz	5.165
3	-	classazione	Ss	-3.268
4		asimmetria	Sk	0.267
5		curtosis	Кs	0.777
б		coeff. di uniformita'	Uu	4.714
7	_	coeff. di curvatura	Сс	0.114

n °

1 - Generalità

Committente Comune Località Amministrazione Comunale Bellizzi (SA) SS n° 18 - km 70.200

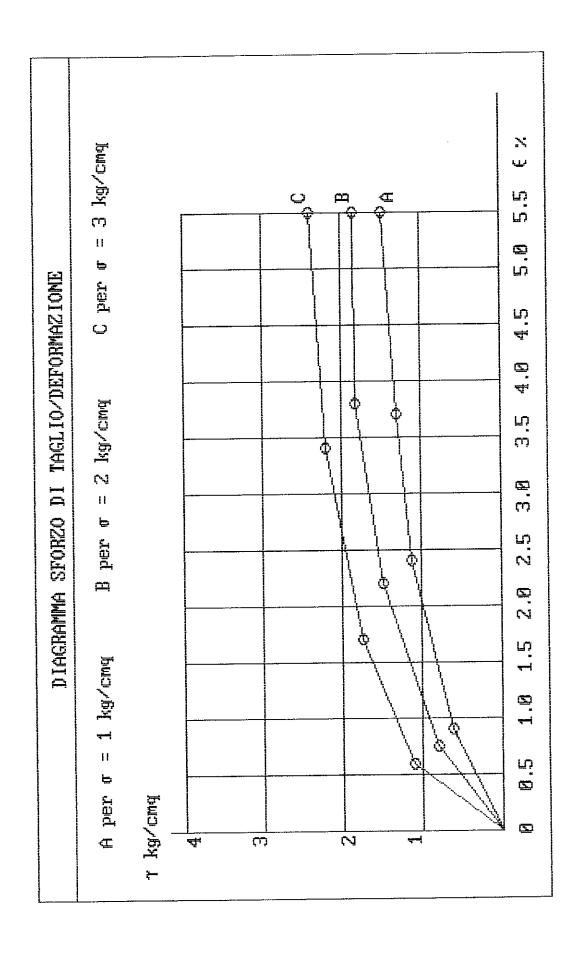
sondaggio campione tipo di campione profondità di prelievo

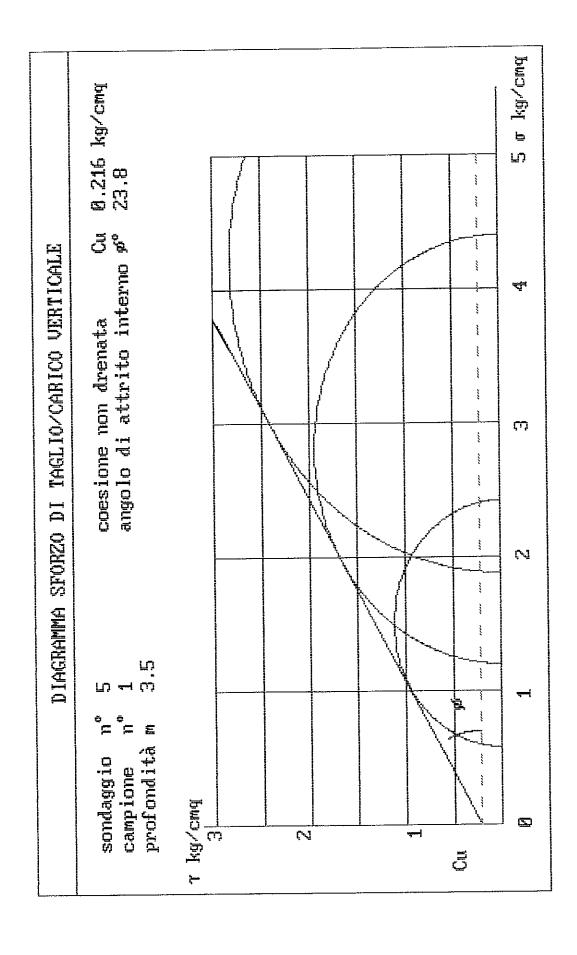
n° 1 indisturbato m 3.5

5

2 - Condizioni di prova

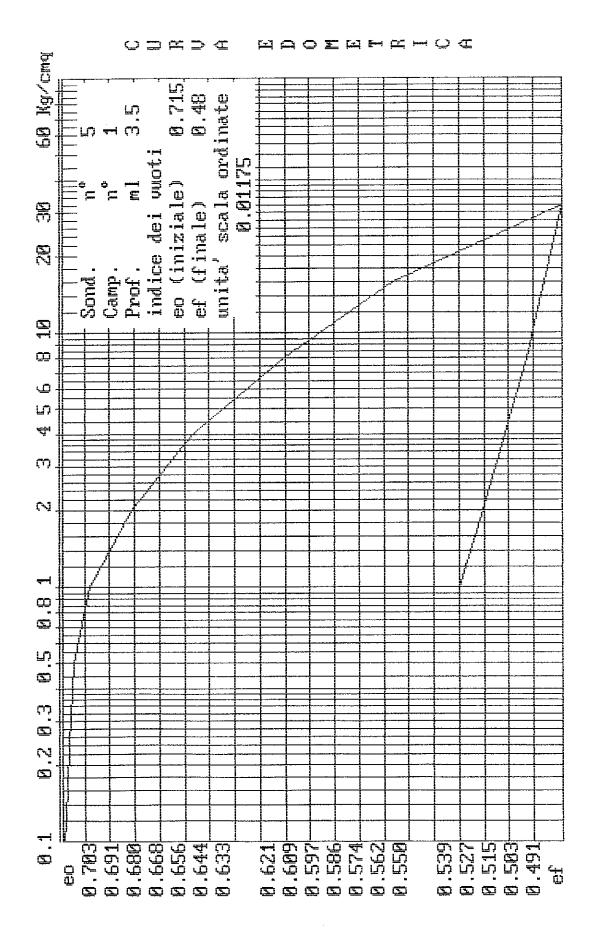
legenda


```
P numero del provino
Øi sezione del provino in mm
H altezza del provino in mm
8t tempo di consolidazione in ore
8H cedimento del provino in mm
o pressione verticale in kg/cmq
v velocità di deformazione in mm/min
t tempo di sollecitazione in ore
E deformazione trasversale in %
t deformazione tangenziale in mm
```


```
: 1° carico : 2° carico : 3° carico : rottura : : P : \in : \tau : \bullet :
```

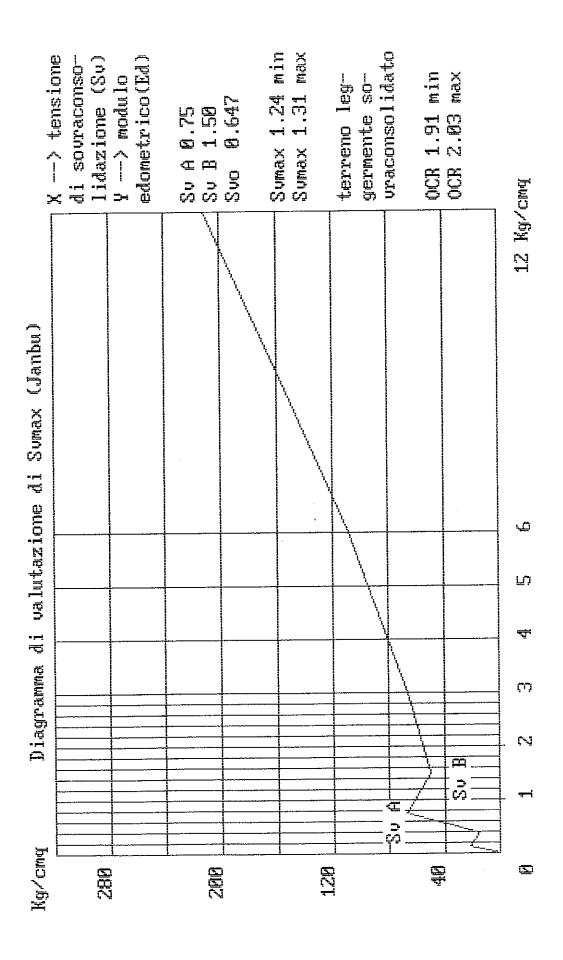
3 - Risultati

a) coesione non drenata b) angolo di attrito interno


Cu 0.216 kg/cmq Ø 23.8 gradi

CALCOLO DEI PARAMETRI DI COMPRESSIBILITA' dati generali Amministrazione Comunale - Committente SS n° 18 - km 70.200 - Località Bellizzi (SA) - Comune 5 n° - sondaggio n° 1 - campione 3.5 - profondità 19 Ηо m m - altezza del provino 50 f m m - diametro del provino 0.716 е - indice dei vuoti del campione - indice dei vuoti iniziale 0.715 eо 0.480 e f - indice dei vuoti finale dati strumentali 1 egenda kg dS. - incrementi di carico dН m m - accorciamenti del provino e% - accorciamenti percentuali del provino - indice dei vuoti corrispondente e % dН 1 - Fase di compressione 0.703 0.716 0.136 0.125 0.693 1.305 0.248 0.250 0.661 3.121 0.500 0.593 0.649 3.874 0.736 1.000 0.614 5.900 1.121 2.000 0.562 8.932 1.697 4.000 0.498 12.637 2,401 8.000 0.433 16.432 3.122 16.000 0.480 19.768 3.756 32.000 2 - Fase di scarico 0.480 19.768 3.756 32.000 0.606 20.347 3.866 16,000 0.433 18.147 3.448 8.000 17.216 0.376 3.271 4.000 0.519 15.779 2.998 2.000 0.531 14.126 2.684 1.000

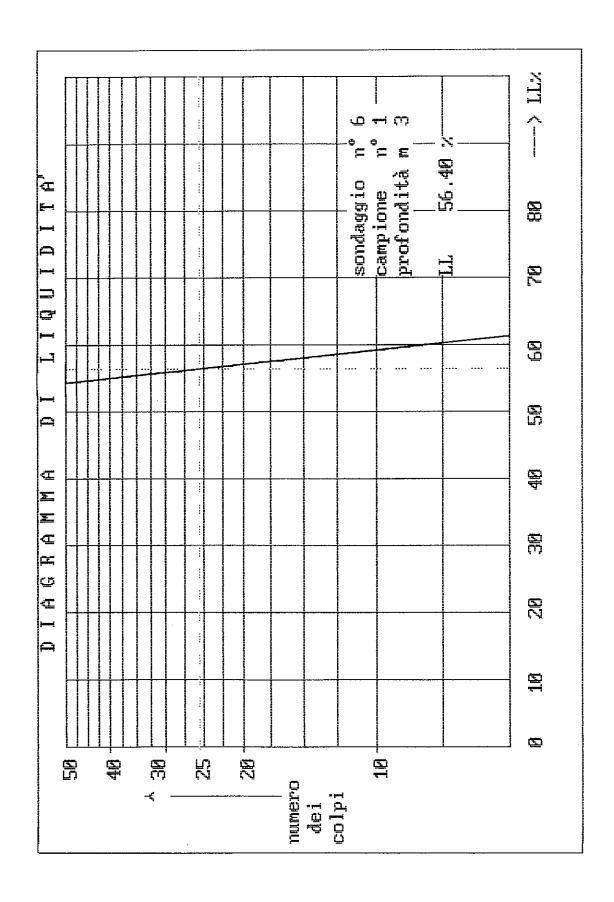
	dati dalla cur		DE TO THE TO THE SET OF THE THE SET OF THE TO THE T
- pressione corr	oti inizio tratto re rispondente in er rispondente in ef	sr sf	kā 0.651
param	etri di c	ompressibi	1 i t a'
* Indice di	lineo della curva compressione di compressione	Cc Cr	0.101 0.059
	ale della curva ricompressione di ricompressione	C q R r	0.088 0.051
* Indice di	arico della curva rigonfiamento di rigonfiamento	Cs Rr	0.106 0.062
		ompressibi	
le g	enda		
	oressibilita' di compressibilita' oressibilita' edomet		dS kg av cmq/kg mv cmq/kg Ed kg/cmq
dS	av	m v	Ed
0.125 0.250 0.500 1.000 2.000 4.000 8.000	0.08088 0.12456 0.02582 0.03475 0.02600 0.01589 0.00813 0.00358	0.04716 0.07263 0.01505 0.02026 0.01516 0.00926 0.00474 0.00209	21.205 13.768 66.434 49.351 65.972 107.955 210.818 479.495

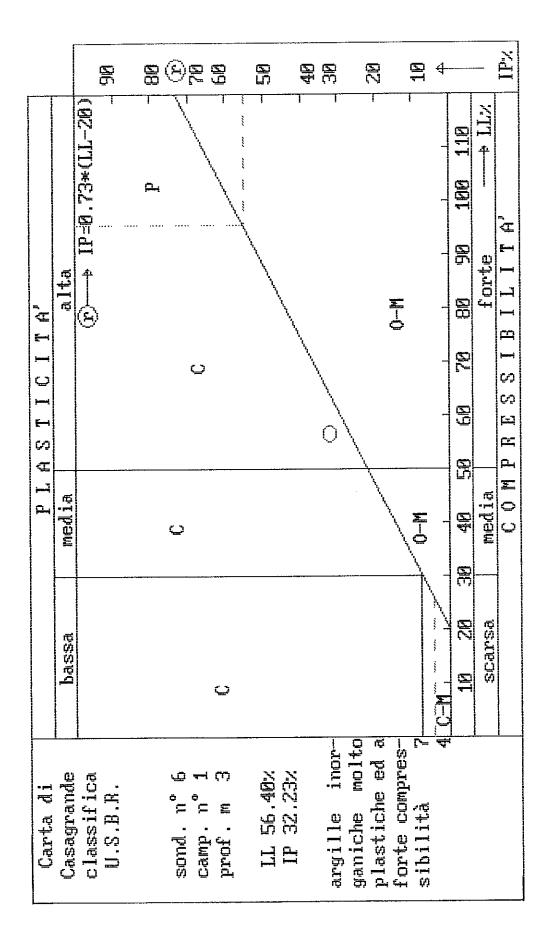

GRADO DI CONSOLIDAZIONE - valori dei moduli di compressibilità edometrica per: kg/cmq 21.21 Εd $\delta s = 0.125 \text{ kg}$ \$\$ = 0.250 kg ---> Ed \$\$ = 0.500 kg ---> Ed \$\$ = 1.000 kg ---> Ed \$\$ = 2.000 kg ---> Ed \$\$ = 4.000 kg ---> Ed \$\$ = 8.000 kg ---> Ed 13.77 kg/cmg kg/cmq 66.43 49.35 kg/cmq 65.97 kg/cmg 107.96 kg/cmq kg/cmq 210.82 3.50 mD - profondità di verifica 1.848 t/mc Га - peso unità di volume 0.647 kg/cmq $Q \land Q$ - tensione litostatica in D σva 0.75 kg/cmq - tensione di consolidazione (min) 1.50 kg/cmq - tensione di consolidazione (max) σvb 1.24 kg/cmq - tensione di sovraconsolidazione (min) ovmin 1.31 kg/cmq - tensione di sovraconsolidazione (max) ovmax 1.91 OCR - grado di consolidazione (min) 2.03 OCR - grado di consolidazione (max)

- grado di consolidazione medio

terreno leggermente sovraconsolidato

OCR


1.97



SG-006

COMUNE D	I : Belltzzt (S	A)			LOCALITA	Y : Souole Elementare
	O : sendegglo m	occon lco			COMMITT.	
B PROFONDITA	DLEGOOMT D HVITOK	FALDA :	CAROTAGGIO	Nooipi SPT	Comp tone DIR	DESCRIZIONE
2 4	9.2	B 1		4 911.1	JII.	caltre argliicea-terroes pseesante a arglila limo-esbbices
9.2						
18	2.4					angilia grigia
(50.4)	3.3		-	12.3 er (0 pe		eabbla Ilmosa frammista e ghiaistio
15			·			

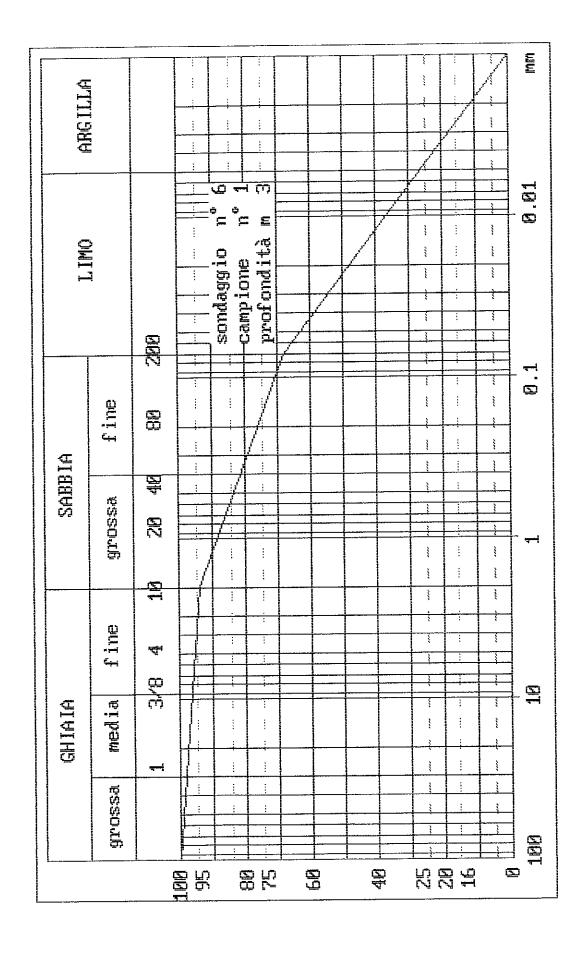
```
SCHEDA DI ANALISI GEOTECNICA
dati generali
                         Bellizzi (SA)
- Comune
                         Scuola Elementare
- Località
- Committente
- Committente
- Punto di indagine
                         Amministrazione Comunale
                     n°б
- Profondità di prelievo m 3
- Tipo di campione indisturbato
                 indici fisici
                                                    t/mc
                                                         1.673
- Peso unita' di volume
                                                Ga
                                                    t/mc 2.724
- Peso specifico dei grani
                                                Gr
                                                   t/mc 1.153
t/mc 1.730
                                                Gd
- Densita' secca
- Peso di volume saturo
                                                Gs
                                                G* t/mc
                                                         0.730
- Peso di volume sommerso
                                                         1.362
- Indice dei vuoti
                                                е
                                                     % 57.663
- Porosita'
                                                n
                                                    $ 50.000
- Contenuto in acqua allo stato naturale
                                                Wn
                                                     % 94.431
                                                Sr
- Grado di saturazione
                                                         0.048
- Grado di aereazione
                                                Sa
              limiti di Atterberg
a) Condizioni di prova
                                  3
                                        5
                                              11
  - numero delle cadute
  - peso lordo campione umido \qquad gr 50.11 39.86 47.48 - peso lordo campione secco \qquad gr 41.99 31.41 38.95
                                                          23.71
                                                    23.36
                                                   20.17
                                                          20.33
                                                          3.38
                                  8.12 8.45
                                              8.53
                                                   3.19
  - peso acqua
                             gr
                             gr 26.91 12.88 24.75
                                                   16.74
                                                          16.81
  - peso tara recipiente
                             gr 15.08 18.53 14.20
                                                   3.43
                                                          3.52
  - peso netto secco
  - contenuto in acqua
                                  53.85 45.60 60.07 93.00
                                                          96.02
b) Risultati
                          LL %
                                                          56.40
  - Limite liquido
- Limite plastico
                                                          24.17
                          LP %
                                                          32.23
  - Indice di plasticita'
                          IP
  - Indice di consistenza
                          IC
                                                           0.36
  - Indice di liquidita'
                                                           0.65
```

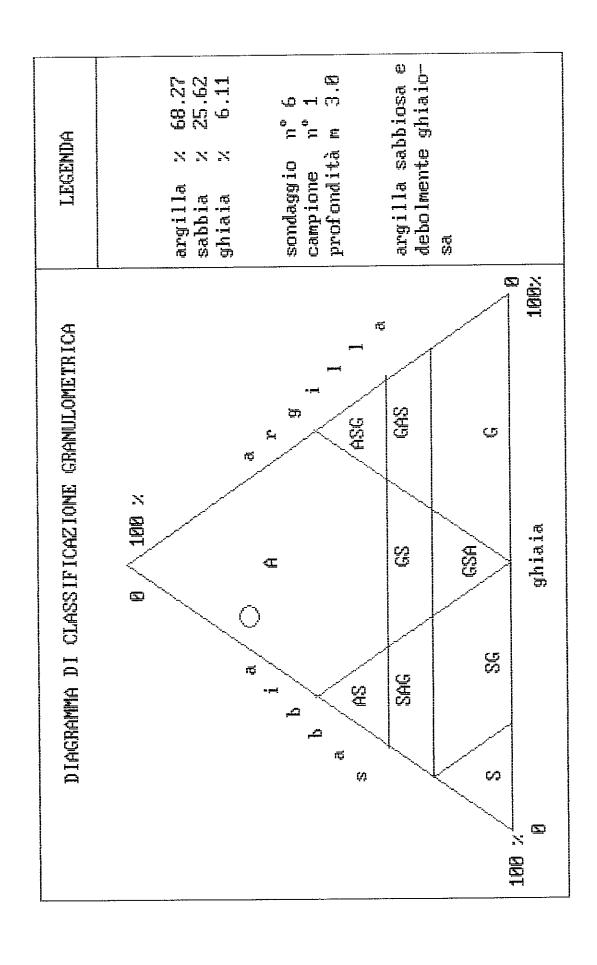

L'elaborazione della curva granulometrica e' stata eseguita in aderenza alla teoria di Folk e Ward

legenda

- % passante quantita' percentuale di terreno passante al setaccio d (mm) diametro dei grani - d (mm)
- logaritmo negativo in base 2 di d(mm)
- frazione granulometrica significativa - Mz
- deviazione dal diametro medio - Ss tendenza della curva a disperdersi da un lato rispetto a Mz - Sk
- scostamento dalla distribuzione gaussiana - Ks
- variazione significativa rispetto al diametro efficace d10 - Uu
- gradazione dell'assortimento granulometrico - Cc

%	d	D	
		ه میه میک شک شک شک شک شک دی .	N
5	0.001	9.410	
10	0.002	9.025	
16	0.003	8.527	
25	0.005	7.755	
30	0.006	7.272	
50	0.024	5.393	
60	0.045	4.484	
75	0.176	2.506	
84	0.584	0.776	
95	3.122	-1.642	


INDICI


GRANULOMETRICI

1 - composizione percentuale del campione:

		- limo-argilla - sabbia - ghiaia	010 010 010	68.270 25.620 6.110
2	***	diametro medio	Μz	4.899
3		classazione	Ss	-3.612
4		asimmetria	Sk	0.232
5		curtosis	Кs	0.863
6	~	coeff. di uniformita'	Uu	23.281

7 - coeff. di curvatura Cc 0.488

PROVA DI TAGLIO DIRETTO . 我们就是是我们是我们也是我们的自己就是我们就是我们的我们的我们也是我们的我们就是我们的我们的是我们的说话,但是我们们是我们的人们是不是不是不是不是不是不是不是

1 - Generalità

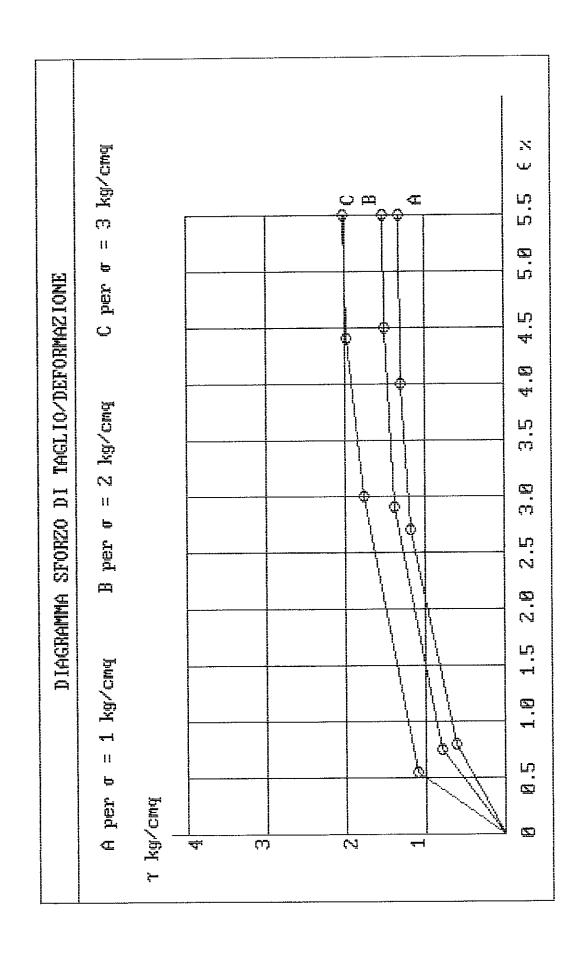
Committente Comune Località

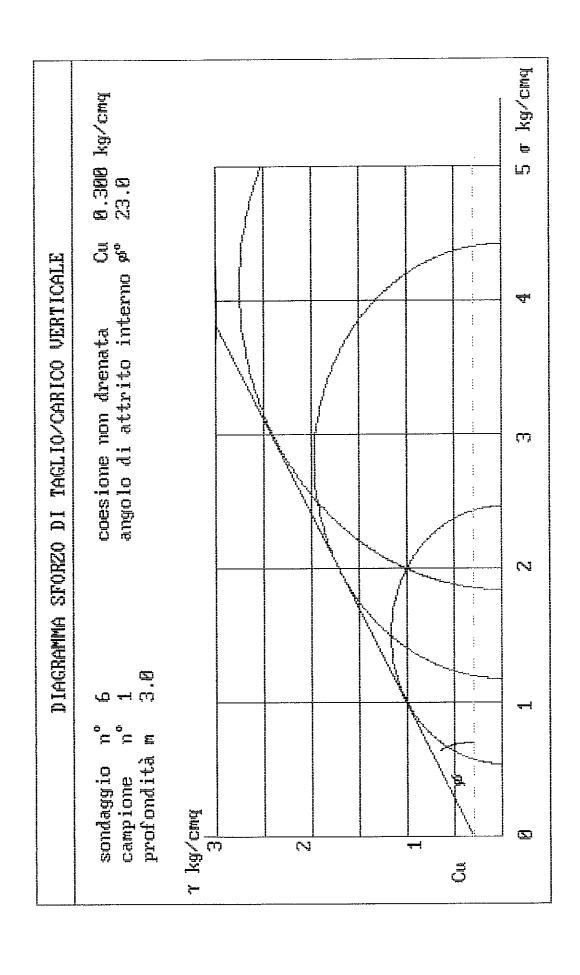
Amministrazione Comunale Bellizzi (SA) Scuola Elementare

sondaggio campione tipo di campione profondità di prelievo m

n° n° indisturbato 3.0

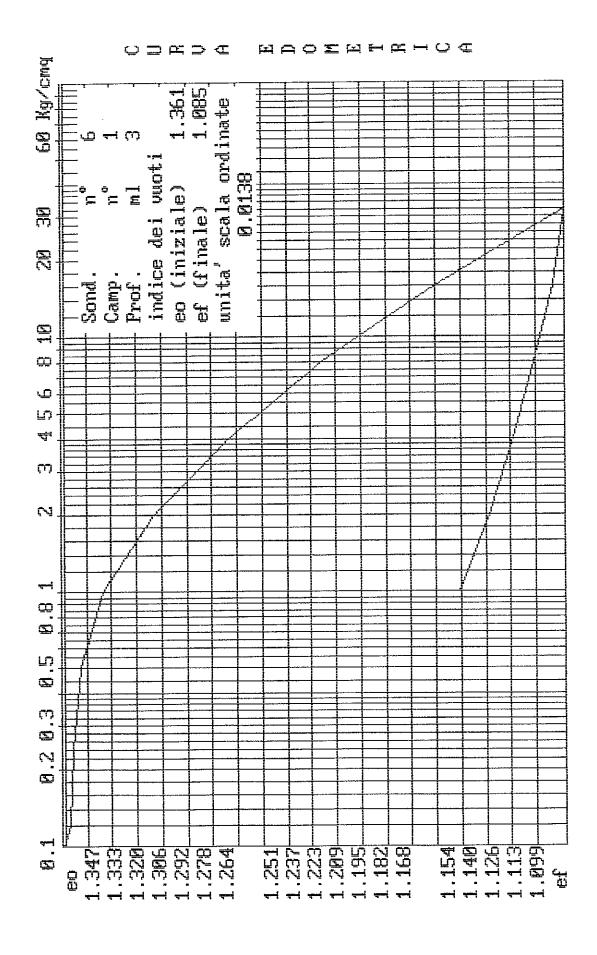
2 - Condizioni di prova


legenda


```
numero del provino
Øi sezione del provino in mm
Haltezza del provino in mm
8t tempo di consolidazione in ore
8H cedimento del provino in mm
σ pressione verticale in kg/cmq
    velocità di deformazione in mm/min
    tempo di sollecitazione in ore
t_
€ deformazione trasversale in %
    deformazione tangenziale in mm
```

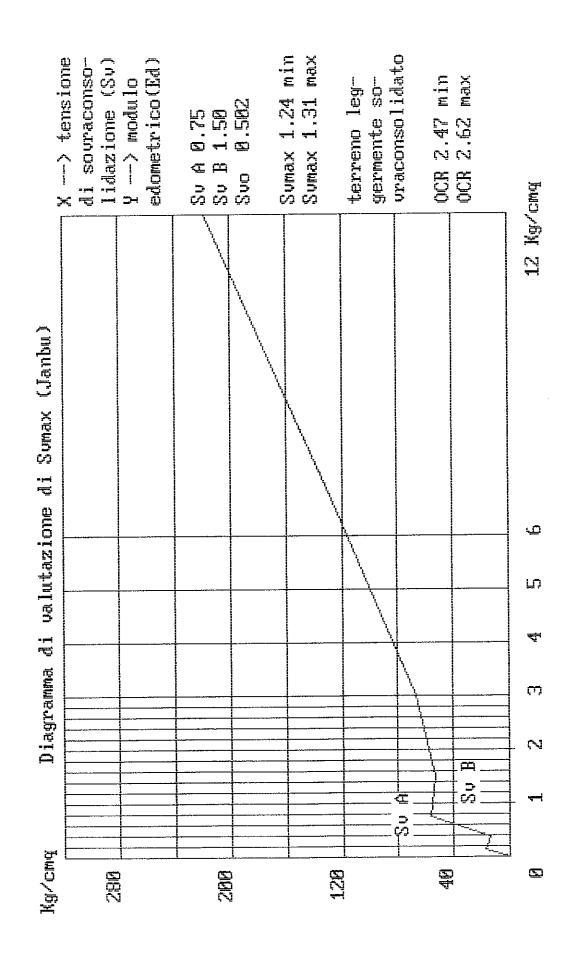
```
: dimens. : fase di : fase di : iniziali: consolidamento : rottura
: P : Øi : Η : δt : δh : σ : ν : t
.
: 1 : 60 : 20 : 18 : 0.580 : 1 : 0.007 : 5.00 : 1 : 
: 2 : 60 : 20 : 18 : 0.725 : 2 : 0.007 : 5.00 : 2 : 
: 3 : 60 : 20 : 18 : 1.273 : 3 : 0.007 : 5.00 : 3 :
```

```
: 1° carico : 2° carico : 3° carico : rottura :
: \mathsf{P}: \; \in \; : \; \tau \; : \; : \; \tau \; : \; \to \; : 
: 1 : 0.80 : 0.62 : 2.70 : 1.18 : 4.00 : 1.31 : 5.50 : 1.33 :
: 2 : 0.75 : 0.81 : 2.90 : 1.38 : 4.50 : 1.51 : 5.50 : 1.52 :
: 3 : 0.55 : 1.10 : 3.00 : 1.76 : 4.40 : 1.98 : 5.50 : 2.03 :
```


3 - Risultati

(CALCOLO DEI PARAMETRI DI	COMPRESSI	BILITA	· · · · · · · · · · · · · · · · · · ·		
	dati general	i				مناه المواجعة علي عر
- Committente - Località - Comune	Amministrazione Comuna Scuola Elementare Bellizzi (SA)	ale				
- sondaggio - campione - profondità		ก° ก° พ	6 1 3			
 altezza del pro diametro del pro indice dei vuot indice dei vuot indice dei vuot 	rovino ci del campione ci iniziale			Ho f e eo ef	m m m m	19 50 1.362 1.361 1.085
	dati strumenta					
l e g e	n d a					
 incrementi di o accorciamenti o accorciamenti p indice dei vuot 				dS dH e% e	kg mm	
dS	dH	e%			e 	
1 - Fase di comp	ressione					
0.125 0.250 0.500 1.000 2.000 4.000 8.000 16.000 32.000	0.136 0.277 0.638 0.811 1.174 1.756 2.412 3.111 3.802	0.716 1.458 3.358 4.268 6.179 9.242 12.695 16.374 20.011		1 . 1 . 1 . 1 . 1 .	.344 .327 .282 .260 .215 .143 .061 .974	
2 - Fase di scar	ico					
32.000 16.000 8.000 4.000 2.000 1.000	3.802 3.866 3.477 3.291 2.921 2.663	20.011 20.347 18.300 17.321 15.374 14.016		1 0 0 1	.085 .211 .974 .889 .128	

	dati dalla curva	edometrica	
- indice dei vuoti i - pressione corrispo - pressione corrispo	nizio tratto retti ndente in er ndente in ef	lineo er sr sf	kg 1.265
	ri di co	mpressibi	1 i t a*
1 - Tratto rettiline * Indice di com * Rapporto di c	pressione	Cc Cr	0.199 0.084
2 - Tratto iniziale * Indice di ric * Rapporto di r	ompressione	C q R r	0.062 0.026
3 - Tratto di scaric * Indice di rig * Rapporto di r	onfiamento	Cs Rr	0.141 0.060
	i di co	mpressibi	lita'
l e g e n d - incrementi di cari - Indice di compress - Coefficiente di co - Modulo di compress	a co ibilita' mpressibilita'		dS kg av cmq/kg mv cmq/kg Ed kg/cmq
dS	av	1n V	Ed
0.125 0.250 0.500 1.000 2.000 4.000 8.000	0.14017 0.17944 0.04299 0.04511 0.03616 0.02038 0.01086 0.00537	0.05937 0.07600 0.01821 0.01911 0.01532 0.00863 0.00460 0.00227	16.844 13.158 54.913 52.342 65.292 115.854 217.454 439.942

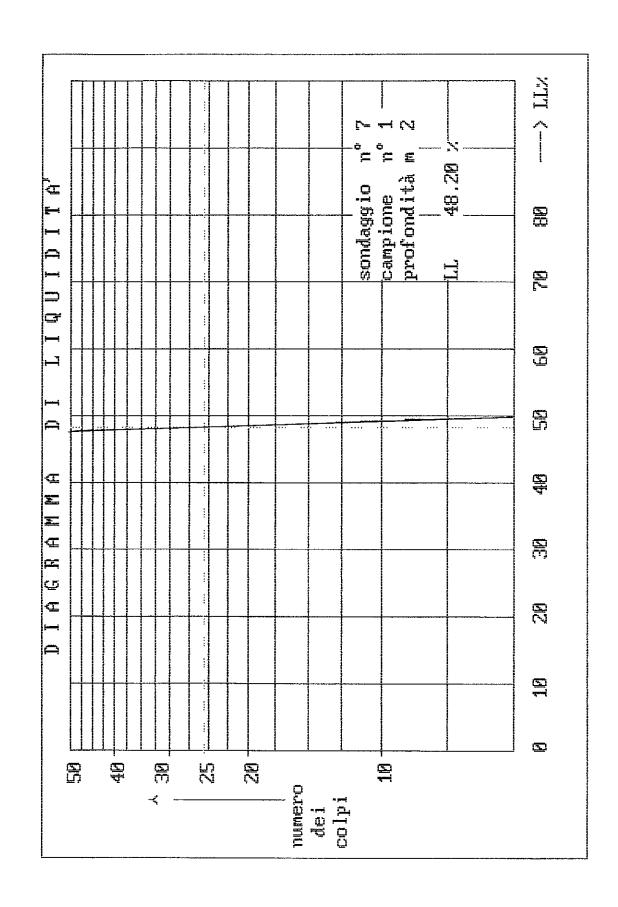

GRADO DI CONSOLIDAZIONE - valori dei moduli di compressibilità edometrica per: 16.84 kg/cmq ---> Ed $\delta s = 0.125 \text{ kg}$ 8s = 0.250 kg ---> Ed 8s = 0.500 kg ---> Ed 8s = 1.000 kg ---> Ed 8s = 2.000 kg ---> Ed 8s = 4.000 kg ---> Ed 8s = 8.000 kg ---> Ed 13.16 kg/cmg 54.91 kg/cmg 52.34 kg/cmq 65.29 kg/cmq 115.85 kg/cmq217.45 kg/cmq - profondità di verifica - peso unità di volume D $3.00 \, \mathrm{m}$ 1.673 t/mc Γа 0.502 kg/cmq- tensione litostatica in D σVO 0.75 kg/cmq - tensione di consolidazione (min) - tensione di consolidazione (max) σva 1.50 kg/cmq σvb - tensione di sovraconsolidazione (min) σνmin 1.24 kg/cmq - tensione di sovraconsolidazione (max) ovmax 1.31 kg/cmq 2.47 - grado di consolidazione (min) OCR - grado di consolidazione (max) OCR 2.62

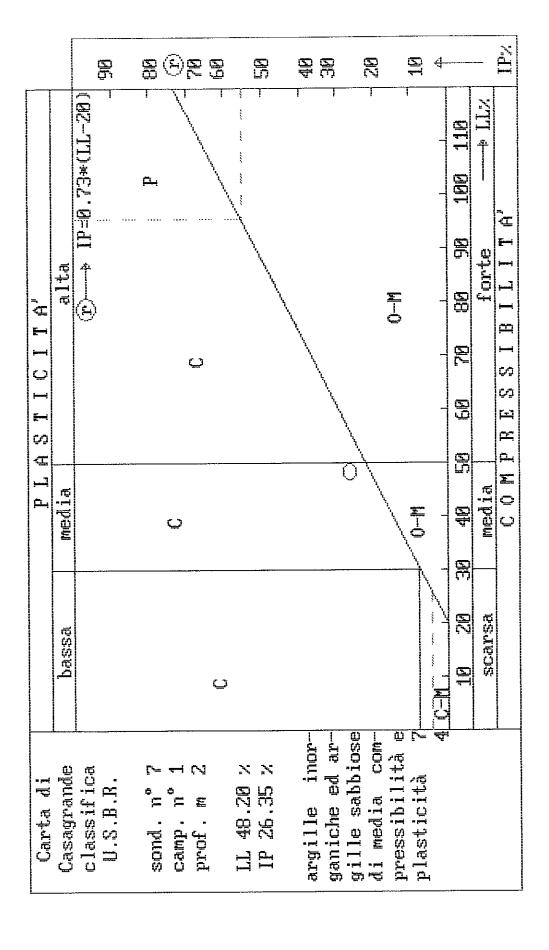
- grado di consolidazione medio

terreno leggermente sovraconsolidato

0 C R

2.54


SG-007


	T			eccan (co	1		COMMITT.	
3	PROFONDITA	SPESSORI	STRATIOR	H20	CAROTAGGIO B		DIR	DESCRIZIONE
M	q.a.e.,SLDM (67)		111111111			,		
Ш			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
			11111111111111111111111111111111111111					
2		3.5	111111				2	colle argliioso-terrosa passant argliia ilmo-sabblosa
Ш			11111111					
Ш			11 11 11 11 11 11 11 11 11 11 11 11 11			711 10		
	(e3.e)		2(0)(=			-	
4			0.000					·
				•				
		2.6	1000	,				ghtata in mairice filmo-sabbiosa
щ.				5.5				
			88.86	=				
ř III	6.2	•	8 267a				ļ. <u>.</u>	
	(6.83)		11 11 11 11 11		,			
			77 74 75 75 41			-		argilla limo-sabbiosa
		2.1				17.2		digtitu timb room tord
8			11 11 11 11 11 11 11 11 11 11 11 11 11					•
	8.4		11 11 11 11 11	-			-	
	(48.6)							
			A ROBE					
שו ווו			\\ \delta \\ \de					
			300					
		5.1						ghiala in matrice l'imo-sabbiosa
			2087			11.4		
12			57.81			19 24 23		
			100					
Ш	12 =		938					
	13.5 (43.6)		7.000 G					
14								
			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
16		4.5	11111111					angilla ilmo-eabbloea
						:		
Ш			***********					
19	18		77 77 77 77 77			-		

```
建环球形式 网络西班牙 医神经 医克拉氏 化双连接 化双连接 化双连接 化拉拉拉拉拉拉拉拉拉拉拉 化二甲苯磺胺 网络 网络拉拉拉 经货币 化二甲基甲基苯甲基苯甲基
  SCHEDA DI ANALISI GEOTECNICA
dati generali
                           Bellizzi (SA)
- Comune
                           SS n^{\circ} 18 - km 71.800
- Località
- Committente
                           Amministrazione Comunale
- Punto di indagine
                      n° 7
n° 1
- Campione
- Profondità di prelievo m 2
- Tipo di campione indisturbato
                   indici fisici
                                                              1.698
                                                    Ga t/mc
- Peso unita' di volume
                                                    Gr t/mc 2.246
- Peso specifico dei grani
                                                    Gd t/mc 1.130
Gs t/mc 1.627
- Densita' secca
- Peso di volume saturo
                                                       t/mc 0.627
                                                    G r
- Peso di volume sommerso
                                                   U.988
n % 49.698
Wn % 43.989
Sr % 100 00
- Indice dei vuoti
- Porosita*
- Contenuto in acqua allo stato naturale
- Grado di saturazione
                                                    Sa
                                                             0.000
- Grado di aereazione
               limiti di Atterberg
a) Condizioni di prova
                                           26
                                                 1.8
                                     8
   - numero delle cadute

peso lordo campione umido gr 54.53
peso lordo campione secco gr 45.80

                                                 51.87 28.03
                                                              26.91
                                          43.12
                                                              23.10
                                           33.45
                                                 43.74
                                                        24.48
                                                              3.81
                                                 8.13
                                                       3,55
                                    8.73
                                           9.67
   - peso acqua
                                gr
                                                        18.02
                                                              17.73
                                           14.65
                                                 27.12
                                    28.21
                                gr
   - peso tara recipiente
                                                       6.46
                                          18.80 16.62
                                                              5.37
                                gr 17.59
   - peso netto secco
                                          51.44 48.92 54.95
                                                              70.95
                                    49.63
   - contenuto in acqua
b) Risultati
                                                              48.20
   - Limite liquido
                            LL
                                                              21.85
                            LP
   - Limite plastico
                                                              26.35
   - Indice di plasticita'
                                                               0.41
                             ΙC
   - Indice di consistenza
                                                               0.59
                             ΙL
   - Indice di liquidita'
```


L'elaborazione della curva granulometrica e' stata eseguita in aderenza alla teoria di Folk e Ward

legenda

- Cc

quantita' percentuale di terreno passante al setaccio - % passante diametro dei grani - d (mm)

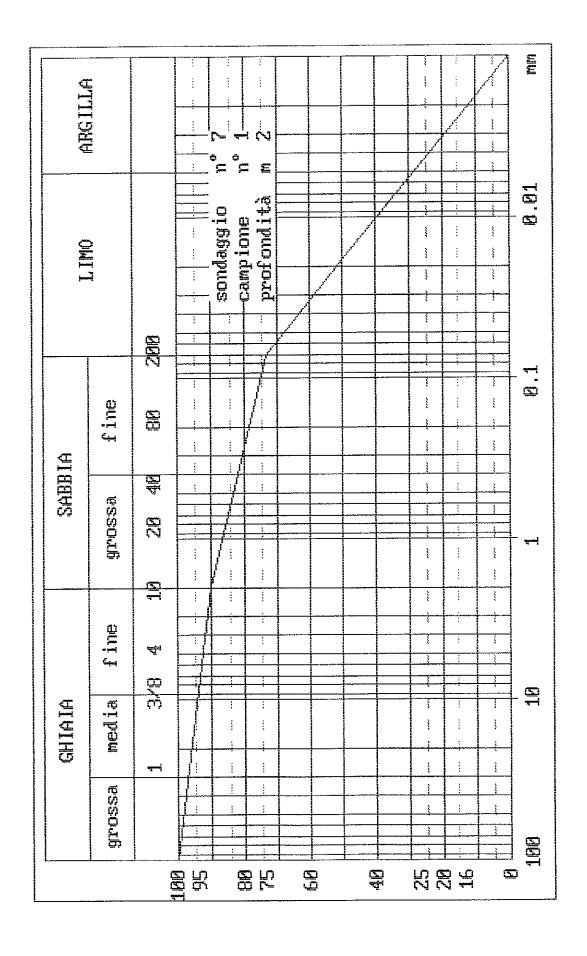
logaritmo negativo in base 2 di d(mm)

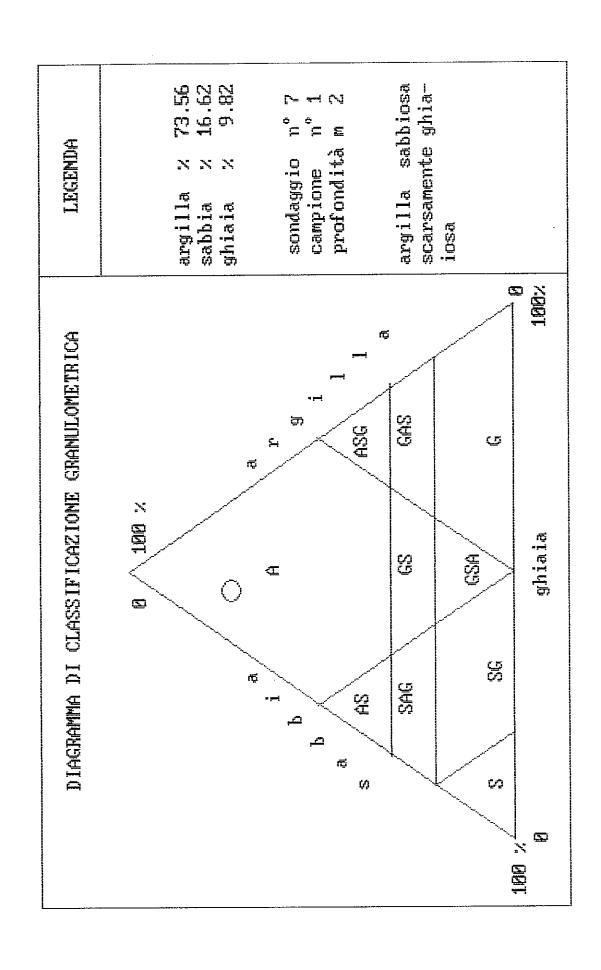
frazione granulometrica significativa Μz deviazione dal diametro medio Ss

tendenza della curva a disperdersi da un lato rispetto a Mz Sk

scostamento dalla distribuzione gaussiana Κs - Uu

variazione significativa rispetto al diametro efficace d10


gradazione dell'assortimento granulometrico


8	d	D	
 	٠ يې سه سه سې سې سې سا سا سا سي پې پې		
5	0.004	7.889	
10	0.008	6.911	
16	0.003	8.627	
25	0.004	7.838	
30	0.006	7.437	
50	0.019	5.749	
60	0.034	4.895	
75	0.089	3.493	
84	0.638	0.648	
95	13.652	-3.771	

INDICI GRANULOMETRICI

1 - composizione percentuale del campione:

-		limo-argilla sabbia ghiaia	% % % %	73.560 16.620 9.820
2	•	diametro medio	Μz	5.008
3	**	classazione	Ss	-3.761
4		asimmetria	Sk	0.456
5	·	curtosis	Ks	1.100
6		coeff. di unifor	mita' Uu	4.043
7		coeff. di curvat	ura Cc	0.119

PROVA DI TAGLIO DIRETTO

n°

1 - Generalità

Committente Comune Località

Amministrazione Comunale Bellizzi (SA) SS n° 18 - km 71.800

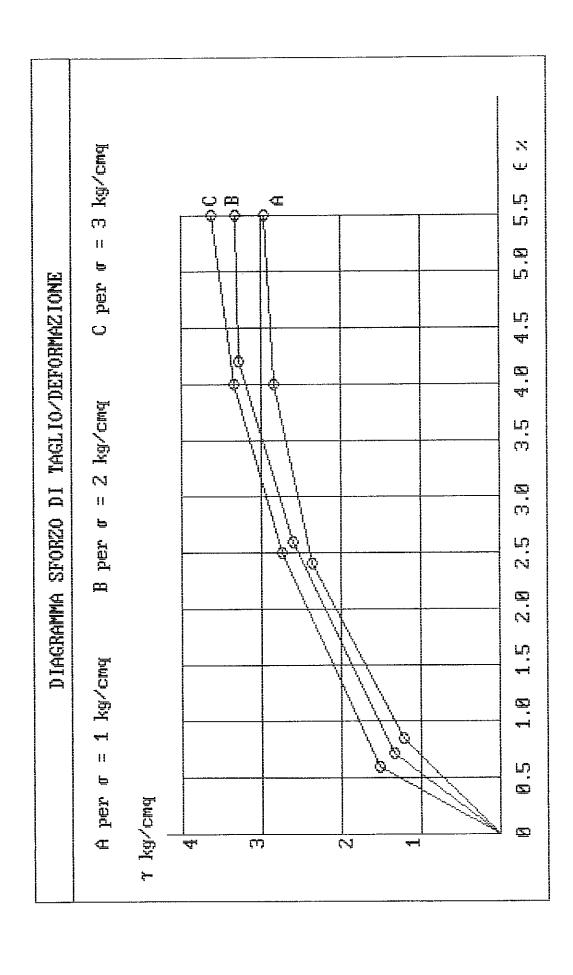
sondaggio campione tipo di campione profondità di prelievo m

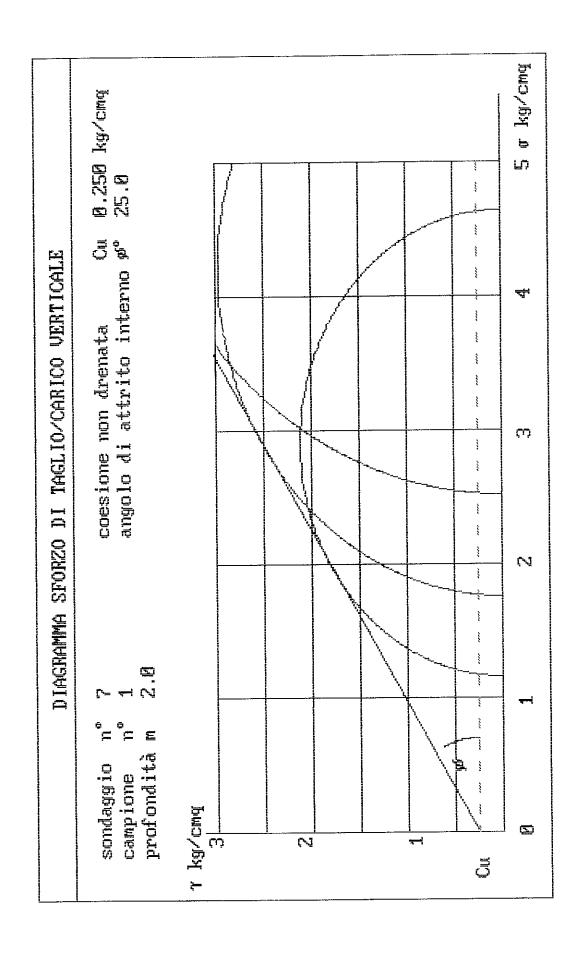
n° indisturbato 2.0

2 - Condizioni di prova

1egenda

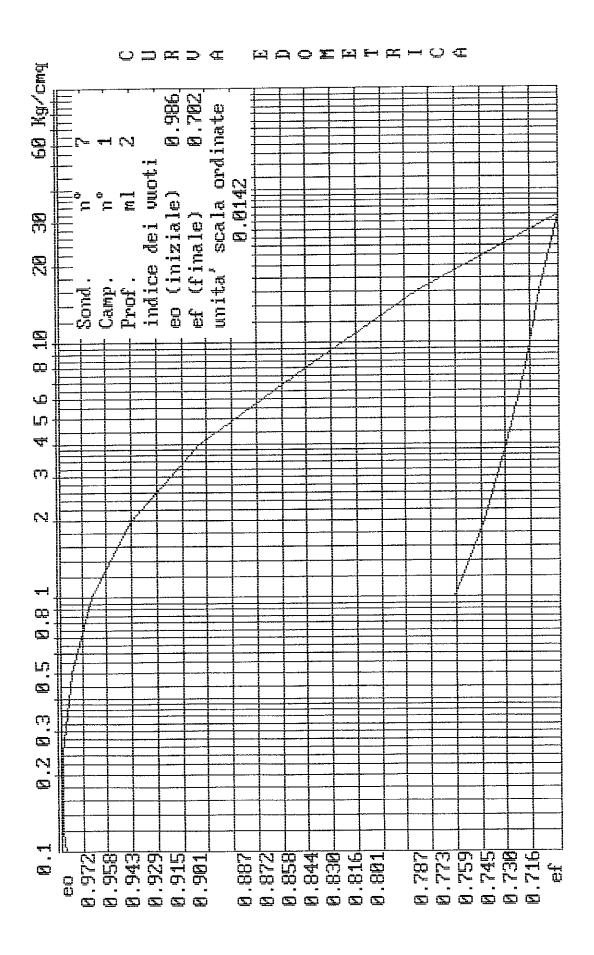
```
numero del provino
                                      in mm
in mm
Øi sezione del provino
     altezza del provino
    tempo di consolidazione in ore cedimento del provino in mm pressione verticale in kg/cmq
δt
     velocità di deformazione in mm/min
V
     tempo di sollecitazione in ore
t
    deformazione trasversale in % deformazione tangenziale in mm
6
```


```
: dimens. : fase di  : fase di  :
: iniziali: consolidamento : rottura  :
: P: Øi: Η: δt: δh: σ: ν: t: σ:
: 1 : 60 : 20 : 18 : 0.800 : 2 : 0.006 : 5.00 : 2 :
: 2 : 60 : 20 : 18 : 1.270 : 3 : 0.006 : 5.00 : 3 :
: 3 : 60 : 20 : 18 : 1.660 : 4 : 0.006 : 5.00 : 4 :
```


```
# m to the to the first of the to the first of the to the total th
                                                  : 1° carico : 2° carico : 3° carico : rottura :
               : P: E: T: E
: 1 : 0.85 : 1.22 : 2.40 : 2.36 : 4.00 : 2.84 : 5.50 : 2.96 : 2 : 0.72 : 1.34 : 2.60 : 2.61 : 4.20 : 3.28 : 5.50 : 3.33 : 3 : 0.60 : 1.52 : 2.50 : 2.74 : 4.00 : 3.35 : 5.50 : 3.62 :
```

3 - Risultati

- a) coesione non drenata b) angolo di attrito interno

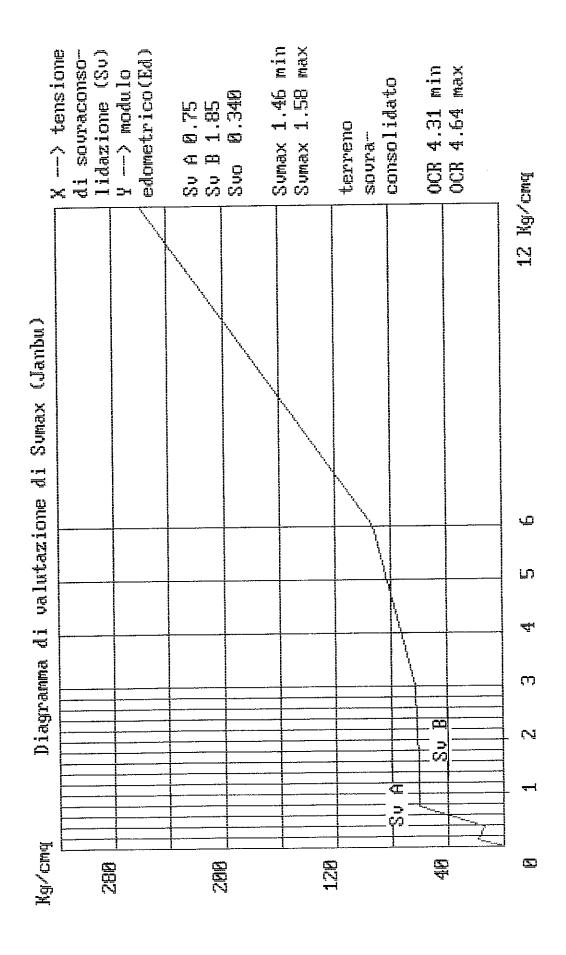

Cu 0.250 kg/cmq Ø 25.0 gradi

CALCOLO DEI PARAMETRI DI COMPRESSIBILITA* dati generali Committente Località Comune Amministrazione Comunale SS n° 18 - km 71.800 Bellizzi (SA) n° - sondaggio n° campione - profondità m Ho mm 19 f mm 50 - altezza del provino - diametro del provino 0.988 e - indice dei vuoti del campione 0.986 - indice dei vuoti iniziale e 0 0.702 e f - indice dei vuoti finale dati strumentali legenda dS kg - incrementi di carico - accorciamenti del provino dH m tn - accorciamenti percentuali del provino e % - indice dei vuoti corrispondente dH e∜ 1 - Fase di compressione 0.747 0.971 0.125 0.142 0.957 0.273 1,437 0,250 0.921 0.626 3.295 0.500 0.904 4.126 1.000 0.784 5.805 0.871 2.000 1.103 1.711 9.005 0.807 4.000 2.536 0.721 8.000 13.347 3.122 16,432 0.660 16.000 0.702 3.914 20.600 32.000 2 - Fase di scarico 0.702 32.000 3.914 20.600 3.755 19.763 0.840 16.000 3.584 18.863 0.660 8.000 3.369 17.732 0.577 4.000 0.747 2.000 2.925 15.395 1.000 2.436 12.821 0.765

	dati dalla curva		
- pressione corr	ti inizio tratto reti ispondente in er ispondente in ef	s r s f	kg 0.887 kg 3.000 kg 32.000
param	etri di c	ompressibi	l i t a'
* Indice di	lineo della curva compressione di compressione	Cc Cr	0.180 0.091
	ale della curva ricompressione di ricompressione	C q R r	0.073 0.037
* Indice d	arico della curva rigonfiamento di rigonfiamento	Cs Rr	0.143 0.072
~ · · · · · · · · · · · · · · · · · · ·	ici di c		
1 e g e	en da		
- Coefficiente (- Modulo di comp	oressibilita' di compressibilita' oressibilita' edometr		dS kg av cmq/kg mv cmq/kg Ed kg/cmq
d۶	av	mν	Fd
0.125 0.250 0.500 1.000 2.000 4.000 8.000 16.000	0.10954 0.14759 0.03303 0.03334 0.03178 0.02156 0.00766 0.00517	0.05516 0.07432 0.01663 0.01679 0.01600 0.01086 0.00386 0.00261	18.130 13.456 60.126 59.561 62.500 92.121 259.386 383.838

GRADO DI CONSOLIDAZIONE - valori dei moduli di compressibilità edometrica per: 18.13 kg/cmq $\delta s = 0.125 \text{ kg}$ ---> Εd Εd 13.46 kg/cmq $\delta s = 0.250 \text{ kg}$ ---> ---> Ed ---> Ed ---> Ed ---> Ed ---> Ed 60.13 $\delta s = 0.500 \text{ kg}$ kg/cmq 59.56 kg/cmq $\delta s = 1.000 \text{ kg}$ 62.50 kg/cmq $\delta s = 2.000 \text{ kg}$ 92.12 $\delta s = 4.000 \text{ kg}$ kg/cmq 259.39 kg/cmq $\delta s = 8.000 \text{ kg}$ D 2.00 m - profondità di verifica 1.698 t/mc - peso unità di volume Га 0.340 kg/cmq - tensione litostatica in D σ۷ο 0.75 kg/cmq - tensione di consolidazione (min) σ∨a 1.85 kg/cmq tensione di consolidazione (max) σvb - tensione di sovraconsolidazione (min) ovmin kg/cmq 1.46 - tensione di sovraconsolidazione (max) ovmax 1.58 kg/cmq 4.31 OCR - grado di consolidazione (min)

terreno sovraconsolidato

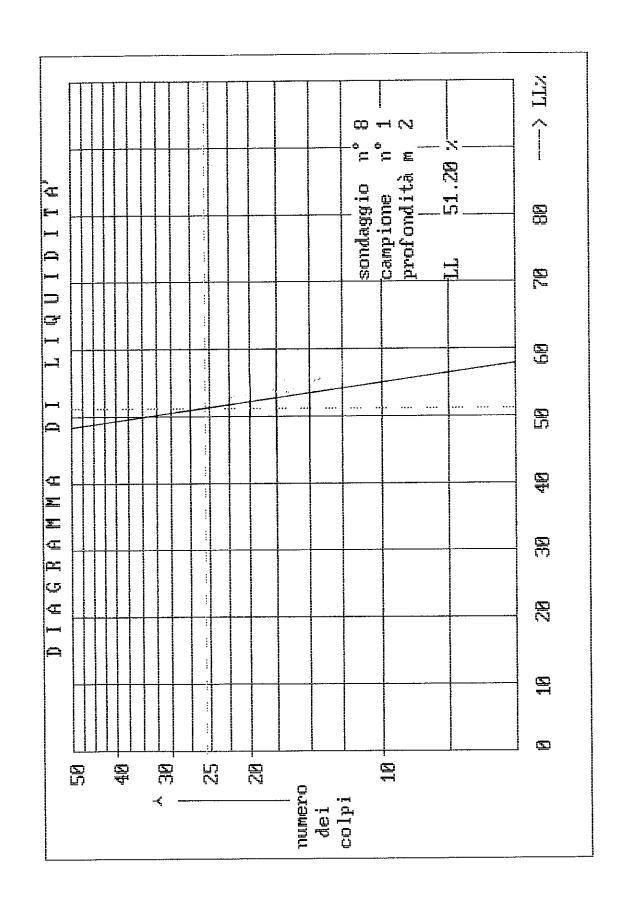

- grado di consolidazione (max)

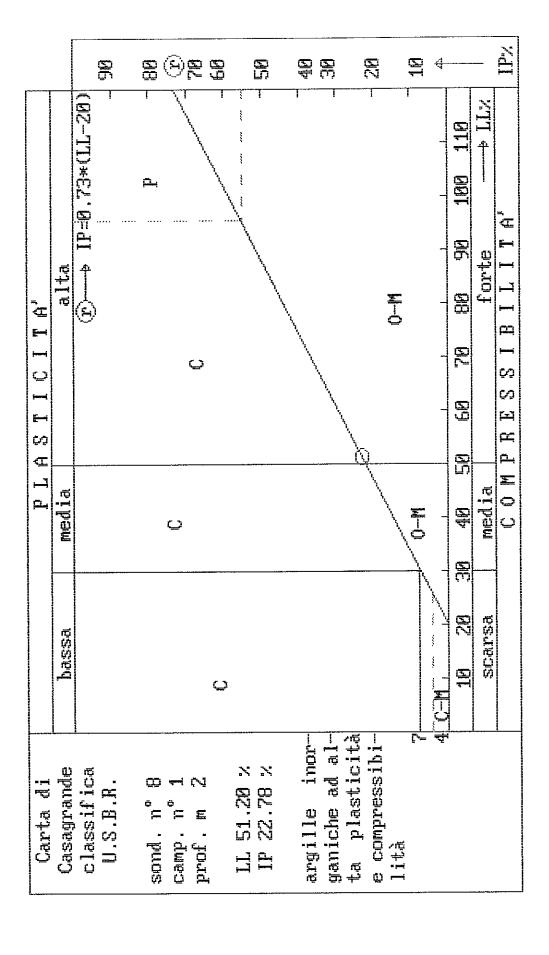
- grado di consolidazione medio

OCR

0 C R

4.64


SG-008


<u> </u>	O : con	1	-	···	Nt I . I	6	: Amministrazione Comunale
PROFONDITA	12LE220ALT	STRATIGR	H20	ஈ CAROTAGGIO ⊌ & & இ	SPT	DIR	DESCRIZIONE
(37) 2 4 4	9.6				2.5 79.6 6 19.81g	2	allernanze di fenti di esbbla film engliloga oon englila limo-eabbloo
9.6 18 (27.4) 12 12.4 (24.6) 13.8	2.7			,	11.2		ghialetto in matrice ilmo-eabbloed . alternanze di lenti di eabble limo argilloea con argilla limo-eabbloe
20 20 22 24 24 26 28 30 30	16.2		15.5		24.5 29.42 53		ghlaietto in matrice ilmo-sabbios

```
SCHEDA DI ANALISI GEOTECNICA
dati generali
                        Bellizzi (SA)
- Comune
                        Olmo
- Località
- Committente
                        Amministrazione Comunale
- Committents
- Punto di indagine
                   n° 8
n° 1
- Campione
- Profondità di prelievo m 2
                     indisturbato
- Tipo di campione
                 indici fisici
                                                       1.931
                                              Ga
                                                t/mc
- Peso unita' di volume
                                                      2.792
                                                 t/mc
- Peso specifico dei grani
                                              Gr
                                              Gd t/mc
                                                      1.542
- Densita' secca
                                                      1.990
                                              Gs t/mc
- Peso di volume saturo
                                              G* t/mc
                                                     0.990
- Peso di volume sommerso
                                                      0.811
                                              е
- Indice dei vuoti
                                                   % 44.782
                                              n
- Porosita'
                                                  % 29.047
- Contenuto in acqua allo stato naturale
                                              Wn
                                                  % 93.663
                                              Sr
- Grado di saturazione
                                                      0.055
                                              Sa
- Grado di aereazione
             limiti di Atterberg
         a) Condizioni di prova
                                      25
                                           27
                                19
  - numero delle cadute

peso lordo campione umido gr 46.82
peso lordo campione secco gr 39.18

                                           50.14 30.60 28.95
                                      53.17
                                           41.30 29.48
                                                      27.19
                                      45.29
                                           8.84 1.12
                                                       1.76
                            gr
                                7.64
                                      7.88
  - peso acqua
                           gr
                                                       22.27
                                25.45
                                      30.30
                                           24.56
                                                 26.23
  - peso tara recipiente
                                                       4.92
                            gr 13.73
                                           16.74
                                                 3.25
                                      14.99
  - peso netto secco
                                                       35.77
                                      52.57
                                           52.81
                                                 34.46
                            % 55.64
  - contenuto in acqua
b) Risultati
                                                       51.20
                         LL
  - Limite liquido
                                                       28.42
  - Limite plastico
                         LP
                             2
                                                       22.78
  - Indice di plasticita'
                         ΙP
                                                       0.97
  - Indice di consistenza
                         ΙC
                                                        0.03
  - Indice di liquidita'
                          I L
```


L'elaborazione della curva granulometrica e' stata eseguita in aderenza alla teoria di Folk e Ward

legenda

- quantita' percentuale di terreno passante al setaccio - % passante
- diametro dei grani - d (mm)
- logaritmo negativo in base 2 di d(mm)
- frazione granulometrica significativa - Mz
- deviazione dal diametro medio Ss
- tendenza della curva a disperdersi da un lato rispetto a Mz Sk
- scostamento dalla distribuzione gaussiana - Ks
- variazione significativa rispetto al diametro efficace d10 - Uu

d

gradazione dell'assortimento granulometrico - Cc

		المنا	that the time that that the time the time that the	
5	0.002	9.315		
Ű.	0.002	2.010		
10	0.002	8.655		
16	0.004	7.991		
25	0.008	6.892		
30	0.015	6.098		
50	0.075	3.727		
60	0.188	2.411		
75	0.600	0.737		
8 4	14.822	-3.890		

-4.021

D

95

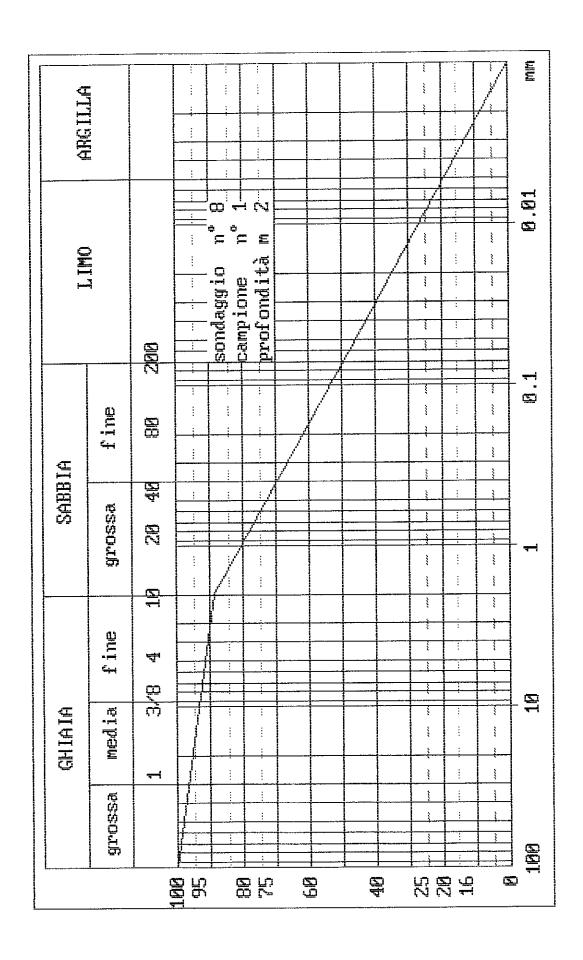
INDICI GRANULOMETRICI

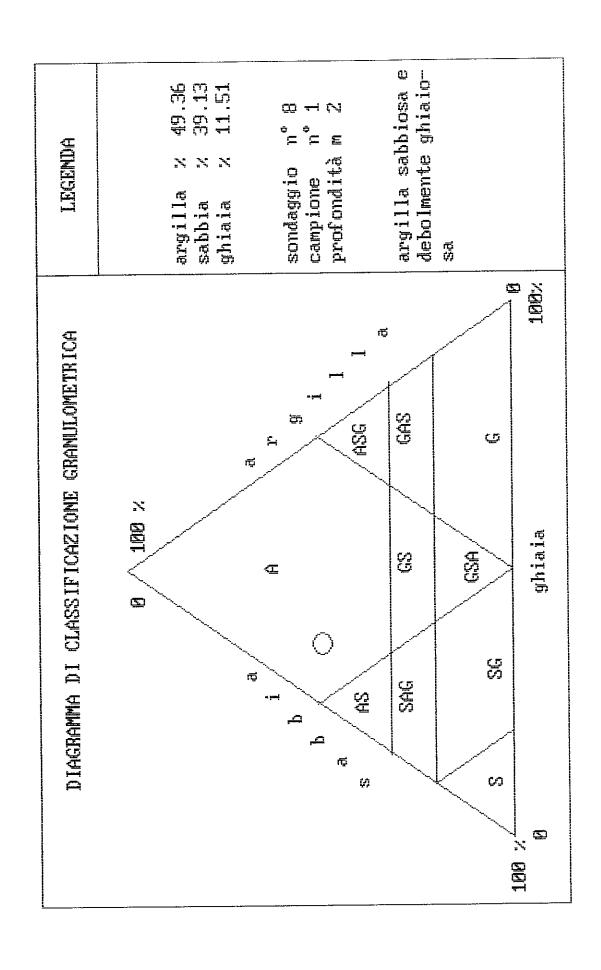
1 - composizione percentuale del campione:

ne	limo-argilla	%	49.360
	sabbia	8	39.130
	ghiaia	8	11.510

16.234

2 - diametro medio Mz 2.610


-4.991 3 - classazione Ss


Sk 0.222 4 - asimmetria

5 - curtosis Κs 0.888

6 - coeff. di uniformita' Uu 75.806

7 - coeff. di curvatura Cc 0.457

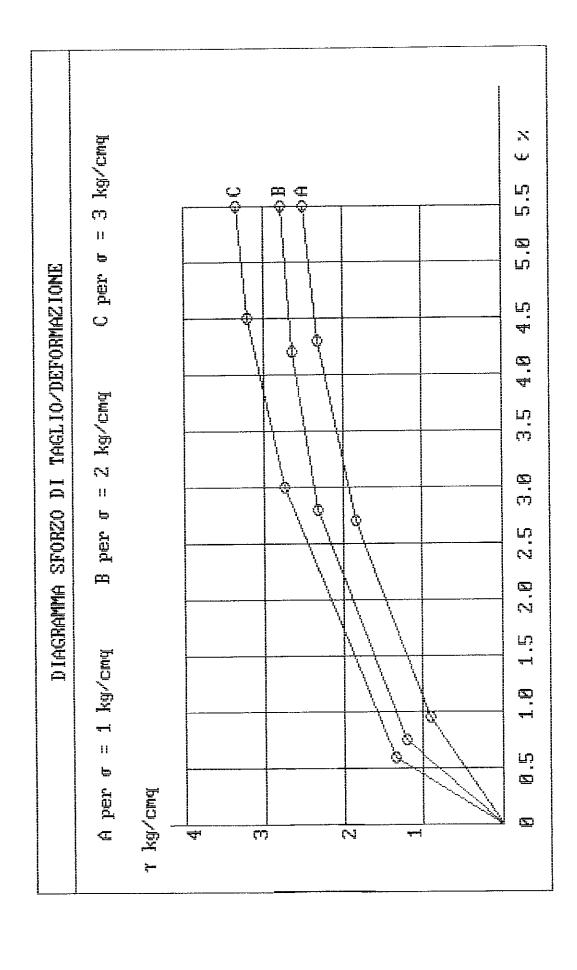
PROVA DI TAGLIO DIRETTO

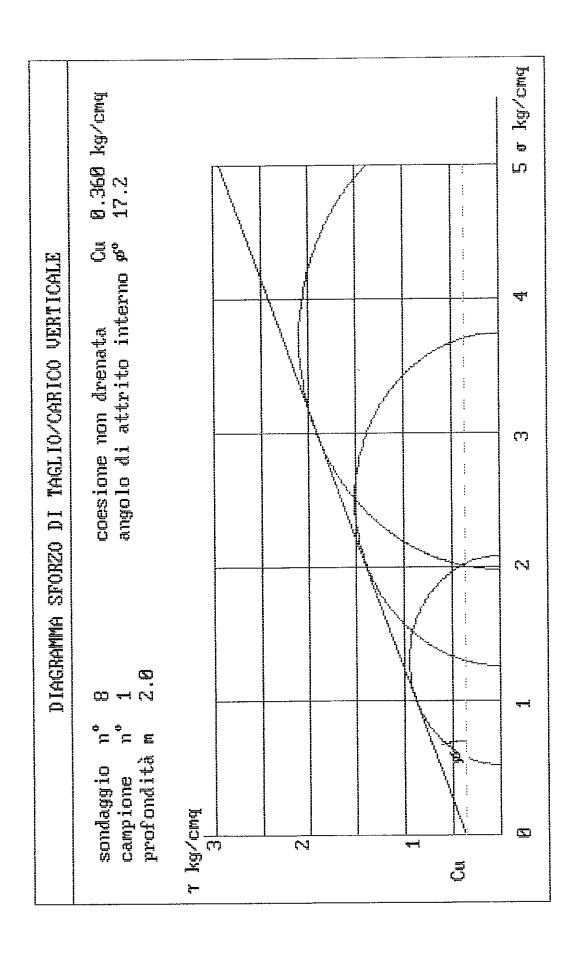
1 - Generalità

Amministrazione Comunale Committente Bellizzi (SA) Comune 0.1 m oLocalità n° 8 sondaggio n° 1 campione

tipo di campione indisturbato profondità di prelievo m 2.0

2 - Condizioni di prova


legenda

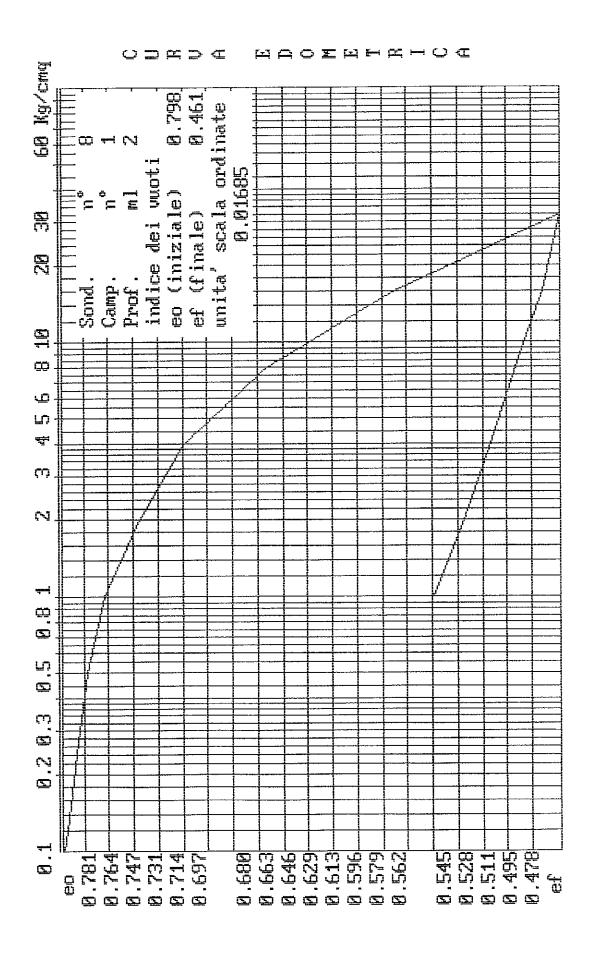

numero del provino Øi sezione del provino in mm Haltezza del provino in mm in ore St tempo di consolidazione δΗ cedimento del provino in mm σ pressione verticale in kg/cmq velocità di deformazione in mm/min t tempo di sollecitazione in ore E deformazione trasversale in % τ deformazione tangenziale in mm

: dimens. : fase di : fase di : iniziali: consolidamento : rottura : P : Øi : Η : δt : δh : σ : ν : t : 1 : 60 : 20 : 18 : 0.753 : 1 : 0.010 : 4.00 : 1 : : 2 : 60 : 20 : 18 : 1.619 : 2 : 0.010 : 4.00 : 2 : 3 : 60 : 20 : 18 : 2.211 : 3 : 0.010 : 4.00 : 3 :

: 1° carico : 2° carico : 3° carico : rottura : $; P : \in : \tau : \in : \tau : \in : \tau :$. : 1 : 0.95 : 0.90 : 2.70 : 1.84 : 4.30 : 2.32 : 5.50 : 2.51 : : 2 : 0.75 : 1.20 : 2.80 : 2.32 : 4.20 : 2.64 : 5.50 : 2.78 : : 3 : 0.60 : 1.34 : 3.00 : 2.75 : 4.50 : 3.21 : 5.50 : 3.34 :

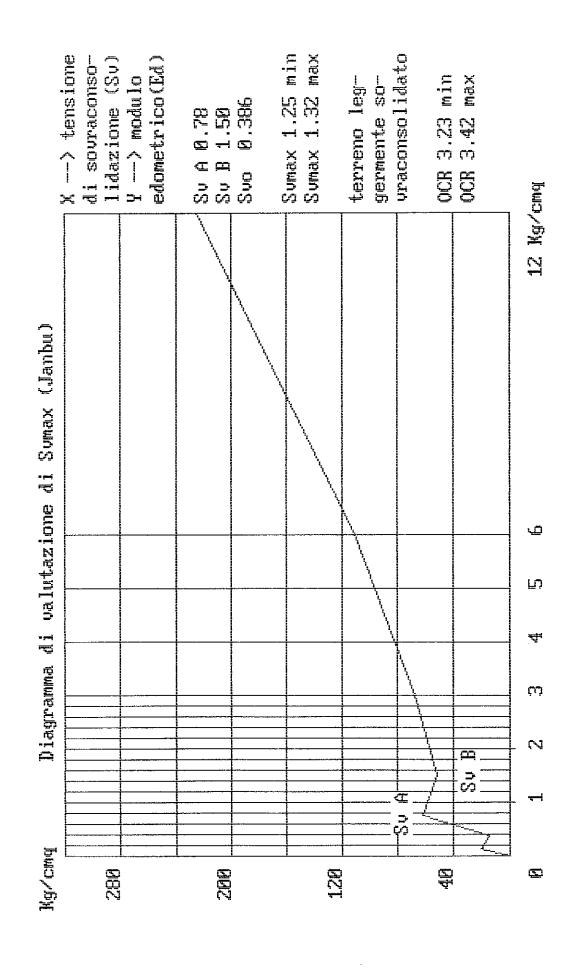
3 - Risultati

CA	LCOLO DEI PARAMETRI	DI COMPRESSIBILITA	*
	dati gene	rali	
- Committente - Località - Comune	Amministrazione Com Olmo Bellizzi (SA)	unale	
- sondaggio - campione - profondità		n° 8 n° 1 m 2	
 altezza del pro- diametro del pro- indice dei vuot indice dei vuot indice dei vuot 	ovino i del campione i iniziale i finale		Ho mm 19 f mm 50 e 0.810 eo 0.798 ef 0.461
	dati strume	m+ n1 i	
- indice dei vuot	arico el provino ercentuali del prov ⁱ i corrispondente		dS kg dH mm e% e
30	dH	e%	e
1 - Fase di compr	essione		
0.125 0.250 0.500 1.000 2.000 4.000 8.000 16.000 32.000	0.126 0.248 0.581 0.735 1.111 1.683 2.375 3.052 3.711	0.663 1.305 3.058 3.868 5.847 8.858 12.500 16.063 19.532	0.786 0.775 0.743 0.728 0.693 0.639 0.573 0.509
2 - Fase di scari	CO		
32.000 16.000 8.000 4.000 2.000 1.000	3.711 3.852 3.453 3.259 3.040 2.661	19.532 20.274 18.174 17.153 16.000 14.005	0.461 0.652 0.509 0.447 0.529 0.551


dati dalla curva edometrica		
		ه اهما باست ۱۹۸۵ مرد باده دید است استوالیت مرد این استفاد سیفه
 indice dei vuoti inizio tratto rettilineo pressione corrispondente in er pressione corrispondente in ef 	sr	kg 0.680 kg 6.000 kg 32.000
parametri di compress	i b i 1	i t a'
هه خود دوله المولا الم		
1 - Tratto rettilineo della curva* Indice di compressione* Rapporto di compressione	Cc Cr	0.301 0.168
2 - Tratto iniziale della curva* Indice di ricompressione* Rapporto di ricompressione	Cq Rr	0.070 0.039
3 - Tratto di scarico della curva * Indice di rigonfiamento * Rapporto di rigonfiamento	Cs Rr	0.128 0.071
		. المنا الله الله الله الله الله الله الله ال

indici di compressibilita'

1 egenda


 incrementi di carico	d S	kg
Indice di compressibilita'	a٧	cmq/kg
 Coefficiente di compressibilita'		cmq/kg
 Modulo di compressibilita' edometrica	Εd	kg/cmq

dS	av	m V	Ed
0.125	0.09236	0.05137	19.467
0.250	0.12605	0.07011	14.264
0.500	0.02915	0.01621	61.688
1.000	0.03558	0.01979	50.532
2.000	0.02706	0.01505	66.434
4.000	0.01637	0.00911	109.827
8.000	0.00801	0.00445	224.520
16.000	0.00390	0.00217	461.305

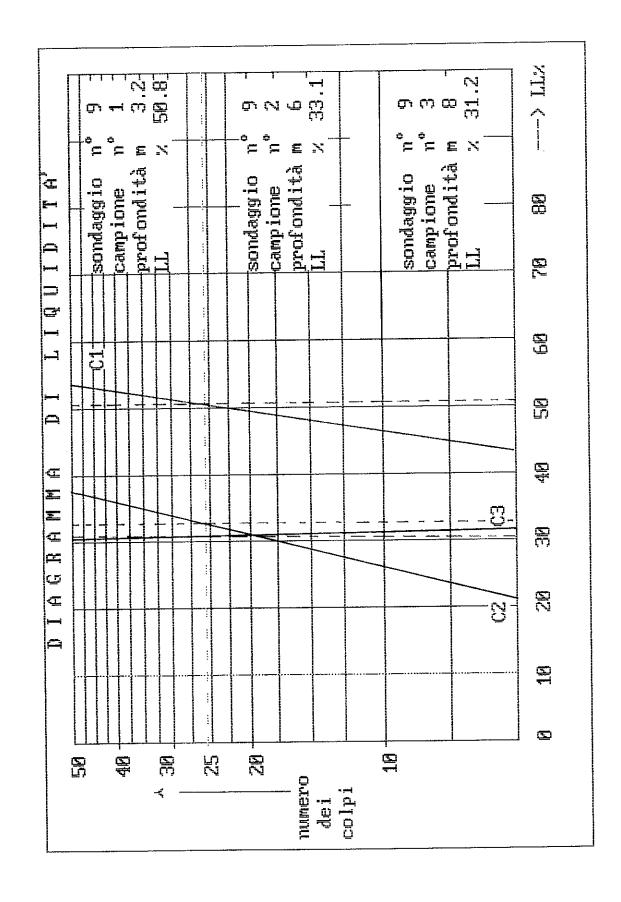
GRADO DI CONSOLIDAZIONE - valori dei moduli di compressibilità edometrica per: $\delta s = 0.125 \text{ kg}$ ---> Εd 19.47 kg/cmq ---> Ed ---> Ed ---> Ed ---> Ed ---> Ed $\delta s = 0.250 \text{ kg}$ 14.26 kg/cmq 61.69 $\delta s = 0.500 \text{ kg}$ kg/cmq 50.53 kg/cmq $\delta s = 1.000 \text{ kg}$ 66.43 kg/cmq $\delta s = 2.000 \text{ kg}$ $\delta s = 4.000 \text{ kg}$ 109.83 kg/cmq $\delta s = 8.000 \text{ kg}$ 224.52 kg/cmq 2.00 - profondità di verifica D m Га - peso unità di volume 1.931 t/mc 0.386 kg/cmq - tensione litostatica in D σνο 0.78 kg/cmq tensione di consolidazione (min) σVa tensione di consolidazione (max) $1.50 \, \text{kg/cmq}$ σvb - tensione di sovraconsolidazione (min) ovmin 1.25 kg/cmq - tensione di sovraconsolidazione (max) ovmax $1.32 \, \text{kg/cmg}$ 3.23 - grado di consolidazione (min) 0 C R - grado di consolidazione (max) OCR 3.42 - grado di consolidazione medio 0CR 3.32

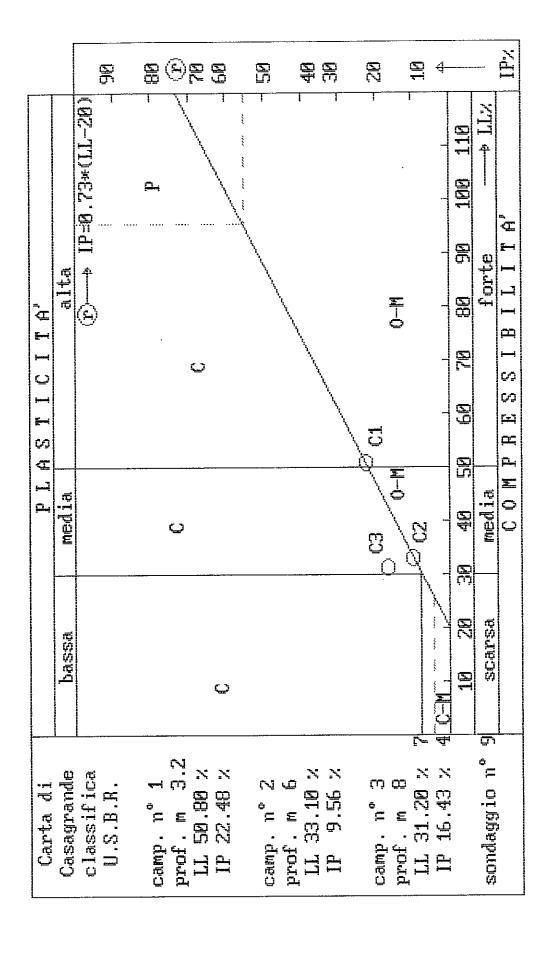
terreno leggermente sovraconsolidato

SG-009

1 '	COMUNE DI SONDAGGIO				n 19		COMMITT.	'; Peecine : Amministrazione Comunale
<u>m</u>	PROFONDITA	SPESSORI	STRATIOR	FALDA H20	% CAROTAGGIO		Camp ton a DIR	DESCRIZIONE
2	(83)	2.5			468			materiale elerageneo di riporto
4	2.5 (80.6)	2.5			5/8	4	3.2	originario terreno euperficiale d tenore argillo-eabbloeo
0	5 (78)	2.5			8805 8	5, 5 8 11 12	6	orgliia sabblosa passonte a sabbl argliiose con ientl di ghlaletto
œ	7.5 (76.5)	1.5			368	B. 4 16 16 14	8 R	ghiaic in matrice sobbloso-1 imoso
12	(74)	7		11	64 x			arglila eabbloea paesente a eabbl ergliloea oon !ent(dl ghleletto

```
SCHEDA DI ANALISI GEOTECNICA
dati generali
                          Bellizzi (SA)
- Comune
                          Pescine
- Località
- Committente
                          Amministrazione Comunale
- Committence
- Punto di indagine
- Punto di indagine n° 9
- Campione n° 1
- Profondità di prelievo m 3.2
                         indisturbato
- Tipo di campione
                 indici fisici
- Peso unita' di volume
                                                     t/mc 1.831
                                                          2.774
- Peso specifico dei grani
                                                  Gr
                                                     t/mc
- Densita' secca
- Peso di volume saturo
                                                  Gđ
                                                     t/mc 1.473
                                                     t/mc 1.942
                                                  Gs
                                                          0.942
                                                     t/mc
- Peso di volume sommerso
                                                          0.883
- Indice dei vuoti
                                                  e
                                                       % 46.893
- Porosita'
                                                      % 31.831
- Contenuto in acqua allo stato naturale
                                                  Win
                                                       % 88.542
                                                  Sr
- Grado di saturazione
                                                          0.100
- Grado di aereazione
               limiti di Atterberg
a) Condizioni di prova
                                   7
                                        18
                                               26
  - numero delle cadute
  - peso lordo campione umido gr 53.29 44.06 51.23 - peso lordo campione secco gr 45.33 34.63 42.57
                                               51.23
                                                     26.47
                                                           28.55
                                                    23.24
                                                           24.97
                                   7.96
                                         9.43
                                              8.66
                                                     3.23
                                                            3.58
  ~ peso acqua
                              gr
                                                           17.23
                              gr 26.56 13.21 25.15 18.22
  - peso tara recipiente
                              gr 18.77 21.42 17.42 5.02
                                                           7.74
  - peso netto secco
                                                           46.25
                                  42.41 44.02 49.71 64.34
  - contenuto in acqua
b) Risultati
                          LL %
  - Limite liquido
- Limite plastico
                                                           50.80
                           LP %
                                                           28.32
  - Indice di plasticita'
                                                           22.48
                           ΙÞ
                                                            0.84
  - Indice di consistenza
                           ΙC
  - Indice di liquidita'
                           ΙL
                                                            0.16
```


```
SCHEDA DI ANALISI GEOTECNICA
dati generali
                          Bellizzi (SA)
- Comune
                          Pescine
- Località
- Committente
- Committente And - Punto di indagine n° 9 - Campione n° 2
                          Amministrazione Comunale
- Profondità di prelievo m 6
- Tipo di campione indisturbato
              indici fisici
                                                     t/mc
                                                           1.926
                                                  Gа
- Peso unita' di volume
                                                     t/mc
                                                         2.811
- Peso specifico dei grani
                                                  Gr
                                                          1.574
                                                  6 d
                                                     t/mc
- Densita' secca
                                                          2.014
                                                     t/mc
                                                  Gs
- Peso di volume saturo
                                                    t/mc
t/mc
                                                          1.014
                                                  G *
- Peso di volume sommerso
                                                           0.786
- Indice dei vuoti
                                                      % 44.009
% 27.962
                                                 n
- Porosita'
                                                  Wn
- Contenuto in acqua allo stato naturale
                                                       % 90.595
                                                  Sr
- Grado di saturazione
                                                          0.082
                                                  Sa
- Grado di aereazione
              limiti di Atterberg
a) Condizioni di prova
                                   14
                                               30
                                         16
   - numero delle cadute
   - peso lordo campione umido gr 56.60 45.41
- peso lordo campione secco gr 50.39 37.59
                                               53.24
                                                           29.33
                                                     28.20
                                              46.26
                                                     25.73
                                                           26.54
                                                           2.79
                                               6.98
                                                     2.47
                              gr 6.21
                                         7.82
   - peso acqua
                              gr 26.98 12.56
gr 23.41 25.03
% 26.53 31.24
                                              25.13
                                                     16.88
                                                           16.82
   - peso tara recipiente
                                                     8.85
                                                           9.72
                                              21.13
   - peso netto secco
                                                     27.91
                                                           28.70
                                               33.03
   - contenuto in acqua
b) Risultati
                                                           33.10
                           LL %
   - Limite liquido
   - Limite plastico
                                                            23.54
                           LP %
                          IP %
                                                            9.56
   - Indice di plasticita'
                                                            0.54
                            ΙC
   - Indice di consistenza
                                                            0.46
   - Indice di liquidita'
                            IL
```


```
SCHEDA DI ANALISI GEOTECNICA
dati generali
                          Bellizzi (SA)
Pescine

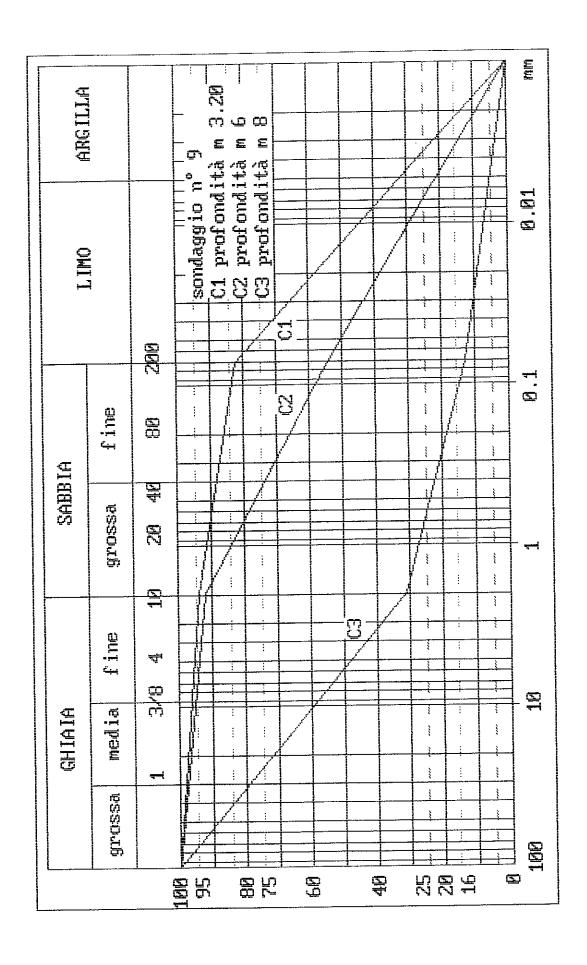
Committente Amministrazione Comunale

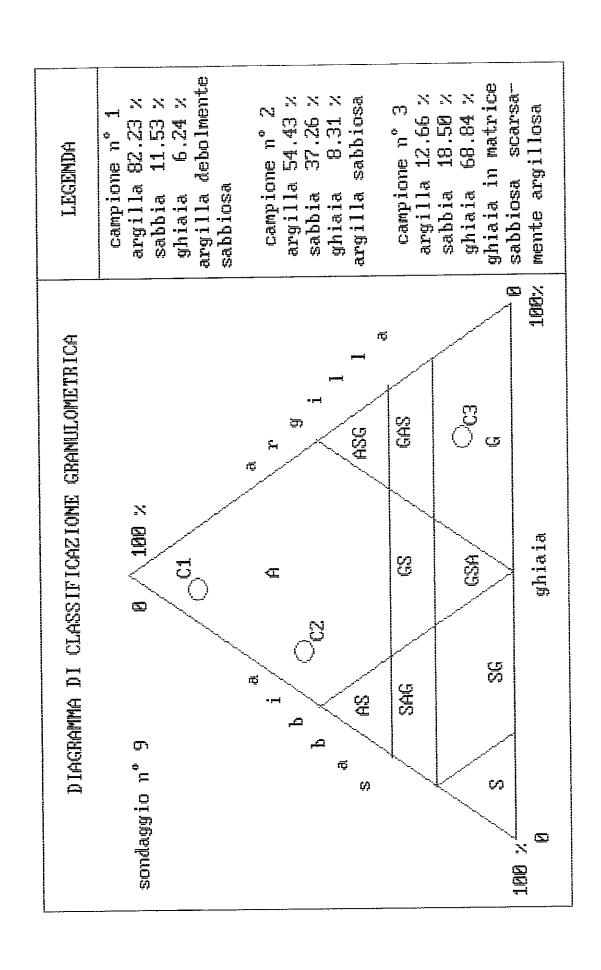
Punto di indagine n° 9

Campione n° 2
- Сомире
- Profondità di prelievo m 8
- Tipo di campione rimaneggiato
                  indici fisici
                                                   Ga t/mc
                                                            1.844
- Peso unita' di volume
                                                   Gr t/mc 2.658
Gd t/mc 1.742
Gs t/mc 2.087
G' t/mc 1.087
- Peso specifico dei grani
- Densita' secca
- Peso di volume saturo
                                                            1.087
- Peso di volume sommerso
                                                            0.526
                                                      0.526
% 34.469
% 19.789
                                                   e
- Indice dei vuoti
                                                   n
- Porosita'
                                                   Wn
- Contenuto in acqua allo stato naturale
                                                        % 72.384
                                                   Sr
- Grado di saturazione
                                                           0.240
                                                   Sa
- Grado di aereazione
              limiti di Atterberg
a) Condizioni di prova
  peso lordo campione umido gr 51.36 42.24 peso lordo campione secco gr 45.70 35.28 peso acqua
                                                16
                                                             24.49
                                                      24.36
                                                50.14
                                                     23.12
                                               44.26
                                                             23.30
                                                             1.19
                                                      1.24
                                                5.88
                               gr 27.06 12.76 25.37 16.82
                                                             16.93
   - peso tara recipiente
                               gr 18.64 22.52 18.89
% 30.36 30.91 31.13
                                                      6.30
                                                             6.37
   - peso netto secco
                                                             18.68
                                   30.36 30.91 31.13 19.68
   - contenuto in acqua
b) Risultati
                                                             31.20
                           LL %
   - Limite liquido
   - Limite plastico
                           LP %
                                                             14.77
                                                             16.43
   - Indice di plasticita'
                                                             0.66
   - Indice di consistenza
                           IC
   - Indice di liquidita'
                                                              0.34
                            ΙL
```


L'elaborazione della curva granulometrica e' stata eseguita in aderenza alla teoria di Folk e Ward

legenda


- % passante quantita' percentuale di terreno passante al setaccio - d (mm) diametro dei grani
- D logaritmo negativo in base 2 di d(mm)
- Mz frazione granulometrica significativa
- Ss deviazione dal diametro medio - Sk tendenza della curva a disperdersi da un lato rispetto a Mz
- Ks scostamento dalla distribuzione gaussiana
- Uu variazione significativa rispetto al diametro efficace d10
- Cc gradazione dell'assortimento granulometrico


%	d	D	d	D	d	D	·
5 10 16 25 30 50 60 75 84	0.001 0.002 0.002 0.004 0.005 0.015 0.023 0.048 0.144	9.544 9.150 8.715 8.090 7.718 6.071 5.435 4.370 2.796	0.002 0.002 0.003 0.007 0.018 0.050 0.131 0.444 1.115	9.334 8.802 8.167 7.169 5.837 4.334 2.932 1.171 -0.157	11.023 24.858	7.679 5.093 2.966 0.711 -0.822 -2.555 -3.462 -4.636 -5.358	w - •
95	4.322	-2.112	8.131	-3.023	72.351	-6.177	

INDICI GRANULOMETRICI

1 - composizione percentuale del campione:

		- limo-argilla - sabbia - ghiaia	0,00	82.230 11.530 6.240	54.430 37.260 8.310	12.660 18.500 68.840
2		diametro medio	Mz	5.861	4.114	-1.649
3		classazione	Ss	-3.246	-3.953	-4.180
4		asimmetria	Sk	0.256	0.135	-0.402
5		curtosis	Ks	1.284	0.844	1.062
6	***	coeff. di uniformita'	Uu	13.136	58.482	376.212
7	_	coeff. di curvatura	Сс	0.554	1.044	9.678

1 - Generalità

Committente Comune Località Amministrazione Comunale Bellizzi (SA) Pescine

sondaggio n° 9
campione n° 1
tipo di campione ind
profondità di prelievo m 3.2

n° 9 n° 1 indisturbato

2 - Condizioni di prova

legenda

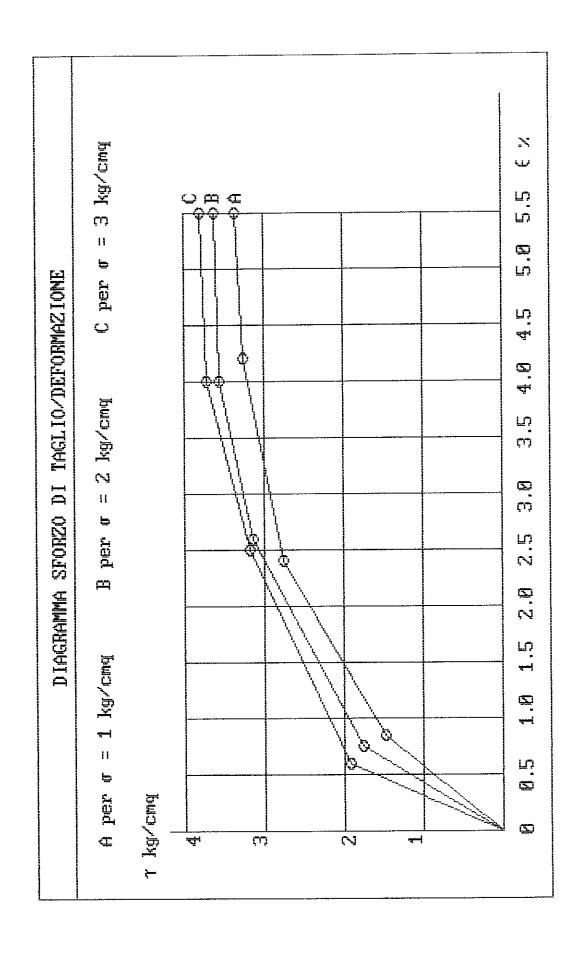
P numero del provino
Øi sezione del provino in mm
H altezza del provino in mm
8t tempo di consolidazione in ore
8H cedimento del provino in mm
o pressione verticale in kg/cmq
v velocità di deformazione in ore
t tempo di sollecitazione in ore
deformazione trasversale in %
t deformazione tangenziale in mm

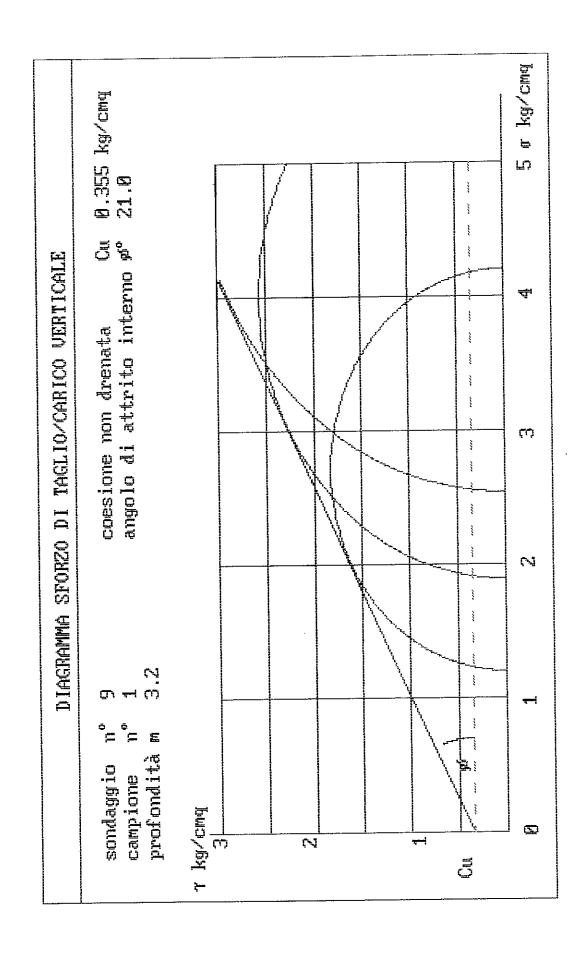
```
: dimens.: fase di : fase di : iniziali: consolidamento : rottura : ...

: P : Øi : H : δt : δh : σ : ν : t : σ : ...

: 1 : 60 : 20 : 18 : 0.850 : 2 : 0.006 : 5.00 : 2 : ...

: 2 : 60 : 20 : 18 : 1.275 : 3 : 0.006 : 5.00 : 3 : ...


: 3 : 60 : 20 : 18 : 1.723 : 4 : 0.006 : 5.00 : 4 :
```

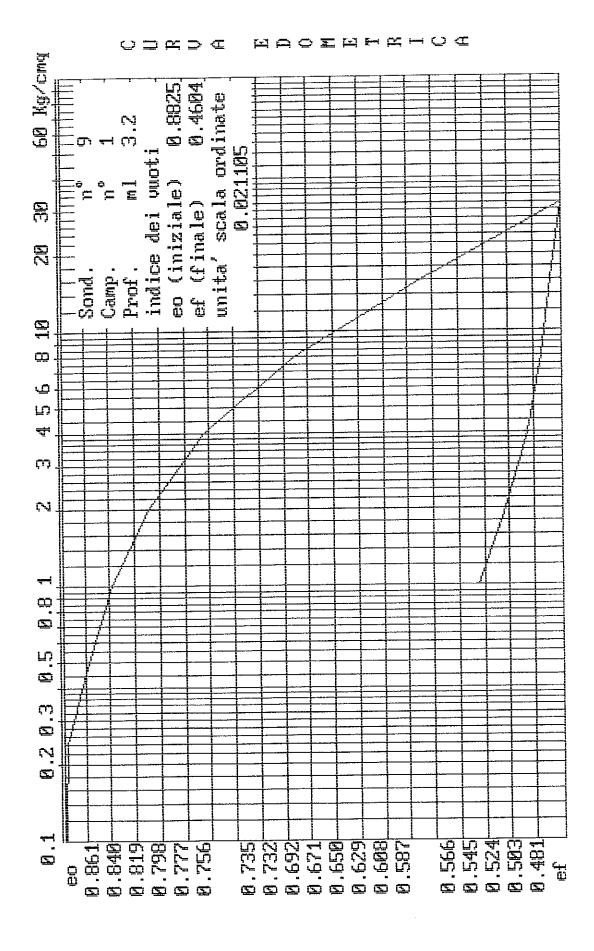

```
: 1° carico : 2° carico : 3° carico : rottura : P: \in : \tau : \tau : \in : \tau : \in : \tau : \tau : \in : \tau : \tau : \in : \tau : \tau
```

3 - Risultati

- a) coesione non drenata
- b) angolo di attrito interno

Cu 0.355 kg/cmq Ø 21.0 gradi

CALCOLO DEI PARAMETRI DI COMPRESSIBILITA' dati generali Committente Località Comune Amministrazione Comunale Pescine Bellizzi (SA) - Comune n° 9 n° 1 m 3.2 - sondaggio campione - profondità Ho mm 19 f mm 50 - altezza del provino - diametro del provino 0.883 indice dei vuoti del campione indice dei vuoti iniziale indice dei vuoti finale е 0.883 e 0 0.460 еf dati strumentali 1 egenda kg dS - incrementi di carico dH m m - accorciamenti del provino e % - accorciamenti percentuali del provino - indice dei vuoti corrispondente e % 1 - Fase di compressione 0.869 0.700 0.133 0.125 0.857 1.342 0.255 0.250 3.095 0.824 0.588 0.500 3.895 .0.809 0.740 1.000 0.772 5.884 1.118 2.000 0.715 8.889 4.000 1.689 0.647 2.378 12.516 8.000 0.580 16.089 3.057 16.000 0.460 19.558 3.716 32,000 2 - Fase di scarico 0.460 19.558 3.716 32.000 0.675 20.232 3.844 16.000 0.580 18.126 3.444 8.000 0.514 17,111 3.251 4.000 0.511 3.034 15.968 2.000 0.535 13.984 2.657 1.000

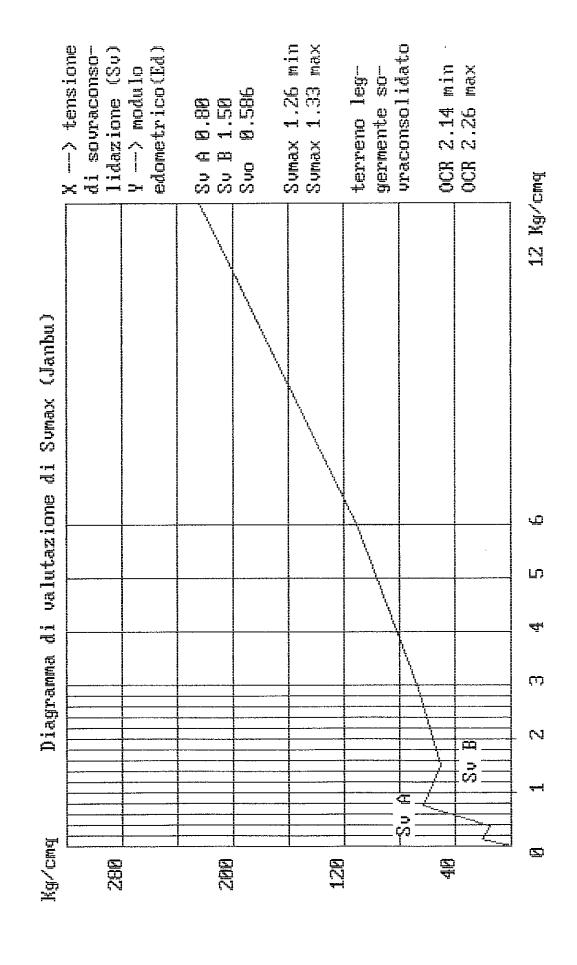

- indice dei vuoti inizio tratto rettilineo - pressione corrispondente in er - pressione corrispondente in ef	sr	kg 0.735 kg 5.000 kg 32.000
parametri di compre	ssibil	i t a'
<pre>1 - Tratto rettilineo della curva * Indice di compressione * Rapporto di compressione</pre>	Cc Cr	0.340 0.181
2 - Tratto iniziale della curva * Indice di ricompressione * Rapporto di ricompressione	C q R r	0.092 0.049
3 - Tratto di scarico della curva * Indice di rigonfiamento * Rapporto di rigonfiamento	Cs Rr	0.182 0.097

i	n	d	i	С	i	d i	С	Q	m	p	r	е	S	S	i	b	i	1	i	t	a t

legenda

 incrementi di carico	dS	k 9
Indice di compressibilita'		cmq/kg
 Coefficiente di compressibilita'		cmq/kg
 Modulo di compressibilita' edometrica	Εd	kg/cmq

dS	âV	m V	Ed
		0.05407	10 467
0.125	0.09670	0.05137	19,467
0.250	0.13197	0.07011	14.264
0.500	0.03012	0.01600	62,500
1.000	0.03745	0.01989	50.265
2.000	0.02829	0.01503	66.550
4.000	0.01707	0.00907	110.305
8.000	0.00841	0.00447	223.859
16.000	0.00408	0.00217	461.305



GRADO DI CONSOLIDAZIONE - valori dei moduli di compressibilità edometrica per: ---> Εd 19.47 kg/cmq $\delta s = 0.125 \text{ kg}$ 8s = 0.125 kg ---> Ed 8s = 0.250 kg ---> Ed 8s = 0.500 kg ---> Ed 8s = 1.000 kg ---> Ed 8s = 2.000 kg ---> Ed 8s = 4.000 kg ---> Ed 8s = 8.000 kg ---> Ed 14.26 kg/cmq 62.50 kg/cmq 50.27 kg/cmq 66.55 kg/cmq 110.31 kg/cmq 223.86 kg/cmq D 3.20 m - profondità di verifica - peso unità di volume 1.831 t/mc Га 0.586 kg/cmg - tensione litostatica in D σVO - tensione di consolidazione (min) - tensione di consolidazione (max) 0.80 kg/cmq σVa 1.50 kg/cmq avb - tensione di sovraconsolidazione (min) ovmin 1.26 kg/cmq - tensione di sovraconsolidazione (max) ovmax 1.33 kg/cmq 2.14 OCR - grado di consolidazione (min) - grado di consolidazione (max) - grado di consolidazione medio OCR 2.26

terreno leggermente sovraconsolidato

OCR

2.20

SG-010

	COMUNE D SONDAGGI				n' 10		LOCALITA	A': Pesoine : Amministrazione Comunale
3	PROFONDITA	SPESSORI	STRATIOR		% CAROTAGGIO	Noolpl		DESCRIZIONE
2	2 (78) 2.5 (77.6)	2		HZU		1.5 19 lt	1	coltre euperficiale argillo-terroea paeeante ad argilla eabbioea ghialetto in matrice sabbiosa e li- masa
4 6 0	10.2 (49.8)	, ,			,	6 18 14 19	3	angilla cabbicca
	11 (69)							ghialatto in matrice sabblosa e II- mosa
12	12.4	1.3		12.4			- 3	englila sebbiosa
14	15	2.6				13.2 21.04.09	14 R	ghist in mairice filmo-sobbloso
16	16	3					THE PROPERTY AND ADDRESS OF THE PROPERTY ADDRESS OF THE PR	eebble ilmo-argliloea fremmlete s rado ghialetto
, 0	(62)		<u> </u>	<u></u>	<u>-</u>	<u> </u>		

.

```
计环境 电环性 我就是我们会就是你就是我们的我们的好好,我们就不是这样,我们就是我们有什么,我们还是我们的我们就是我们的人们会会会会会会会会会会会
 SCHEDA DI ANALISI GEOTECNICA
dati generali
                           Bellizzi (SA)
- Comune
- Località
- Committente
- Punto di indagine

n° 10

n° 1
                          Pescine
                          Amministrazione Comunale
- Profondità di prelievo m 1
                          indisturbato
- Tipo di campione
                  indici fisici
                    1.866
                                                   Ga t/mc
- Peso unita' di volume
                                                             2.743
                                                   Gr
                                                      t/mc
- Peso specifico dei grani
                                                            1.498
                                                   Gd t/mc
- Densita' secca
- Peso di volume saturo
                                                            1.952
                                                   Gs t/mc
                                                            0.952
                                                   G' t/mc
- Peso di volume sommerso
                                                             0.831
                                                   е
- Indice dei vuoti
                                                        % 45.385
% 30.295
                                                   n
- Porosita'
                                                   Wn
- Contenuto in acqua allo stato naturale
                                                         § 90.787
                                                   Sr
- Grado di saturazione
                                                            0.080
                                                   Sa
- Grado di aereazione
             limiti di Atterberg
a) Condizioni di prova
                                                 48
                                           23
                                    14
   - numero delle cadute
   - peso lordo campione umido gr 63.02

- peso lordo campione secco gr 56.20

- peso acqua gr 6.82
                                                      25.73
                                                             26,14
                                                 50.68
                                          43.11
                                          33.98 43.02 23.82
                                                              24.32
                                                             1.82
                                          9.13
                                                      1.91
                                                7.66
   - peso acqua
                                          14.12 26.67 17.51 18.03
                                gr 28.31
   - peso tara recipiente
                               gr 27.89
                                          19.86 16.35 6.31 6.29
45.97 46.85 30.27 28.93
   - peso netto secco
                                 % 24.45
   - contenuto in acqua
b) Risultati
                                                              38.80
                            L. L.
   - Limite plastico
   - Limite liquido
                          LP %
                                                              25.08
   - Indice di plasticita'
                                                              13.72
                                                              0.62
                             IC
   - Indice di consistenza
                                                               0.38
   - Indice di liquidita'
                             IL
```

```
我是我我看到我们里就就就是我就是我们我还是我们我们就是我们就是我们们就是我们的我们也会把我们们还就会说到这么么想要可以是我们也是我们们会让你也
 SCHEDA DI ANALISI GEOTECNICA
dati generali
                 Bellizzi (SA)
- Comune
                         Pescine
- Località
- Committente
                         Amministrazione Comunale
- Committents
- Punto di indagine
                     n° 10
                      n°2
- Campione
- Profondità di prelievo m 3
                       indisturbato
- Tipo di campione
                 indici fisici
                                                   t/mc
                                                          1.866
                                                Gа
- Peso unita' di volume
                                                    t/mc 2.783
                                                Gr
- Peso specifico dei grani
                                                   t/mc 1.501
- Densita' secca
                                                         1,962
                                                Gs t/mc
- Peso di volume saturo
                                                 G' t/mc
                                                         0.962
- Peso di volume sommerso
                                                         0.854
                                                 8
- Indice dei vuoti
                                                      % 46.063
- Porosita'
                                                    % 30.686
                                                 Wn
- Contenuto in acqua allo stato naturale
                                                      % 89.981
                                                 Sr
- Grado di saturazione
                                                         0.087
                                                 Sa
- Grado di aereazione
              limiti di Atterberg
a) Condizioni di prova
                                       23
                                  14
                                              36
   - numero delle cadute

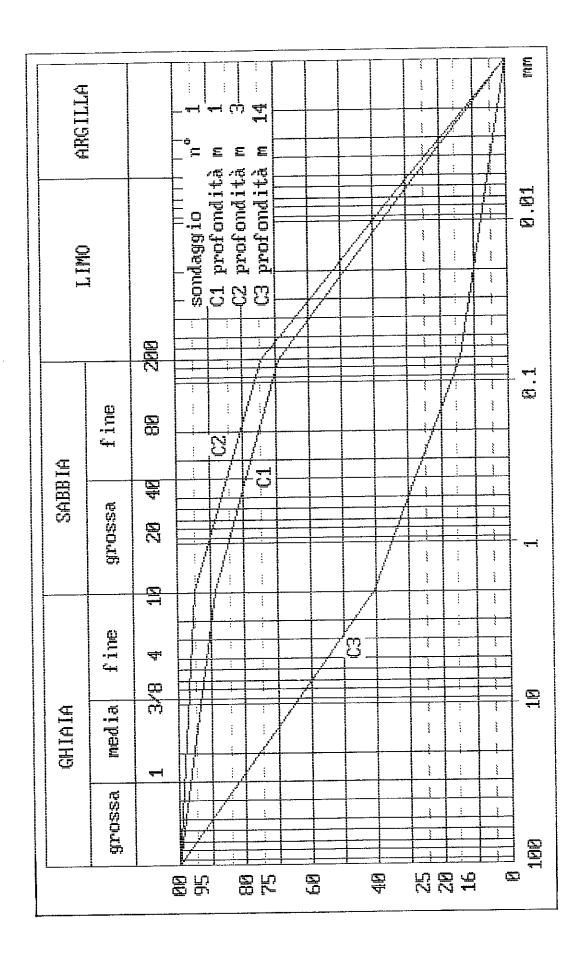
peso lordo campione umido
peso lordo campione secco
gr 55.61 45.32
gr 48.58 36.20

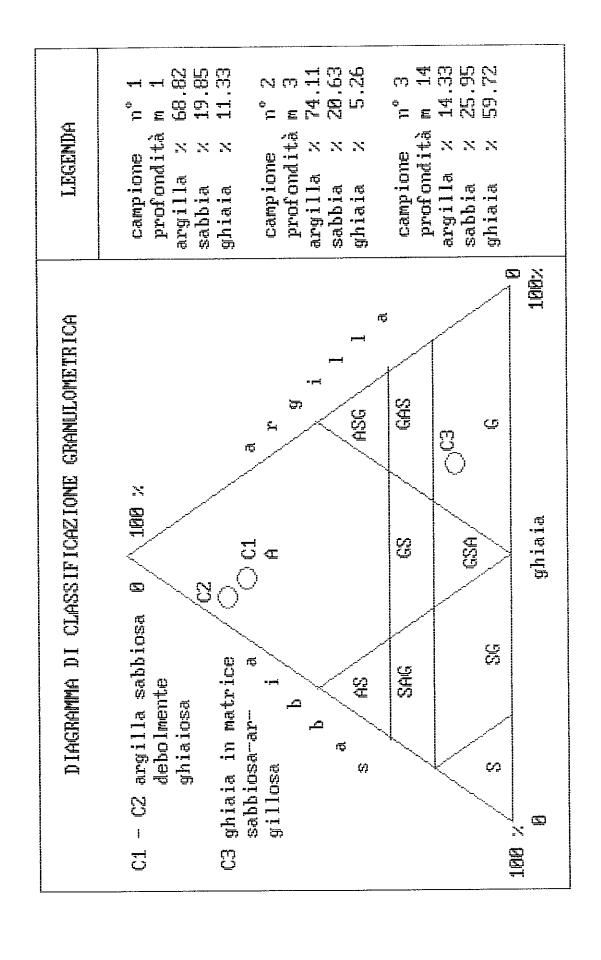
                                                    28.37 29.03
                                              54.11
                                                          25.55
                                                    24.86
                                              45.67
                                                          3.48
                                                    3.51
                                  7.03
                                        9.12
                                              8.44
                              gr
   - peso acqua
                              gr 30.81
                                                          20.36
                                              29.37 20.55
                                        16.71
   - peso tara recipiente
                                                          5.19
                                                    4.31
                              gr 17.77
                                        19.49 16.30
   - peso netto secco
                                        46.79 51.78 81.44
                                                          67.05
                                  39.56
                              %
   - contenuto in acqua
b) Risultati
                                                          49.80
   - Limite liquido
- Limite plastico
                          L L
                                                          28.05
                          LP
                              %
                                                          21.75
                           IP %
   - Indice di plasticita'
                                                           0.88
   - Indice di consistenza
                           I C
                                                           0.12
   - Indice di liquidita'
                           ΙL
```

```
SCHEDA DI ANALISI GEOTECNICA
dati generali
                      Bellizzi (SA)
- Comune
                      Pescine
- Località
- Committente
                     Amministrazione Comunale
- Punto di indagine n° 10
- Campione n° 3
- Campione
- Profondità di prelievo m 14
                   rimaneggiato
- Tipo di campione
indici fisici
                                                  1.798
                                           Ga t/mc
- Peso unita' di volume
                                                  2.833
                                           Gr t/mc
- Peso specifico dei grani
                                                  1.994
                                           Gd t/mc
- Densita' secca
- Peso di volume saturo
                                                  2.290
                                           Gs t/mc
                                           G' t/mc
                                                   1.290
- Peso di volume sommerso
                                                   0.421
- Indice dei vuoti
                                               % 29.627
                                           n
- Porosita'
                                               % 14.861
                                           Wn
- Contenuto in acqua allo stato naturale
                                               % 51.989
                                           Sr
- Grado di saturazione
                                                  0.418
                                           Sa
- Grado di aereazione
            limiti di Atterberg
a) Condizioni di prova
                                    11
                                         16
                               4
   - numero delle cadute
   - peso lordo campione umido gr 50.48 40.67 48.22 23.11 23.63
                                                    22.61
                                         43.24 22.00
                                    34.93
                              46.27
   - peso lordo campione secco
                          gr
                                                   1.02
                                    5.74
                                        4.98 1.11
                              4.21
   - peso acqua
                          gr
                                   11.36 24.65 16.21
                                                   16.22
                           g r
                              24.26
   - peso tara recipiente
                                    23.57 18.59 5.79
                                                   6.39
                              22.01
                           gr
   - peso netto secco
                                    24.35 26.79 19.17 15.96
                              19.13
   - contenuto in acqua
b) Risultati
                       LL
                                                    22.80
   - Limite plastico
                                                    20.76
                        LP
   - Indice di plasticita' IP
                                                    2.04
                                                    3.88
                        ΙC
   - Indice di consistenza
                                                    -2.88
                        ΙĹ
   - Indice di liquidita'
```

	1	<u></u>	<u> </u>	9 E (고 고		₩ (,	72 80	S	2 4		F	1.1.7
PLASTICITA"	a Lta	(B)	₽	0		inorganiche e argille sabbiose	media plasticità		70/07	I -0		50 60 70 80 90 100 110	forte	1PRESSIBILITA
ı	med i.a			ပ 	argille	inorganiche e argille sabbi	a media e compre		/ \ -/5	0,3		36 40	med i.a	© 0
	Dassa	9444 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1			Ç		terreni a	grana grossa	e incoerenti				ĕ	
Carta di	Casacrande	classifica	o.o.b.n. sondaqqio n°10	camp. nº 1	prof. m 1	LL 38.80 × IP 13.72 ×	camp. n°2	prof. m 3	11. 49.80 × 17.75 ×	•	Comp. n. d.	1.1. 22.8M %	IP 2.84 %	

L'elaborazione della curva granulometrica e stata eseguita in aderenza alla teoria di Folk e Ward


legenda


- % passante quantita' percentuale di terreno passante al setaccio diametro dei grani - d (mm)
- logaritmo negativo in base 2 di d(mm)
- frazione granulometrica significativa - Mz
- deviazione dal diametro medio - Ss
- tendenza della curva a disperdersi da un lato rispetto a Mz - Sk
- scostamento dalla distribuzione gaussiana - Ks
- variazione significativa rispetto al diametro efficace d10 - Uu
- gradazione dell'assortimento granulometrico - Cc

INDICI GRANULOMETRICI

1 - composizione percentuale del campione:

	- limo-argilla sabbia ghiaia	000	68.820 19.850 11.330	74.110 20.630 5.260	14.330 25.950 59.720
2	- diametro medio	Μz	4.683	5.251	-1.035
3	- classazione	Ss	-4.154	-3.432	-4.313
4	- asimmetria	Sk	0.340	0.252	-0.264
5	- curtosis	Ks	1.024	1.034	0.848
6	- coeff. di uniformita'	Uu	22.541	12.035	%3563.000
7	- coeff, di curvatura	Сс	0.548	0.868	18.322

经制度 等级性现代 数据自然 医结合试验 自我就说我都是我说话说,我就看得我看着这样就是这样,我们们只有什么,我们也是我们我们是不是这个人也可以不 PROVA DI TAGLIO DIRETTO

1 - Generalità

Amministrazione Comunale Committente Bellizzi (SA) Comune Pescine Località n° 10 sondaggio n° 2 campione

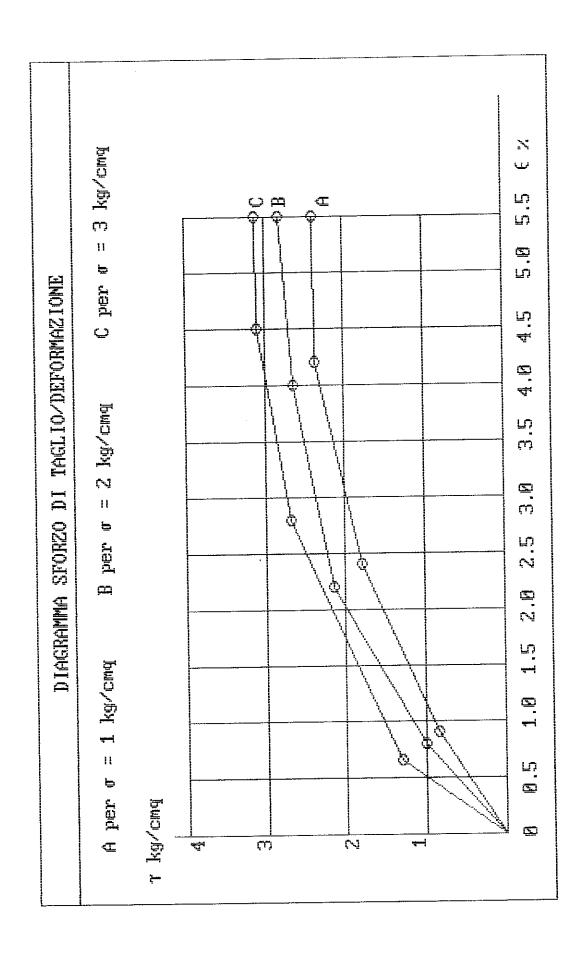
indisturbato tipo di campione profondità di prelievo m 3.0

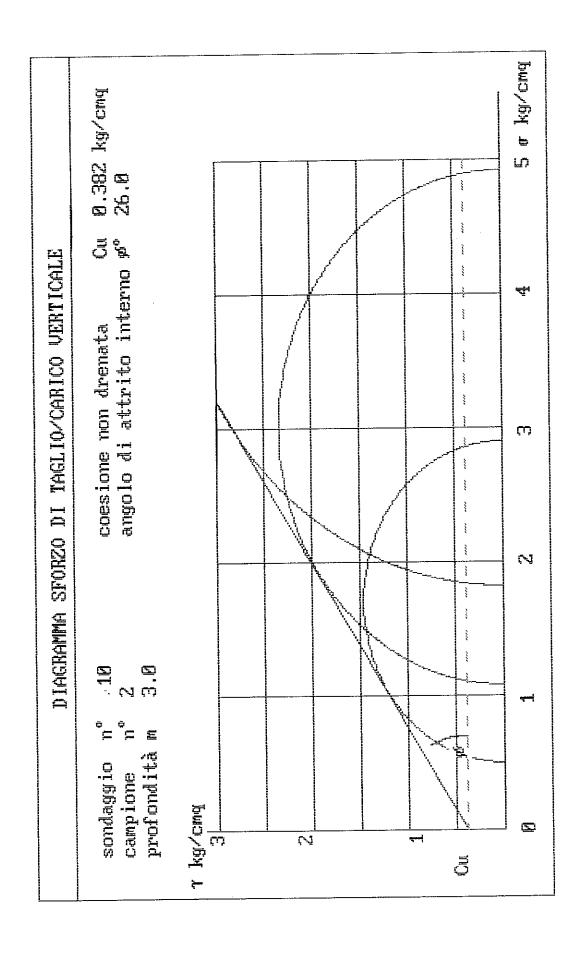
2 - Condizioni di prova

1egenda

```
numero del provino
     sezione del provino in mm
altezza del provino in mm
8t tempo di consolidazione in ore

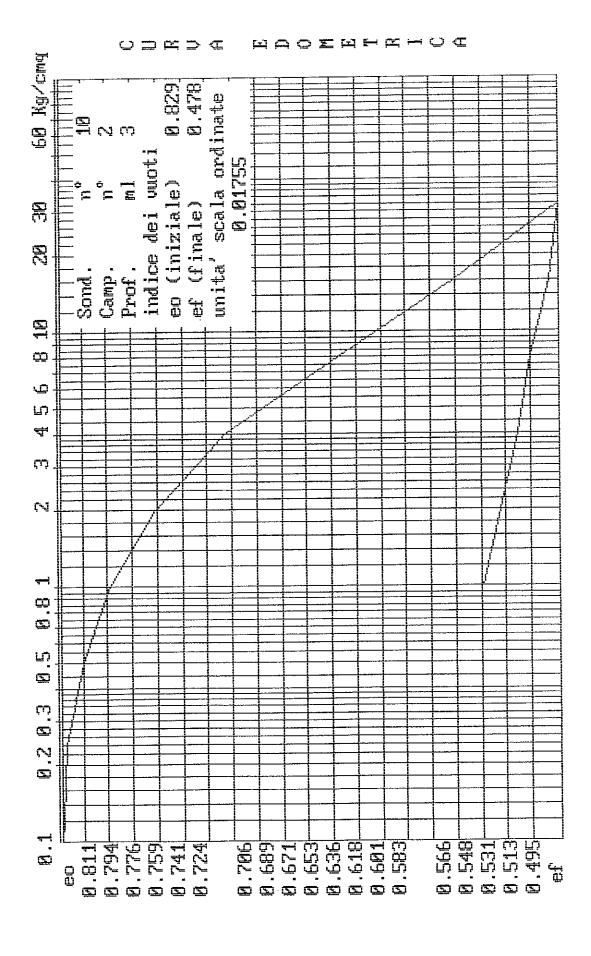
8H cedimento del provino in mm


σ pressione verticale in kg/cmq
     velocità di deformazione in mm/min
     tempo di sollecitazione in ore
     deformazione trasversale in %
     deformazione tangenziale in mm
```


```
: dimens. : fase di : fase di : iniziali: consolidamento : rottura :
: P: Øi : Η : δt : δh : σ : ν : t : σ :
: 1 : 60 : 20 : 18 : 0.826 : 1 : 0.007 : 4.50 : 1 :
: 2 : 60 : 20 : 18 : 1.644 : 2 : 0.007 : 4.50 : 2 :
: 3 : 60 : 20 : 18 : 3.172 : 3 : 0.007 : 4.50 : 3 :
```

```
: 1° carico : 2° carico : 3° carico : rottura :
ι P : € : τ : € : τ : € : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ : Ε : τ 
: 1 : 0.90 : 0.85 : 2.40 : 1.78 : 4.20 : 2.36 : 5.50 : 2.38 : 
: 2 : 0.80 : 1.00 : 2.20 : 2.15 : 4.00 : 2.64 : 5.50 : 2.82 : 
: 3 : 0.65 : 1.30 : 2.80 : 2.69 : 4.50 : 3.11 : 5.50 : 3.13 :
```

3 - Risultati


b) angolo di attrito interno Ø 26.0 omali

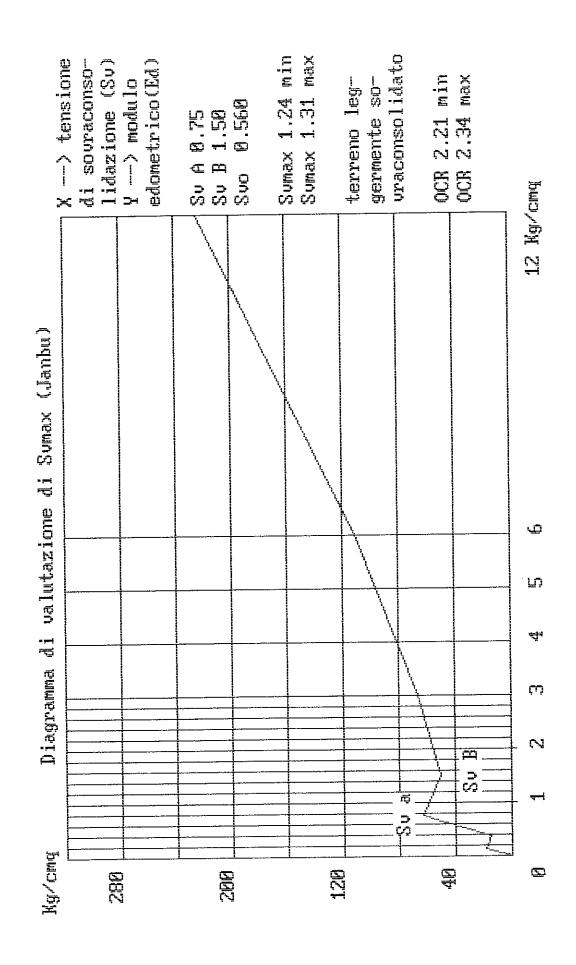
CALCOLO DEI PARAMETRI DI COMPRESSIBILITA' dati generali - Committente Amministrazione Comunale - Località Pescine - Comune Bellizzi (SA) n° 10 n° n° - sondaggio 2 - campione 3 - profondità Ho mm 19 f mm 50 - altezza del provino f mm - diametro del provino 0.831 е - indice dei vuoti del campione 0.829 e o - indice dei vuoti iniziale ef 0.478 - indice dei vuoti finale dati strumentali 1 egenda dS kg - incrementi di carico dH m in - accorciamenti del provino e% - accorciamenti percentuali del provino - indice dei vuoti corrispondente e% dН 1 - Fase di compressione 0.815 0.747 0.142 0.125 0.803 1.442 0.274 0.250 3.195 0.771 0.607 0.500 0.756 3.995 0.759 1.000 0.720 5.984 1.137 2.000 0.664 9.005 1.711 4.000 0.598 12.616 2.397 8.000 0.533 16.189 3.076 16.000 0.478 19.658 3.735 32.000 2 - Fase di scarico 0.478 19.658 3.735 32.000 0.622 20.132 3.825 16.000 18.026 0.533 3.425 8.000 0.469 17.011 3.232 4.000 0.521 15.868 3.015 2.000 0.534 13.884 2.638 1.000

	dati dalla curva	edometrica	
indice dei vuotpressione corripressione corri	i inizio tratto retti spondente in er spondente in ef	lineo er sr sf	kg 0.707 kg 4.000 kg 32.000
m m m m n n	tri di co	moressibi	lita'
1 - Tratto rettil * Indice di		Cc Cr	0.254 0.139
2 - Tratto inizia * Indice di * Rapporto d	le della curva ricompressione i ricompressione	C q R r	0.080 0.044
3 - Tratto di sca * Indice di * Rapporto d	rico della curva rigonfiamento i rigonfiamento	Cs Rr	0.189 0.104
i n d	ci di co	moressibi	ilita'
- Modulo di comp	carico ressibilita' i compressibilita' ressibilita' edometri		dS kg av cmq/kg mv cmq/kg Ed kg/cmq
10	av	m V	Εd
0.125 0.250 0.500 1.000 2.000 4.000 8.000 16.000	0.10165 0.12822 0.02926 0.03639 0.02763 0.01651 0.00817 0.00396	0.05558 0.07011 0.01600 0.01989 0.01511 0.00903 0.00447 0.00217	17.992 14.264 62.500 50.265 66.202 110.787 223.859 461.305

GRADO DI CONSOLIDAZIONE - valori dei moduli di compressibilità edometrica per: 17.99 kg/cmq ---> E d δs = 0.125 kg ---> Ed δs = 0.250 kg ---> Ed δs = 0.500 kg ---> Ed δs = 1.000 kg ---> Ed δs = 2.000 kg ---> Ed δs = 4.000 kg ---> Ed δs = 8.000 kg ---> Ed $\delta s = 0.125 \text{ kg}$ kg/cmq 14.26 62.50 kg/cmq kg/cmq 50.27 66.20 kg/cmq 110.79 kg/cmq 223.86 kg/cmq 3.00 m D - profondità di verifica 1.866 t/mc Γа - peso unità di volume 0.560 kg/cmq QVO - tensione litostatica in D tensione di consolidazione (min) ova tensione di consolidazione (max) ovb 0.75 kg/cmq 1.50 kg/cmq - tensione di sovraconsolidazione (min) ovmin 1.24 kg/cmq - tensione di sovraconsolidazione (max) ovmax 1.31 kg/cmq 2.21 OCR - grado di consolidazione (min)

- grado di consolidazione (max)

- grado di consolidazione medio


terreno leggermente sovraconsolidato

OCR

OCR

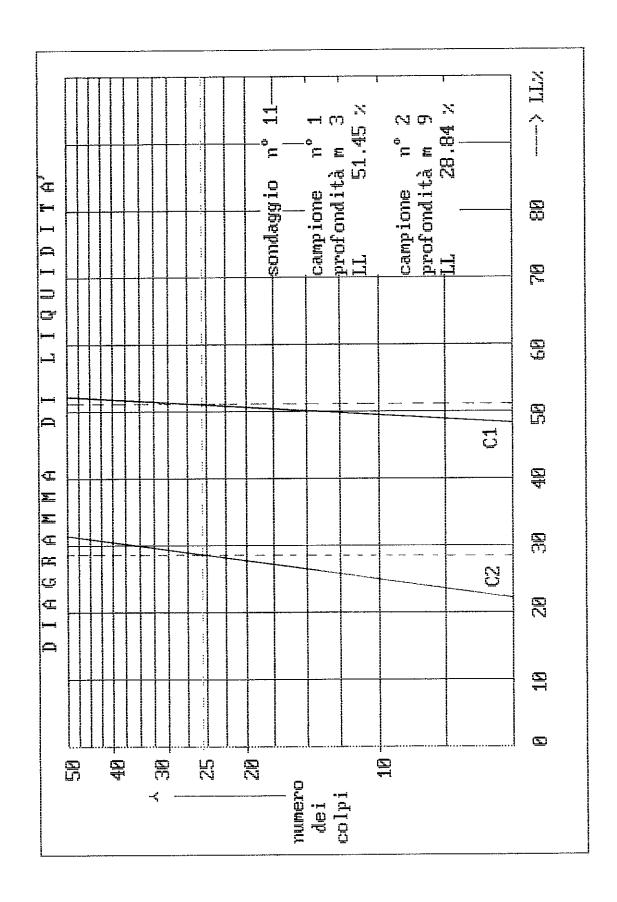
2.34

2.28

SG-011

S	ONDAGGI	0 : son	lizzi (Sa deggio ma	accon loc			COMMITT.	: Amministrazione Comunale
3	PROFONDITA	SPESSORI	STRATIOR	FALDA H20	% CAROTAGGIO	Noole L SPT	Comptone DIR	DESCRIZIONE
2	(55)	4.3				5.0	3	piriclastiti argillificate com in globati radi elementi pomicei
6	4.3 (60.7)	1.8				3.0 877		clottolame poligenico in abbandan matrice limo-sabbiosa
	7.4	1.2				6.5 9 11 12		angilla ilmo-sabblosa
19 19 20 22 22	(47.6)	16.6		12.5		11.5	9 R	clottalama poliganico in abbandan matrice ilmo-eabbloea

```
SCHEDA DI ANALISI GEOTECNICA
dati generali
                                   Max Now way was but the part and the last the la
                                                                      Bellizzi (SA)
- Comune
                                                                     Azienda Elia
- Località
- Committente
                                                                      Amministrazione Comunale
Punto di indagine n° 11Campione n° 1
- Profondità di prelievo m 3
                                                             indisturbato
- Tipo di campione
                                                indici fisici
                                                                                                                                      Ga t/mc 1.822
- Peso unita' di volume
                                                                                                                                      6r t/mc 2.648
- Peso specifico dei grani
- Densita' secca
- Peso di volume saturo
                                                                                                                                      Gd t/mc 1.410
                                                                                                                                      Gs t/mc 1.878
                                                                                                                                      G' t/mc
                                                                                                                                                              0.878
- Peso di volume sommerso
                                                                                                                                                              0.878
- Indice dei vuoti
                                                                                                                                                    % 46.752
                                                                                                                                     n
- Porosita'
                                                                                                                                                   % 33.157
                                                                                                                                     Wn
- Contenuto in acqua allo stato naturale
                                                                                                                                                    $ 93.880
- Grado di saturazione
                                                                                                                                     Sr
                                                                                                                                                             0.053
                                                                                                                                     Sa
- Grado di aereazione
                                        limiti di Atterberg
a) Condizioni di prova
                                                                                                                               38
                                                                                              10
                                                                                                               18
        - numero delle cadute


peso lordo campione umido gr 53.48
peso lordo campione secco gr 45.54

                                                                                                               43.67 51.11 26.27 26.58
                                                                                                                                             22.90 23.25
                                                                                                               34.44 42.90
                                                                                                                                                                 3.33
                                                                                                               9.23
                                                                                                                               8.21
                                                                                                                                               3.37
                                                                                              7.94
                                                                                   gr
        - peso acqua
                                                                                                               14.56 27.11
19.88 15.79
                                                                                                                                              18.24
                                                                                                                                                              18.64
                                                                                  gr 28.95
        - peso tara recipiente
                                                                                                                                                                4.61
                                                                                  gr 16.59
                                                                                                                                                4,66
        - peso netto secco
                                                                                                               46.43 51.99
                                                                                                                                              72.32 72.23
                                                                                     47.86
        - contenuto in acqua
b) Risultati
        - Limite plastico
                                                                                                                                                                 51.45
                                                                         L.L
                                                                                                                                                                 28.49
                                                                         LΡ
                                                                                     %
        - Indice di plasticita
                                                                                                                                                                 22.96
                                                                        ΙÞ
                                                                                      ş
                                                                                                                                                                  0.80
                                                                          ΙC
        - Indice di consistenza
                                                                                                                                                                   0.20
        - Indice di liquidita'
                                                                          IL
```

```
SCHEDA DI ANALISI GEOTECNICA
dati generali
                           Bellizzi (SA)
- Comune
                           Azienda Elia
- Località
- Committente
                           Amministrazione Comunale
- Lommicience
- Punto di indagine
                       n° 11
                       n°2
- Campione
- Profondità di prelievo m 9
- Tipo di campione
                        rimaneggiato
                  indici fisici
                                                    Ga t/mc
                                                              1.914
- Peso unita' di volume
                                                              2.788
                                                    Gr t/mc
- Peso specifico dei grani
                                                    Gd t/mc
                                                             2.012
- Densita' secca
                                                    Gs t/mc G' t/mc
                                                              2,290
- Peso di volume saturo
                                                              1.290
- Peso di volume sommerso
                                                              0.386
                                                        27.850
% 27.850
% 13.845
% 58 60
- Indice dei vuoti
                                                    n
- Porosita'
                                                    Wn
- Contenuto in acqua allo stato naturale
                                                         % 58.635
0.360
                                                    Sr
- Grado di saturazione
                                                    Sā
- Grado di aereazione
               limiti di Atterberg
a) Condizioni di prova
                                     б
                                           8
                                                 14
   - numero delle cadute

    peso lordo campione umido
    peso lordo campione secco
    gr 50.35 40.22 48.34 22.98 23.13
    gr 45.61 34.35 43.23 22.00 22.76

                                          34.35 43.23 22.00
5.87 5.11 0.98
                                                              0.37
                                     4.74
                                g r
   - peso acqua
                                gr 25.92 11.44 24.02 15.08
gr 19.69 22.91 19.21 6.92
                                                              15.11
   - peso tara recipiente
                                                             7.65
   - peso netto secco
                                                              4.84
                                           25.62
                                                 26.60 14.16
   - contenuto in acqua
                                 8
                                     24.07
b) Risultati
                                                               28.84
   - Limite plastico
                            L L
                                 8
   - Limite liquido
                                                               22.39
                            ΓÞ
                            ΙÞ
                                                               6.45
   - Indice di plasticita'
                                                               2.32
   - Indice di consistenza
- Indice di liquidita'
                             ΙC
                                                               -1.32
                             IL
```


		<u>6</u>	> () - () - () - () - () - () - () - () -	8	₽ 8	28 28	<u></u>	L X
STICITA	alta	(E)—— IP=(B,73*(LL-28)	d	The same are an or an or and a second of the same of t	limi argillosi e sabbiosi	C1 dia compressibilità e me-		50 60 70 80 90 100 110
P T d	med ia		ပ			enti	- -	40 50 media C O M P
in main d'annaigh aigh a ghleannagan a ghleanna ann ag gu an air aighe a gheann ag gu an air an ann ann ann ai			۷)		terreni a grana grossa ed incoerenti	-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\	10 20 30 scarsa
		classifica	sondaggio n°11 camp. n° 1	pron: m 3 LL 51.45 % IP 22.96 %	camp. n° 2	LL 28.84 × IP 6.45 ×	<u>r- 7</u>	

CLASSIFICAZIONE GRANULOMETRICA

L'elaborazione della curva granulometrica e' stata eseguita in aderenza alla teoria di Folk e Ward

legenda

- Uu

- Cc

quantita' percentuale di terreno passante al setaccio diametro dei grani - % passante

- d (mm)

logaritmo negativo in base 2 di d(mm)

frazione granulometrica significativa - Mz

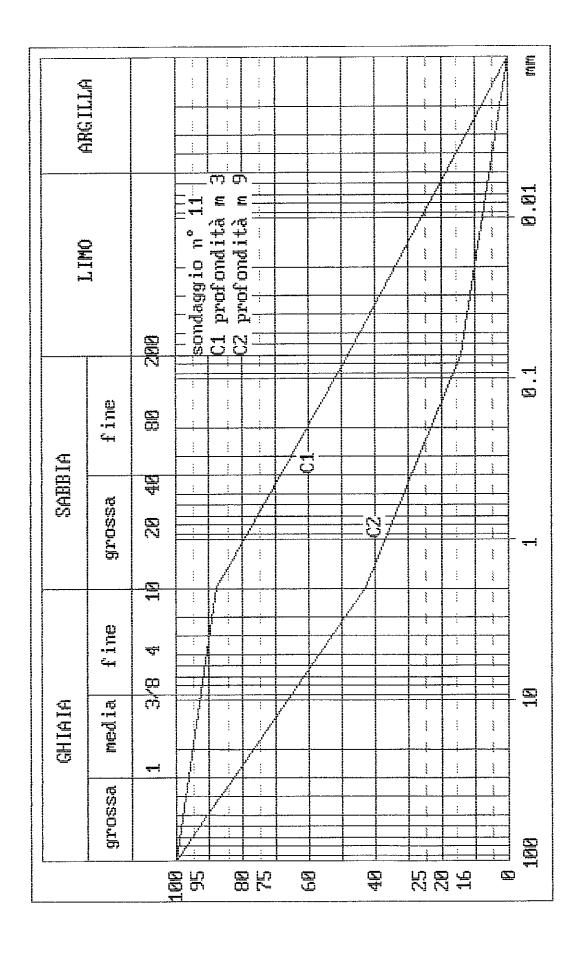
deviazione dal diametro medio - 5s

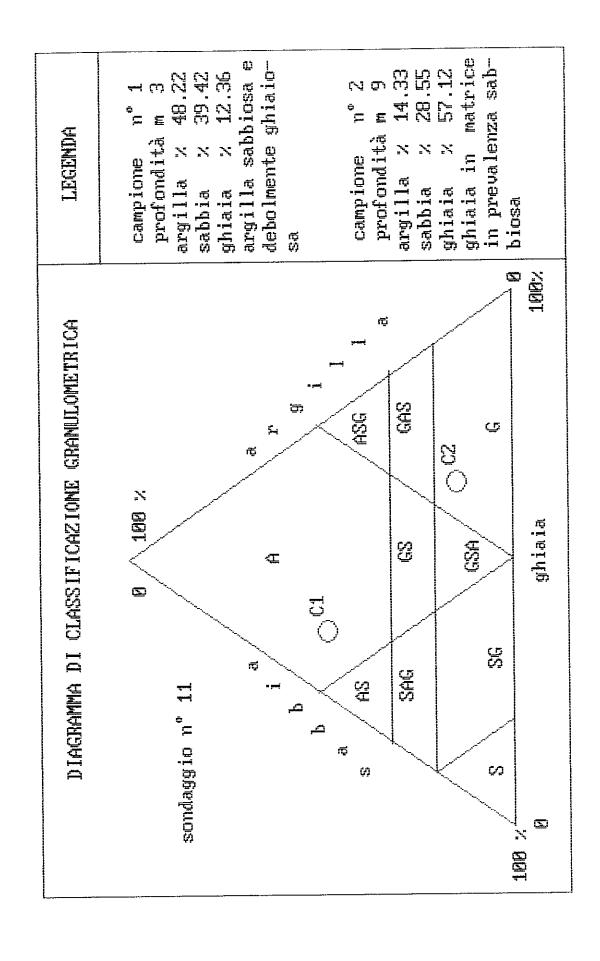
tendenza della curva a disperdersi da un lato rispetto a Mz - Sk

scostamento dalla distribuzione gaussiana - Ks

variazione significativa rispetto al diametro efficace d10

gradazione dell'assortimento granulometrico


0.002	9.306	0.004	7.927
0.002	8.691	0.019	5.688
0.004	7.962	0.085	3.553
0.009	6.807	0.248	2.012
0.016	6.012	0.444	1.171
0.016	6.012	0.444	1.171
0.083	3.584	3.176	-1.667
0.196	2.351	6.325	-2.661
0.666	0.586	18.462	-4.206
1.688	-0.755	33.341	-5.059
18.435	-4.204	68.741	-6,103
	0.002 0.004 0.009 0.016 0.016 0.083 0.196 0.666 1.688	0.002 8.691 0.004 7.962 0.009 6.807 0.016 6.012 0.016 6.012 0.083 3.584 0.196 2.351 0.666 0.586 1.688 -0.755	0.002 8.691 0.019 0.004 7.962 0.085 0.009 6.807 0.248 0.016 6.012 0.444 0.016 6.012 0.444 0.083 3.584 3.176 0.196 2.351 6.325 0.666 0.586 18.462 1.688 -0.755 33.341


% d D d D

GRANULOMETRICI INDICI

1 - composizione percentuale del campione:

		- limo-argilla sabbia ghiaia	000 000		14.330 28.550 57.120
2		diametro medio	Μz	3.597	-1.058
3		classazione	Ss	-4.226	-4.279
4		asimmetria	Sk	0.074	-0.290
5	-	curtosis	Кs	0.890	0.925
6		coeff. di uniformita	Uu	80.992	326.031
7		coeff. di curvatura	Co	0.507	1,607

1 - Generalità

Committente
Comune
Località

sondaggio

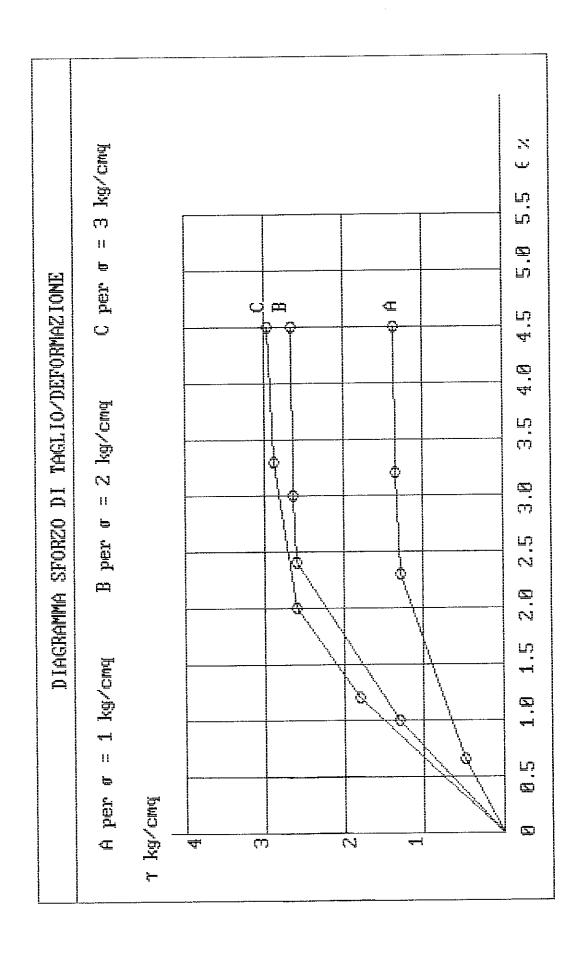
Amministrazione Comunale
Bellizzi (SA)
Azienda Elia

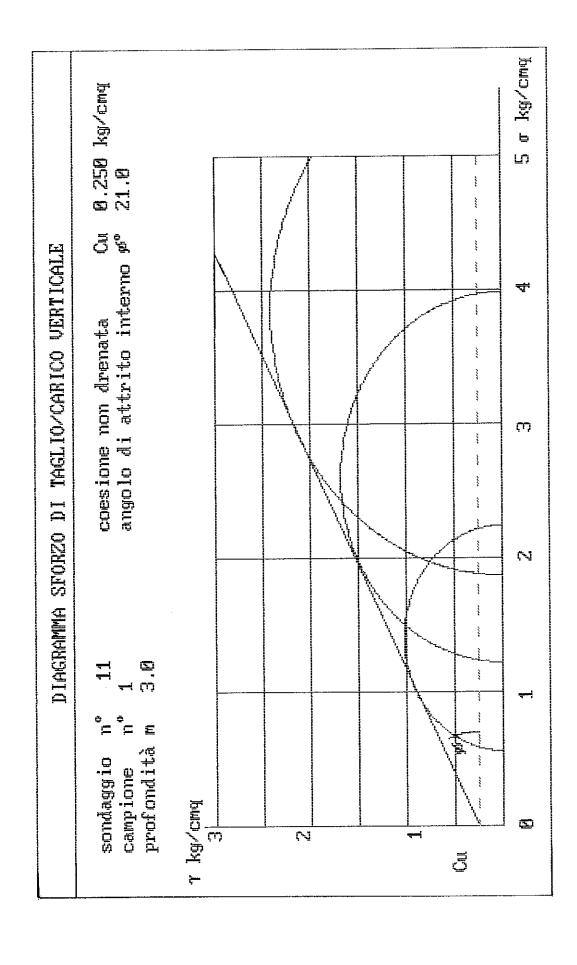
n° 11

sondaggio n° 11
campione n° 1
tipo di campione indisturbato
profondità di prelievo m 3.0

2 - Condizioni di prova

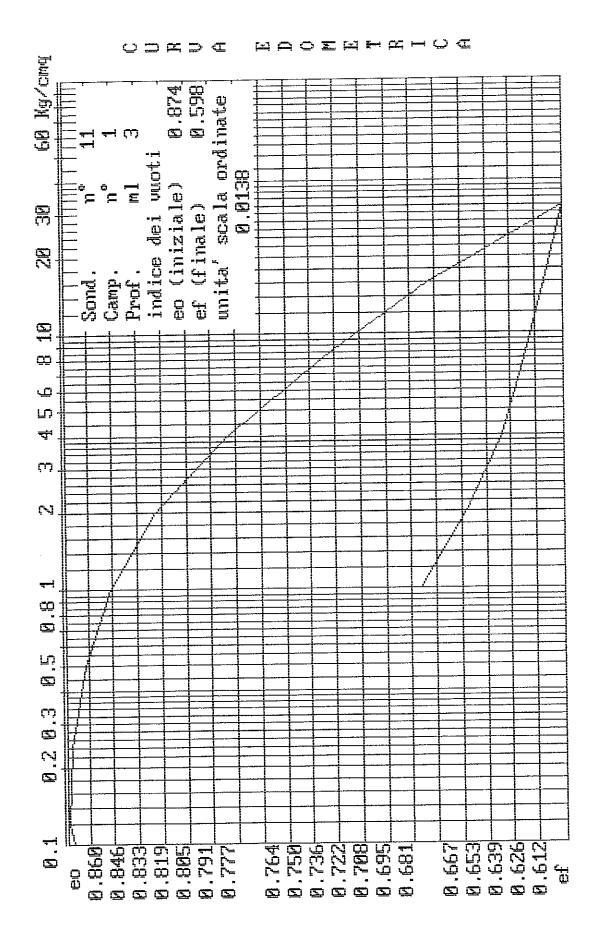
legenda


```
P numero del provino
Øi sezione del provino in mm
H altezza del provino in mm
St tempo di consolidazione in ore
SH cedimento del provino in mm
o pressione verticale in kg/cmq
v velocità di deformazione in ore
t tempo di sollecitazione in ore
deformazione trasversale in %
t deformazione tangenziale in mm
```


```
: 1° carico : 2° carico : 3° carico : rottura : : P : \in : \tau :
```

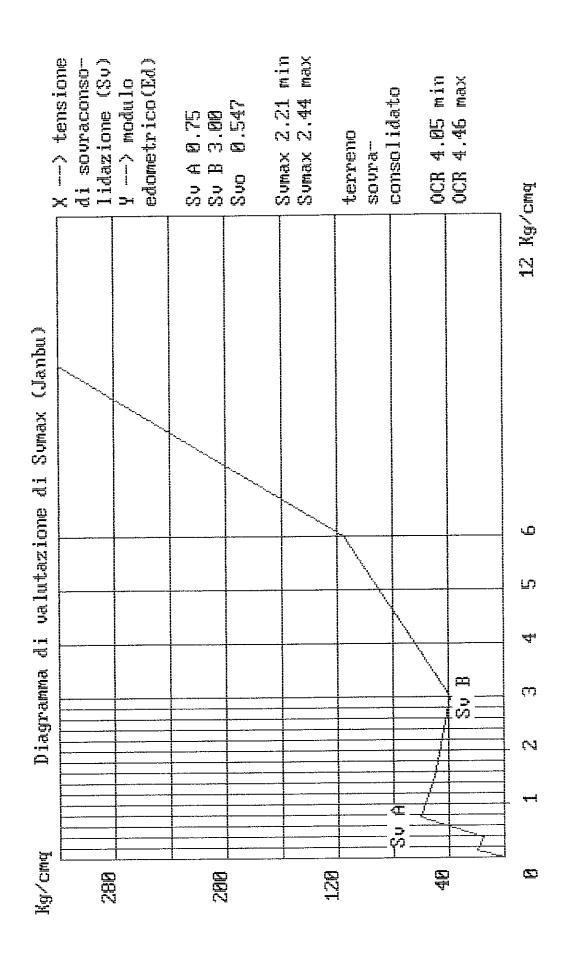
3 - Risultati

a) coesione non drenata b) angolo di attrito interno


Cu 0.250 kg/cmq ø 21.0 gradi

C.	ALCOLO DEI PARAMETI	RI DI COMPRESSIBILITA'	
	dati ger	nerali	
	Amministrazione Co Azienda Elia Bellizzi (SA)	omunale	
- sondaggio - campione - profondità		n° 11 n° 1 m 3	
 altezza del pro- diametro del pri- indice dei vuot indice dei vuot indice dei vuot 	ovino i del campione i iniziale		Ho mm 19 f mm 50 e 0.878 eo 0.874 ef 0.598
70 40 40 40 40 40 40 40 س من	dati stru	mentali	
1 e g e	n d a		
 incrementi di c accorciamenti d accorciamenti p indice dei vuot 	el provino ercentuali del pro	vino	dS kg dH mm e% e
ds	dH	e%	e
1 - Fase di compr	essione		
0.125 0.250 0.500 1.000 2.000 4.000 8.000 16.000 32.000	0.163 0.289 0.614 0.773 1.151 2.134 2.796 3.101 3.761	0.858 1.521 3.232 4.068 6.058 11.232 14.716 16.321 19.795	0.858 0.845 0.813 0.798 0.760 0.664 0.598 0.568
2 - Fase di scari	со		
32.000 16.000 8.000 4.000 2.000	3.761 3.433 3.412 3.227 3.003 2.231	19.795 18.068 17.958 16.984 15.805 11.742	0.598 0.726 0.568 0.503 0.656 0.683

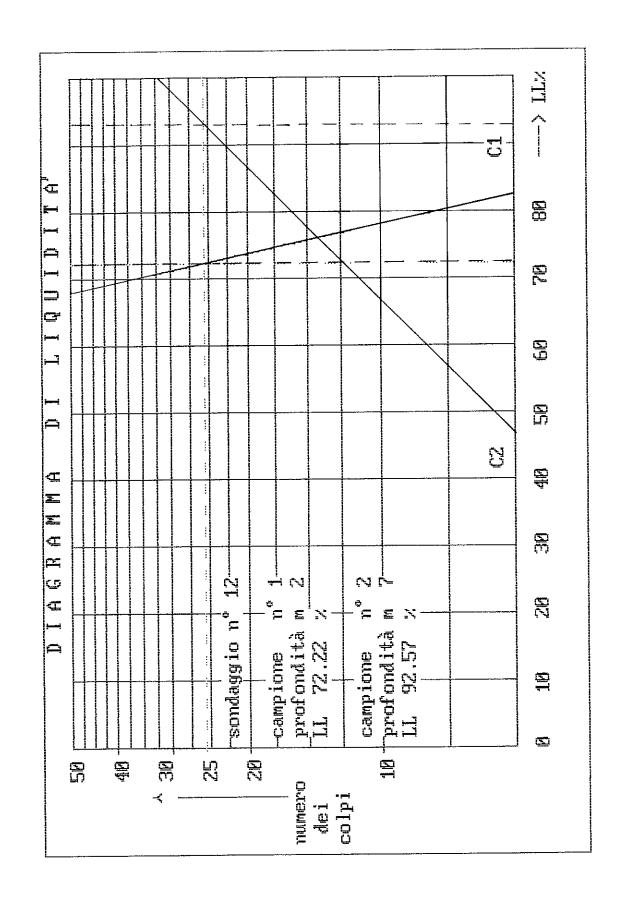
	dati dalla curva	edometrica	
indice dei vuotpressione corripressione corri	i inizio tratto retti spondente in er spondente in ef	lineo er sr sf	kg 0.781 kg 4.000 kg 32.000
n a r a m e	tri di co	mpressibil	i t a'
1 - Tratto rettil * Indice di * Rapporto d	ineo della curva compressione i compressione	Cc Cr	0.203 0.108
2 - Tratto inizia * Indice di * Rapporto d	le della curva ricompressione i ricompressione	Cq Rr	0.063 0.034
	rico della curva rigonfiamento li rigonfiamento	Cs Rr	0.140 0.075
i n d	ici di co	mpressibi	i t a'
l e g e			
incrementi di cIndice di compCoefficiente dModulo di comp		c a	dS kg av cmq/kg mv cmq/kg Ed kg/cmq
dS	av	M V	Εd
0.125 0.250 0.500 1.000 2.000 4.000 8.000	0.09942 0.12822 0.03136 0.03728 0.04848 0.01632 0.00376 0.00407	0.05305 0.06842 0.01674 0.01989 0.02587 0.00871 0.00201	18.849 14.615 59.749 50.265 38.657 114.804 498.360 460.606

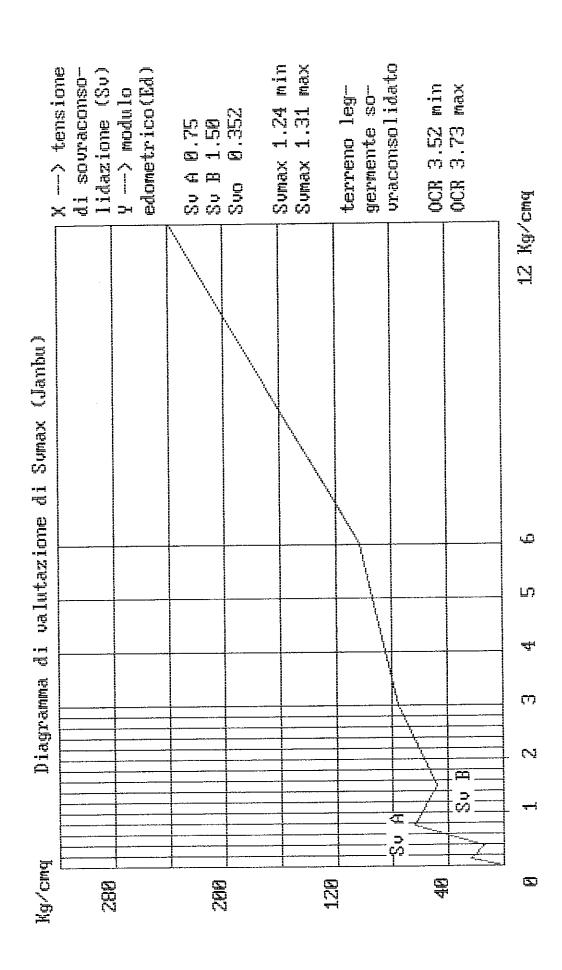


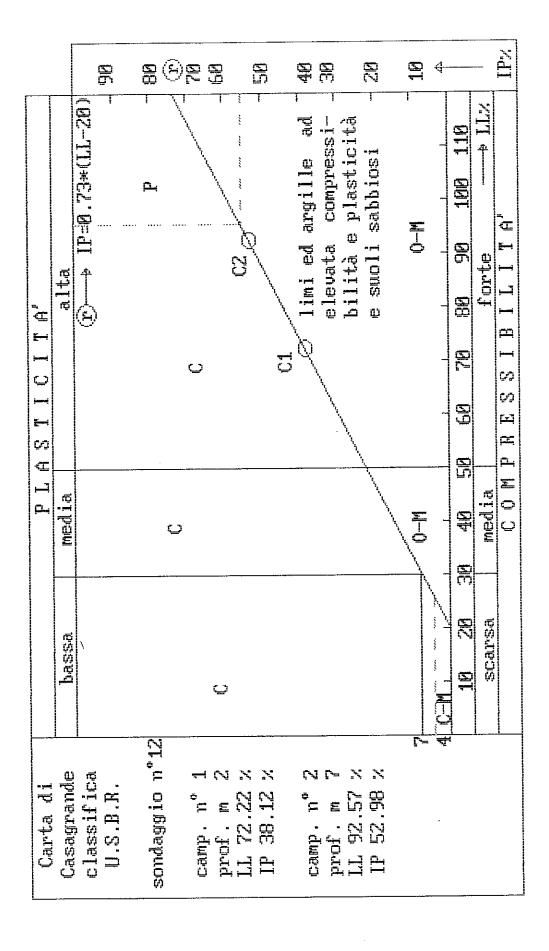
GRADO DI CONSOLIDAZIONE

- valori dei moduli di compressibilità edometrica per:

```
18.85 kg/cmq
                  \delta s = 0.125 \text{ kg}
                                    ---> Ed
                                  --> Ed
---> Ed
---> Ed
---> Ed
---> Ed
                                                          14.62
                                                                  kg/cmq
                  \delta s = 0.250 \text{ kg}
                                                          59.75
                                                                 kg/cmq
                  \delta s = 0.500 \text{ kg}
                                                         50.27
                                                                 kg/cmq
                  \delta s = 1.000 \text{ kg}
                                                         38.66 kg/cmg
                  \delta s = 2.000 \text{ kg}
                  \delta s = 4.000 \text{ kg}
                                                       114.80 kg/cmq
                                                         498.36 kg/cmq
                  \delta s = 8.000 \text{ kg}
                                                           3.00 m
                                              D
- profondità di verifica
                                                           1.822 t/mc
                                             Га
- peso unità di volume
                                                           0.547 kg/cmq
- tensione litostatica in D
                                              αVO
                                                           0.75 \, \text{kg/cmq}
- tensione di consolidazione (min)
                                             σva
                                              σvb
                                                           3.00 \text{ kg/cmq}
- tensione di consolidazione (max)
- tensione di sovraconsolidazione (min) ovmin
                                                                  kg/cmq
                                                           2.21
- tensione di sovraconsolidazione (max) ovmax
                                                           2.44 kg/cmq
                                                           4.05
                                              OCR
- grado di consolidazione (min)
                                                           4.46
                                              OCR
- grado di consolidazione (max)
                                                            4.25
- grado di consolidazione medio
                                              OCR
```


terreno sovraconsolidato



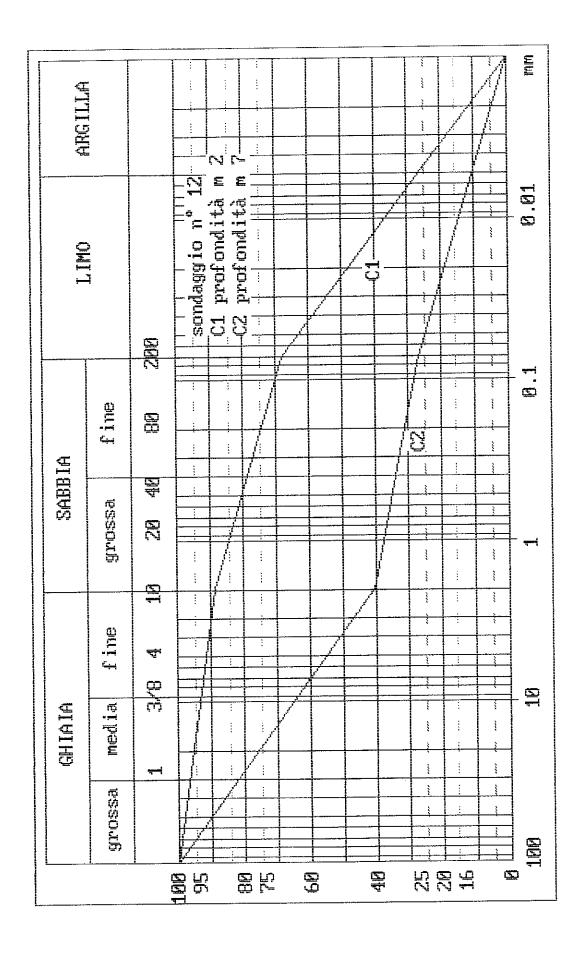

FONDLTN	SPESSORT	STRATIGE		% CAROTAGGIO	Noolpt	Camplone	DESCRIZIONE
⊕•.SLDM (60)		X	H20	8 4 6 8	SPI	DIK	coltre di alterazione superficiale
1.5 68.5)	1,5					2	argillo-terrosa aerala
		XXXXX XXXXX XXXXX					ilmo eabbloso eaturo
	ى ا				3.4 647		
4.5 66.6)	,						
:							
	5.3		7.2			7 (R)	ghiele în metrice limo-eabbiose în tercelete de orizzonti ergillosi
					14 21 26 14 21 26		
9.8							
ью.2)					:		
	4.3				11.2		angille gnigle esture
					1		
4.2		2.40:				-	
			4				
					16.5		
							ghiala in matrice limo-sabbiosa
	7.8		9				• ,
			4				
	4.5 66.5)	3. SLDM 1.5 1.5 58.5) 3. 4.5 66.6) 4.3	5.3 5.3 5.3 5.3 5.3 5.3 5.3 5.3 5.3 5.3	3 3 4.5 56.5) 3 3 4.3 4.3 4.3 4.3 4.3 4.3	5-8.50H STATION H20	9.8 50.2) 4.3 4.2 4.3 4.3 4.3	9.5.00 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5

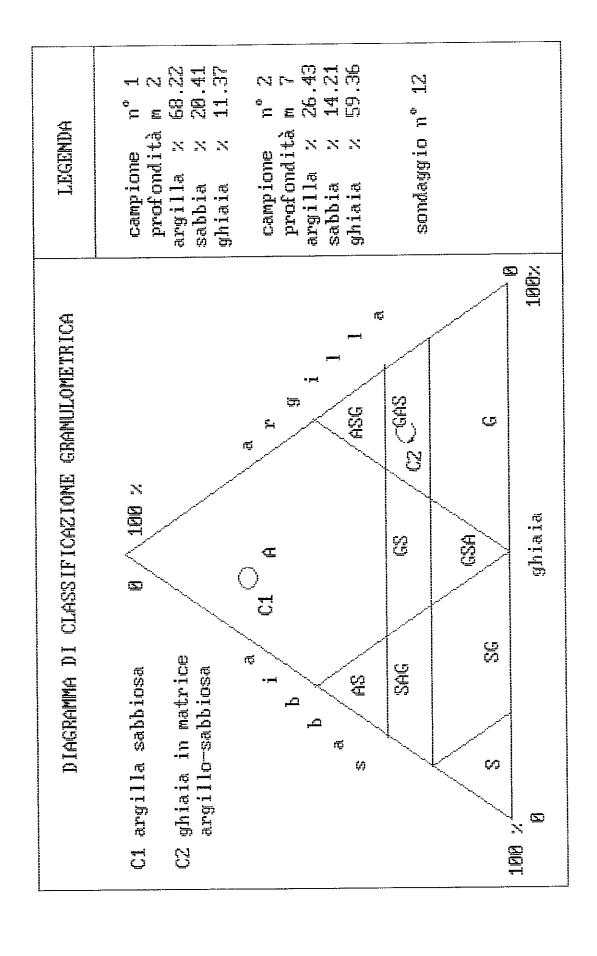
```
SCHEDA DI ANALISI GEOTECNICA
dati generali
                        Bellizzi (SA)
- Comune
                        Via Caserta
- Località
- Committente
                        Amministrazione Comunale
- Punto di indagine
                    n° 12
                    n° 1
- Campione
- Profondità di prelievo m 2
                       indisturbato
- Tipo di campione
                 indici fisici
                                              Ga t/mc
                                                       1.758
- Peso unita' di volume
                                                      2.766
                                              Gr t/mc
- Peso specifico dei grani
                                                      1.237
                                              @d t/mc
- Densita' secca
- Peso di volume saturo
                                                     1.790
                                              Gs t/mc
                                              G* t/mc
                                                      0.790
- Peso di volume sommerso
                                                      1.236
- Indice dei vuoti
                                              e
                                                      55,277
                                              n
- Porosita'
                                                  % 33.277
% 44.685
                                              Wn
- Contenuto in acqua allo stato naturale
                                              Sr
                                                   % 96.831
- Grado di saturazione
                                                      0.028
                                              Şa
- Grado di aereazione
             limiti di Atterberg
a) Condizioni di prova
                                11
                                      21
                                            38
  - numero delle cadute
                           gr 46.42
gr 38.09
                                           44.28 21.37 22.72
  - peso lordo campione umido
- peso lordo campione secco
                                      37,58
                                            35.94 17.52 18.90
                                38.09
                                      26.37
                                                      3.82
                                            8.34 3.85
                                8.33
                                      11.21
  - peso acqua
                             gr
                                27.65
                                      14.23
                                            24.13 16.24
                                                      18.26
                            gr
  - peso tara recipiente
                                            11.81 1.28 0.64
                                      12.14
                             gr
                                10.44
  - peso netto secco
                                            70.62 300.78 596.88
                                      92.34
                                79.79
  - contenuto in acqua
b) Risultati
                                                       72.22
                         LL
  - Limite liquido
  - Limite plastico
                                                       34.10
                         LΡ
                         Ιþ
                                                       38.12
  - Indice di plasticita'
  - Indice di consistenza
                                                        0.72
                         ΙC
                                                        0.28
  - Indice di liquidita'
```

```
SCHEDA DI ANALISI GEOTECNICA
dati generali
                       Bellizzi (SA)
- Comune
                       Via Caserta
- Località
- Committente
                     Amministrazione Comunale
- Punto di indagine n° 12
- Campione n° 2
- Campione
- Profondità di prelievo m 7
- Tipo di campione rimaneggiato
                indici fisici
                                             Ga t/mc
                                                     1.844
- Peso unita' di volume
                                             Gr t/mc
                                                     2.798
- Peso specifico dei grani
                                             6d t/mc 2.066
- Densita' secca
                                             Gs t/mc 2.328
- Peso di volume saturo
                                             G' t/mc 1.328
- Peso di volume sommerso
                                                     0.354
- Indice dei vuoti
                                                 % 26.145
                                             n
- Porosita'
                                                 % 12.652
                                            Win
- Contenuto in acqua allo stato naturale
                                                 % 49.906
                                            Sr
- Grado di saturazione
                                                     0.436
                                             Sa
- Grado di aereazione
            limiti di Atterberg
a) Condizioni di prova
                                     12
                                          16
                               10
  - numero delle cadute
  peso lordo campione umido gr 44.36peso lordo campione secco gr 40.24
                                     35.25 43.21 18.42 19.06
                                          37.22 17.32 17.95
                                40.24
                                     29.41
                                          5.99 1.10 1.11
                                     5.84
                            gr
                               4.12
  - peso acqua
                                                16.24
                                                      17.14
                                     13.13
                                           25.11
                                28.13
                           gr
  - peso tara recipiente
                                           12.11 1.08 0.81
                               12.11
                                     16.28
  - peso netto secco
                           g r
                                          49.46 101.85 137.04
                                     35.87
                                34.02
  - contenuto in acqua
                            કૃ
b) Risultati
                                                      92.57
                        L L
  - Limite liquido
                                                      39.59
                        LP %
   - Limite plastico
                                                      52.98
                         ΙP
  - Indice di plasticita
                                                      1.51
   - Indice di consistenza
                         ΙC
                                                      -0.51
   - Indice di liquidita'
                         IL.
```


L'elaborazione della curva granulometrica e' stata eseguita in aderenza alla teoria di Folk e Ward

legenda


- quantita' percentuale di terreno passante al setaccio - % passante
- diametro dei grani - d (mm)
- logaritmo negátivo in base 2 di d(mm) - D
- frazione granulometrica significativa - Mz
- deviazione dal diametro medio - \$\$
- tendenza della curva a disperdersi da un lato rispetto a Mz - Sk
- scostamento dalla distribuzione gaussiana - Ks
- variazione significativa rispetto al diametro efficace d10 - Uu
- gradazione de l'assortimento granulometrico - Cc


*	d	D	d	D	to the property that the first to the
5 10 16	0.001 0.002 0.003	9.460 9.055 8.506	0.002 0.005 0.014	8.822 7.661 6.190	
25 30	0.005 0.007	7.742 7.254	0.050	4.328	
30 50	0.007	7.254 5.393	0.181	2.466 ~1.957 ~2.838	
60 75 84	0.044 0.202 0.977	4.503 2.308 0.034	7.151 19.315 34.725	-4.272 -5.118	
95	16.121	-4.011		-6.175	

INDICI GRANULOMETRICI

1 - composizione percentuale del campione:

	- limo-argilla sabbia ghiaia	000 000	68.220 20.410 11.370	
2	- diametro medio	Μz	4.644	-0.295
3	- classazione	Ss	-4.159	-5.099
4	- asimmetria	Sk	0.331	-0.439
5	- curtosis	Кs	1.016	0.715
6	- coeff. di uniformita	Uu	23.457	%1447.571
7	- coeff. di curvatura	Сс	0.517	0.927

1 - Generalità

Committente Comune Località

Amministrazione Comunale Bellizzi (SA) Via Caserta

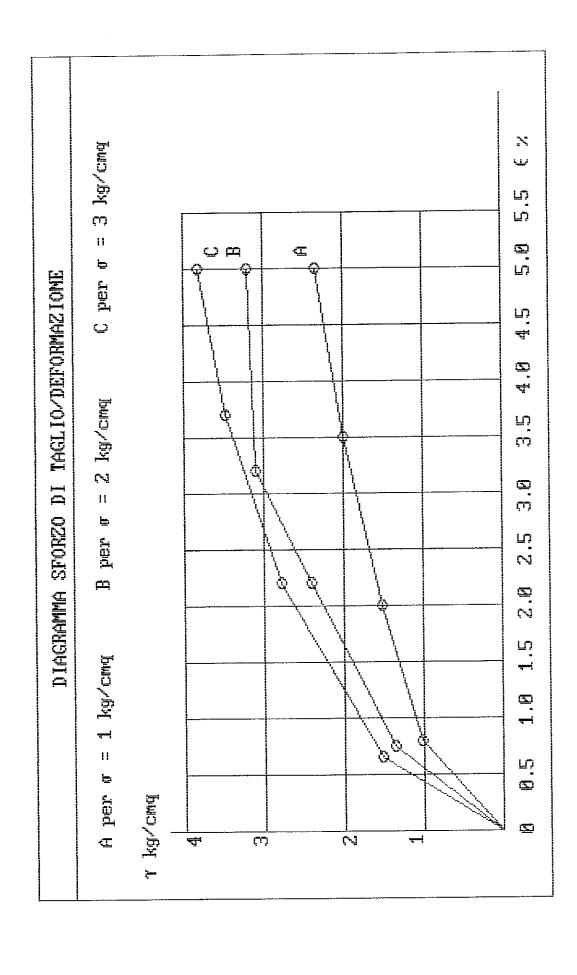
sondaggio campione tipo di campione profondità di prelievo m 2.0

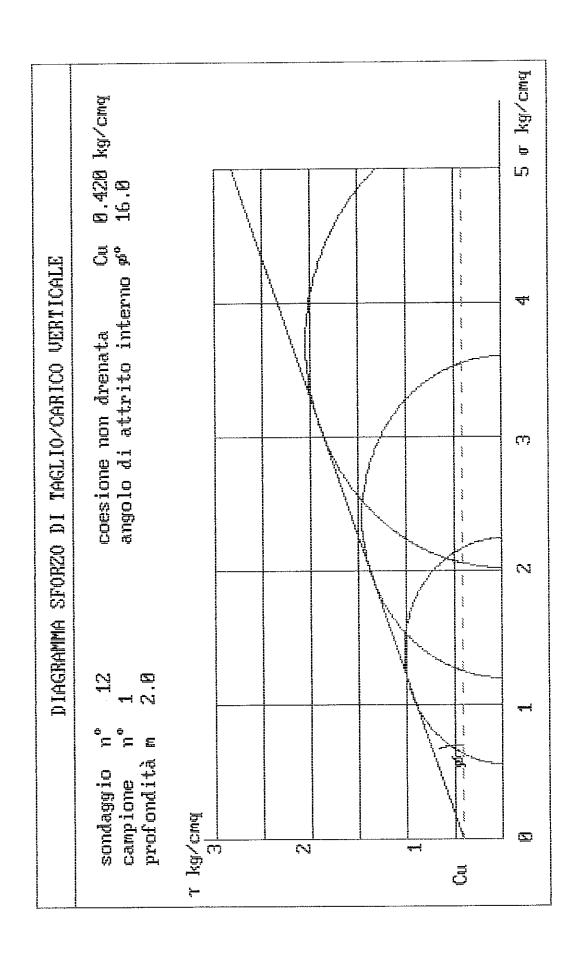
n° 12 n° 1 indisturbato

2 - Condizioni di prova

legenda

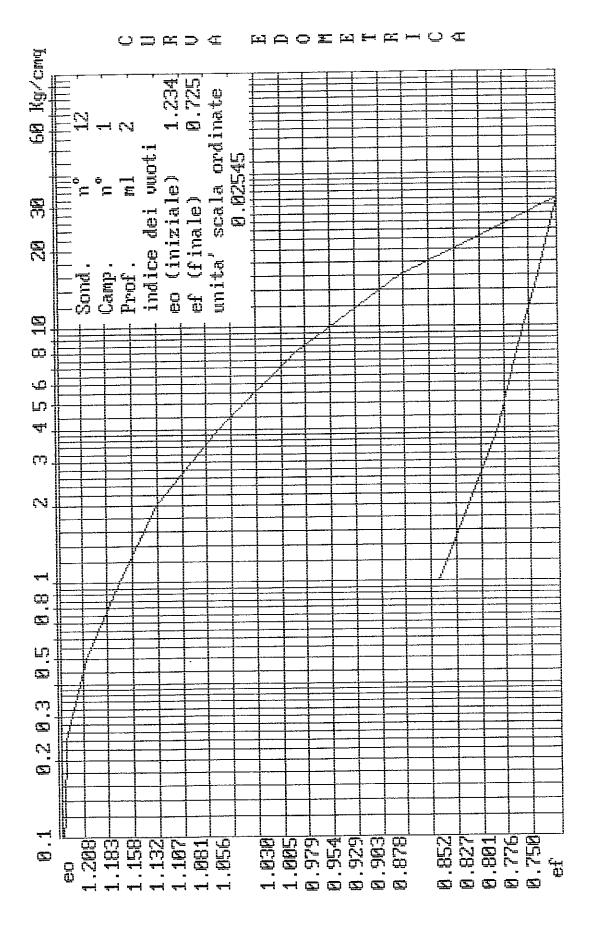
```
numero del provino
     sezione del provino in mm
altezza del provino in mm
tempo di consolidazione in ore
cedimento del provino in mm
pressione verticale in kg/cmq
δt
δН
     velocità di deformazione in mm/min
     tempo di sollecitazione in ore
     deformazione trasversale in %
     deformazione tangenziale in mm
```


```
: dîmens. : fase di : fase di : iniziali: consolidamento : rottura :
 : P : Øi : Η : δt : δh : σ : ν : t : σ :
: 1 : 60 : 20 : 18 : 1.102 : 1 : 0.008 : 4.00 : 1 :
: 2 : 60 : 20 : 18 : 1.836 : 2 : 0.008 : 4.00 : 2 :
: 3 : 60 : 20 : 18 : 2.413 : 3 : 0.008 : 4.00 : 3 :
```


```
: 1° carico : 2° carico : 3° carico : rottura :
: 1 : 0.80 : 1.03 : 2.00 : 1.52 : 3.50 : 2.00 : 5.00 : 2.35 : 2 : 0.75 : 1.36 : 2.20 : 2.41 : 3.20 : 3.11 : 5.00 : 3.21 :
: 3 : 0.65 : 1.52 : 2.20 : 2.78 : 3.70 : 3.48 : 5.00 : 3.82 :
```

3 - Risultati

a) coesione non drenata b) angolo di attrito interno


Cu 0.420 kg/cmq ø 16.0 gradi

	ITA		
- Committente - Località - Comune	Amministrazione Cor Via Caserta Bellizzi (SA)	nunale	
- sondaggio - campione - profondità		n° 1 n° 1 m 2	
 altezza del pro diametro del pr indice dei vuot indice dei vuot indice dei vuot 	ovino i del campione i iniziale		Ho mm 19 f mm 50 e 1.236 eo 1.234 ef 0.725
سه مده سه	dati strum	entali	
l e g e	n d a		
 incrementi di c accorciamenti d accorciamenti p indice dei vuot 	el provino ercentuali del prov	ino	dS kg dH mm e% e
dS	44	e %	e e
1 - Fase di compr			
0.125 0.250 0.500 1.000 2.000 4.000 8.000 16.000 32.000	0.222 0.324 0.684 0.835 1.235 1.746 2.487 3.125 3.869	1.168 1.705 3.600 4.395 6.500 9.189 13.089 16.447 20.363	1.208 1.196 1.154 1.136 1.089 1.029 0.942 0.867 0.725
2 - Fase di scari	ico		
32.000 16.000 8.000 4.000 2.000 1.000	3.869 3.755 3.567 3.364 3.121 2.745	20.363 19.763 18.774 17.705 16.426 14.447	0.725 0.982 0.867 0.779 0.821 0.855

	dati dalla curva	a edometrica	
indice dei vuopressione corrpressione corr	ti inizio tratto reti ispondente in er ispondente in ef	tilineo er sr sf	kg 1.133 kg 2.000 kg 32.000
param	etri di c	ompressibil	i t a'
* Indice di	lineo della curva compressione di compressione	C c C r	0.339 0.152
	ale della curva ricompressione di ricompressione	Cq Rr	0.083 0.037
* Indice di	arico della curva rigonfiamento di rigonfiamento	Cs Rr	0.211 0.095
		ompressibil	lita'
l e g e - incrementi di - Indice di comp - Coefficiente e	carico pressibilita' di compressibilita'		dS kg av cmq/kg mv cmq/kg Ed kg/cmq
. منه بعد	oressibilita' edometr	, was now has the new man that has the new man for the new man had the the new man.	Ed
dS	av	m v	
0.125 0.250 0.500 1.000 2.000 4.000 8.000	0.09594 0.16931 0.03551 0.04703 0.03004 0.02178 0.00938 0.00547	0.04295 0.07579 0.01589 0.02105 0.01345 0.00975 0.00420 0.00245	23.284 13.194 62.914 47.500 74.364 102.564 238.245 408.602

GRADO DI CONSOLIDAZIONE

-- -- >

Εd

kg/cmq

kg/cmq

23.28

1.31

- valori dei moduli di compressibilità edometrica per:

 $\delta s = 0.125 \text{ kg}$

- tensione di sovraconsolidazione (max) ovmax

```
13.19
                                            Εď
                                                                 kg/cmq
                  \delta s = 0.250 \text{ kg}
                                    -- -- >
                                                        62.91
                                                                 kg/cmq
                                    --->
                                           Еd
                  \delta s = 0.500 \text{ kg}
                                  --> Ed
---> Ed
---> Ed
---> Ed
                                                        47.50
                                                                 kg/cmq
                  \delta s = 1.000 \text{ kg}
                                                        74.36
                                                                 kg/cmq
                  \delta s = 2.000 \text{ kg}
                                                        102.56
                                                                 kg/cmq
                  \delta s = 4.000 \text{ kg}
                                                        238.25
                                                                 kg/cmq
                  δs = 8.000 kg
                                                          2.00 m
- profondità di verifica
                                             D
                                                          1.758 t/mc
                                             Га
- peso unità di volume
                                                          0.352 kg/cmq
- tensione litostatica in D
                                             σVO
- tensione di consolidazione (min)
                                                        0.75
                                                                 kg/cmq
                                           σva
                                             σvb
                                                          1.50
                                                                 kg/cmq
- tensione di consolidazione (max)
                                                         1.24 \, \text{kg/cmq}
- tensione di sovraconsolidazione (min) ovmin
```

- grado di consolidazione (min) OCR 3.52 - grado di consolidazione (max) OCR 3.73 - grado di consolidazione medio OCR 3.63

terreno leggermente sovraconsolidato

SETTORE C

Committents

Ministero delle Infrastrutture - Concessione Settore A e C Decreto nº 4951 del 04/06/2010

D.P.R. 246/93 - Circolare LL.PP. nº 349/STC del 16/12/99

TO COMPANY THE STATE OF THE STA

Accettazione: 0109 - 2011 dei 13-06-2011 Decre Protocolio: 174 - 2011 dei 17-06-2011 D.P.R. 246/93 - Ci

Pagina

Sandagnic

Tipo Carotaggio Profendita Raggiosta

Continuo -30,50 m£

1 di 1 Or Giuseppe Troisi S1 Continuo Località Continue 10-11/05/ 391 Bellizzi (SA) Demolizione e Ricostruzione Fabbricato Via Trieste Porter Den. Hann Test | accordin Descraisse Queea %Caretaggio Ekala R.Q.D. Kgirang Kgirana Limo argilloso di colore marmine bruno con inclusi carbonatici di forma sub -14-16-22 arrotondata con diametri max pari a 1.00 -2.00 PC 2.00 cm (nei primi 3.00 mt) e nell'ordine di %C=80 2,00 - 4,00 cm (fino a circa 6,00 mt). Nella parte alta sono presenti pochi decimetri di terreno grossolano di riporto. 12-13-9 Newspaper (Frederical) 5.50 PC 6.30 Limo argilloso di colore marrone di discreta 8-12-15 1.40504(10) - buona piasticità, la presenza di piccoli 8,50 PC %C=80 itici e nel complesso scarsa, aumentendo , , , , , soitanto a fine livello 7-12-14 11.00 PC 12.50 Argilla limosa di colore marrone - grigia con buona plasticità inglobante significative RS/Rif. concentrazioni di litici carbonatici con 16.80 PC 🚧 🥱 🤲 diameiro max pari a 2,00 - 3,00 cm. ta concentrazione dei citati litici risulta elevata tra le guote 15.00 - 17.00 mt. Tra le quote 19.00 - 25.00 mt i litiri sono generalmente prevalenti con la matrice argiliosa limosa dilavata dalle fasi di carataggie. Dai 25.00 mt fino a 30.50 mt la matrice %C=-60 argiliosa limosa prevale ed i litto sono scarsi lasciando posto ad una sabbia 🐣 🤏 carbonatica medio grossa; dall'avanzamento del carobere si evince una buona consistenza complessiva 30.50

Caropieros Selverto Caldio Se-Catroleroy, Needacine, it Altrianeogiatico. Il o Altrianeogiatico da SPP Provincial Discharia Assenta, Pol-Busha Chinana Carobaggia, Carofilmo

Tecnico incaricato

Réspérisablie di sⁱtu

/ Directore (bidom)

Ministero delle Infrastrutture - Concessione Settore A e C Decreto nº 4951 del 04/06/2010

D.P.R. 246/93 - Circolare LL.PP. n° 349/STC del 16/12/99

Identificazione campione DOC PP 07.10/21 ED01/10

SETTORE "A"

Accettazione: Data:

525-2011

24-05-2011

Prof. Terre: 675-2011

Data: 03-06-2011

Richiedente:

Dr. Geol. Giuseppe Troisi

Proprietario:

De Metri Gerardo

Impresa:

Confiere:

Gee Campania S.r.i,

Demolizione e Ricostruzione Fabbricato Via

Trieste - BELLIZZI (SA)

IDENTIFICAZIONE DEL TERRENO (ASTM D 2488 -00)

	CA	RATTERI IDENTIFICATIVI	
Sondaggio ST	Campione C1	Protondità mt da P.C.	5,00-5,50
Massa (Kg)	4,44	Diametro (cm)	7,777
Condizione del campione estruso	Buone	Lunghezza (cm)	50
Classe di qualità	Q5	Tipo Campione	Indisturbata
	PROVE D	I CONSISTENZA SPEDITIVE	
Pocket Penetrometer Test (kg/cma)	Kg/cm2	Pocket Vane test (Kg/cmq)	" " * Kg/cm2

CARATTERISTICHE VISIVE

Limo argilloso di colore marrone, allo stato compatto.

COLORE (Tavola di Munsell)

7.5YR 4/4 BROWN

FOTO DEL CAMPIONE

Foto non richiesta

Tecnico sperimento

Prospezioni Laboratorio Prove del Geom. Domenico Rocco.

& C. S.n.c.

Sede Legale:

Via Cutinelli, 121/C (Parco del Ciliegio) - 84081 BARONISSI (SA) Tel. 0825 523971 / 523550 - Fax 0825 523767

Casella Postale n. 47 - C.F. Iscrizione R.I. SA n. 0186410 064 7 R.E.A. SA n. 232841 - P. IVA: 0288910 065 3

info@plpgroup.it - www.plpgroup.it

Laboratorio: Loc. Paccone, 15 Svincolo aut. SA-RC 84029-SICIGNAMO DEGLI ALBURNI (SA) aci. 0828 97825 - Fax 0828 978197 / 978118 **`Cell-335-1011485 - 335 6587734 - 333 194**703ਜ

Numero Verde 800 04 05 06

Ministero delle Infrastrutture – Concessione Settore A e C Decreto n° 4951 del 04/06/2010

D.P.R. 246/93 - Circolare LL.PP. n° 349/STC del 16/12/99

Grandezze indici

Raccomandazioni UNI 10013 - ASTM D 2937 - ASTM D2216

DOC PP 7,10/11 - ED 01/05

Settore "A"

del

Accettazione n.

525-2011

24-05-2011

Prof.Terre: 675-2011

Data: 03-06-2011

Richiedente:

Dr. Geol. Giuseppe Troisl

Proprietario:

De Metri Gerardo

Cantiere:

Demolizione e Ricostruzione Fabbricato Via Trieste -

BELLIZZI (SA)

impresa:

Geo Campania S.r.l.

Identificativo campione

Sondaggio	Campione	Profondità mt pc	Tipo campione
51	C1	5,00-5,50	Indisturbato
Data prelievo:	***		
Classe di Qualità:	Q5	-	

Espressione dei risultati

	Grandezze rilevate in laboratorio	Valori	Unita di	Valori medi	
	Grandezze merate in abordiono	1° 2°	misura	vdion medi	
Gn	Peso volume naturale (ASTM D 2216)	1,78 1,77	gr/cmc	1,77	
G	Peso specifico dei granuli (UNI 10013)	2,70 2,72	gr/cmc	2,71	
W	Contenuto di acqua naturale (ASTM 2937)	37,05 37.71	%	37,38	

Grandezze derivate analiticamente

Gd	Peso volume secco	1,28	1,29	gr/cmc	1,29
P	Porosità	52,44	52,62	%	52,53
e	Indice dei vuoti	1,10	1,11		1,11
S	Grado di saturazione	90,74	92,35	%	91,55
Gs	Peso volume saturo	1,81	1,81	gr/cmc	1,81
G,	Peso volume sommerso	0.81	0,81	gr/cmc	0,81

Tecnico Spellmentatore Dr.ssa Geolf Marta DANGELO

PLP Prospezioni Laboratorio Prove del Geom. Domenico Rocco & C. Sin.c. Sede Legale

Via Cutinelli, 121/C (Parco del Ciliegio) - 84081 BARONISI (SA) Tel. 0825 523971 / 523550 - Fax 0825 523767

Casella Postale n. 47 - C.F. Iscrizione R.I. SA n. 018640.056.7 R.E.A. SA n. 232841 - P. IVA: 0288910.065.3

info@plpgroup.it - www.plpgroup.it

Laboratorio:

A.Sc. Paccone, 15 - Svincolo aut. SA-RC - 34029 SICIGNANO DEGLI ALBURNI (SA) - 76. 0828 978225 - Fax 0828 978197 / 978118 - Cell. 335 1011485 - 335 6587734 - 333 1947036 Numero Verde 800 04 05 06

qric#105 MARTONE

AZIENDA CON SISTEMA DI QUALITÀ CERTIFICATO SECONDO LA NORMA UNI EN ISO 9001:00

Ministero delle Infrastrutture - Concessione Settore A e C Decreto nº 4951 del 04/06/2010

D.P.R. 246/93 - Circolare LL.PP. n° 349/STC del 16/12/99

675-2011

03.06.2011

Prof.Terre:

Data:

Prova di Taglio diretto

DOC PP 7.10/6 - ED 01/05

Settore "A"

Accellazione n. 525-2017

24.05.2011

Richledente:

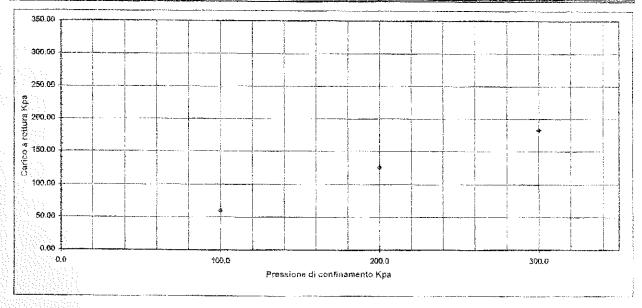
Dr. Geol. Giuseppe Troisi

Proprietario:

De Mehi Gerardo

Conflere:

Demolizione e ricostruzione di un fabbricatom - Via Trieste


BELLIZZI (SA)

SONDAGGIO	CAMPIONE	PROFONDITA'	TIPO CAMPIONE	CLASSE QUALITA'
51	C1	5.00-5.50	Indisturbato	Q5

TIPO DI PROVA	Consolidara drenata
VELOCITA' DI PROVA	10 Micron

Parametri meccanici a rottura

	Pressione di consolid.	Unita di misura	Consolidazione (ore)	Pressione di rottura	Unita di misura
Provinc 1	100.0	KPa	24.00	60.37	KPa
Provino 2	200.0	KPa	24.00	125.92	KPa
Provina 3	300.0	KPa	24.00	182.97	KPa

Tecnico Sperimenfotote

Prospezioni Laboratorio Prove. del Geom. Domenico Rocco & C. Sina

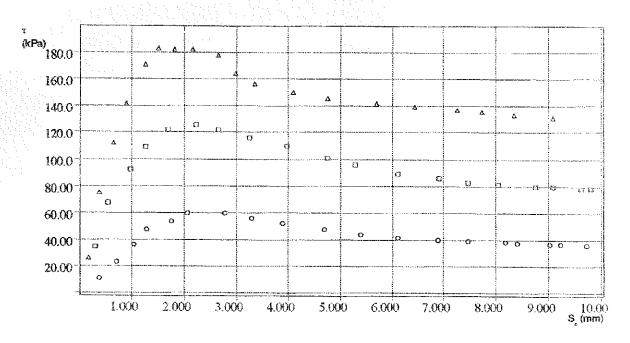
Sede Legale:

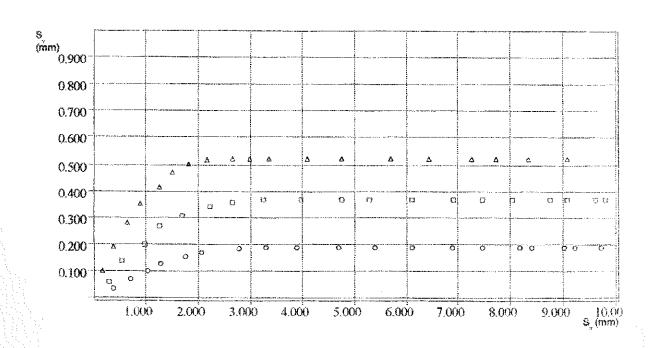
Via Cutinelli, 121/C (Parco del Ciliegio) - 84081 BARONISS (84) Tel: 9825 523971 / 523550 - Fax 9825 523767 Casella Postale n. 47 - C.F. Iscrizione R.I. SA n. 0186410 064 7

R.E.A. SA n. 232841 - P. IVA: 0288910 065 3 info@pipgroup.it - www.pipgroup.it

Laboratorio: Loc Raccone, 15 - Svincolo aut. SA-RC 84029 SICIGNANO DEGLI ALBURNI (SA) Tel-5828 978225 - Fax 0828 978197 / 978119 Cell. 335 1011485 - 335 6587734 - 333 1947038

Numero Verde 800 04 05 96


3.6.6


re laboraldio Geolecnico Gulfrancesco MARTONE

AZIENDA CON SISTEMA DI QUALITÀ CERTIFICATO SECONDO LA NORMA UNI EN ISO 9001:00

" TD02351 TD02352 TD02353

Sperimenagrage Dr. ssa Geol, Myrid O' ANGELO D. Direffore Laboratorio Geotecnica Dr. Ceptur. MARTONE

Ministero delle Infrastrutture Concessione Settore A e

Decreto nº 4951 del 04/06/2010

D.P.R. 246/93 - Circolare LL.PP. n° 349/STC del 16/12/99

Dati cliente

Cliente Indirizzo	: DR. GEOL. GIUSEPPE TROISI : /CANTIERE: DEMOLIZIONE E RICOSTRUZIONE FABBRICATO
Sito	: BELLIZZI (SA)
Sondaggio	SI
Campione	: C1
Profonditá	\$ 5.00-5.50

Caratteristiche fisiche

Data prelievo : Sezione provino : Altezza iniziale : Altezza finale : NumTara 1 : Peso Tara 1 : Tara+p.umido inizial: Num Tara 2 : Peso Tara 2 : Tara+p.umido finale : Tara+p.provino secco: Peso specifico grani:	36.000 cm2 30.500 mm 30.190 mm 1 102.90 g 296.30 g 2 102.90 g 294.57 g 243.00 g 2.710 g/cm3	Peso di volume finale : Peso di volume secco : Contenuto d'acqua iniz. : Contenuto d'acqua finale : Saturazione iniziale : Saturazione finale : Indice dei vuoti iniziali:	1.763 g/cm3 1.275 g/cm3 38.051 %	Yn Ya W _c W _s So So O _r Yar
--	---	--	--	---

Risultati fase finale di consolidazione

Altezza fin. provino:	30.190	TOM
	100.00	kPa
Valore di t100 :	0.e+00	min

Risultati fase di rottura

	[~			
	THAX	ě	60.36 kPa	
į	Sh	•	2.76 mm	

Sperinfehltaflore Dr. ssa Geolywarja 18 AMEELD Diretto aboratoria Geotecnica
Dr. Geol. II MARTONE

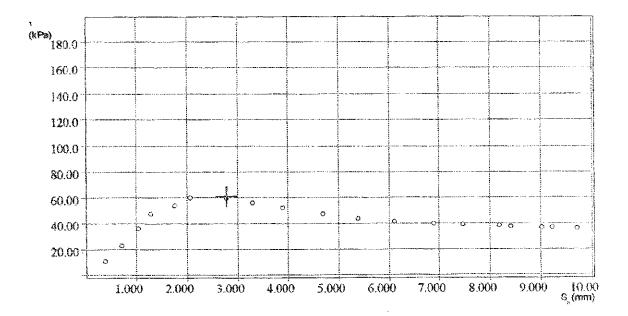
Ministero delle Infrastrutture - Concessione Settore A e C

Decreto nº 4951 del 04/06/2010

Dati cliente

Cliente : DR. GEOL. GIUSEPPE TROISI

Indirizzo : /CANTIERE: DEMOLIZIONE E RICOSTRUZIONE FABBRICATO


Sito : BELLIZZI (SA)

Sondaggio : S1 Campione : C1

Profonditá : 5.00-5.50

Dati relativi al passo 01

σ _{ν ±} dt	dH	Sh	F	τ	đt	dН	Sh	E	τ
min	mm	mm	N	KPa	min	min	mra	М	KPa
0.000	-0.000	-0.024	-0,522	-0.145	180.000	0.190	4.690	173.10	48.083
18.000	0.034	0.381	39.000	10.833	198.000	0.190	5.377	158.08	43.913
36,000	0.070	0.693	84.331	23.425	216.000	0.190	6.096	150.90	41.918
54,000	0.100	1.036	131.97	36.660	234.000	0.190	6.876	145.03	40.287
72.000	0.129	1.236	171.79	47.720	252.000	0.190	7.470	141.11	39.199
90.000	0.153	1.755	195,29	54.248	270.000	0.190	8,188	138.50	38,479
108.000	0.171	2.0€7	217.12	60.313	288.000	0.190	8.407	136.54	37.930
126,000	0.185	2.785	216.44	60.124	306.000	0.190	9.031	132.63	36.842
144.000	0,190	3.285	203.12	56.423	324.000	0.190	9.219	132.63	36.843
162,000	0.190	3.878	188.76	52,434	342,000	0.190	9,718	131.97	36.666

Risultati elaborazione fase di rottura

Altezza iniziale : 30.50 mm : 60.36 kPa Sh : 2.76 mm

Sperimentalore Dr. sso Geolymonbut ANGELO S.n.c. Dieftore Laboratofia Geotecnica Dr. Geol. MARTONE

Ministero delle Infrastrutture - Concessione Settore A e C

Decreto nº 4951 del 04/06/2010

D.P.R. 246/93 - Circolare LL.PP, n° 349/STC del 16/12/99

Dati cliente

Cliente : DR. GEOL. GIUSEPPE TROISI : /CANTIERE: DEMOLIZIONE E RICOSTRUZIONE FABBRICATO

Site : BELLIZZI (SA) : SI Campione : SI C1 Profonditá : 5.00-5.50

Caratteristiche fisiche

and the same of th				
Data prelievo : Sezione provino : Altezza iniziale : Altezza finale : NumTara 1 : Peso Tara 1 : Tara+p.umido inizial: Num Tara 2 : Peso Tara 2 : Tara+p.umido finale : Fara+p.provino secco: Peso specifico grani:	2 102.90 g 289.30 g	Contenuto d'acqua iniz. : Contenuto d'acqua finale : Saturazione iniziale : Saturazione finale : Indice dei vuoti iniziali: Indice dei vuoti finali : Peso vol. Socce fi	1.751 g/cm3 % 1.786 g/cm3 % 1.266 g/cm3 % 38.253 % W 34.011 % W 91.001 % S 39.204 % S 1.139 e 1.033 e 1.332 g/cm3 % 44	

Risultati fase finale di consolidazione

Ditores Co			
Altezza fin. pro	Vino	20 000	
Carico applicato			mra
Thrace appracate		200 00	kPa
Valore di t100	-	~ OO * OO	xra :
TT LIUU	2	0.6+00	min
	***************************************		RICII

Risultati fase di rottura

Topax		
(Ch		125.92 kpa
1011	-	A A4
		$\angle \cdot \angle 1$ mm

Sperimentatore Dr. ssa Geolf Marid Diancelo Direffore Laboratorio/Geotecnica
Dr. Geol, F/MARTONE

Ministero delle Infrastrutture - Concessione Settore A e C

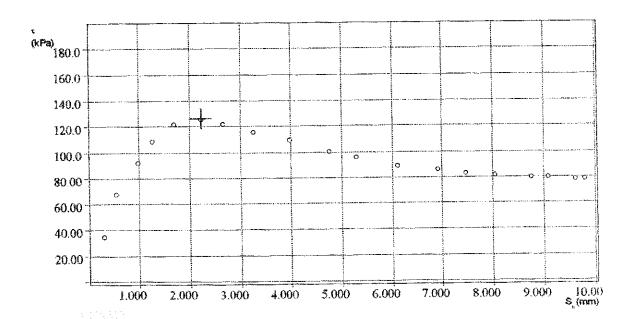
Decreto nº 4951 del 04/06/2010

Properior Liberatorie

Dati cliente

Cliente : DR. GEOL. GIUSEPPE TROISI

Indirizzo : /CANTIERE: DEMOLIZIONE E RICOSTRUZIONE FABBRICATO


sito : BELLIZZI (SA)

Sondaggio : S1 Campione : C1

Profonditá : 5.00-5.50

Dati relativi al passo 01

1	00.00 kP dH	Sh	F		dt	dH	Sh	F	τ
àt			N	t KPa	min	mm	mia	М	KPa
<u>min</u>	mm	non	3/1	REA	101.73		- AREACT		
0.000	-0.000	-0.024	-1.140	-0.316	180.000	0.368	4.753	362.30	100.63
18.000	0.060	0.287	125.70	34.919	198.000	0.368	5.284	345.19	95.888
36.000	0.141	0.537	244.00	67.779	216.000	0.368	6.096	319.54	88.762
54.000	0.198	0.974	330.51	91.810	234.000	0.368	6.908	308.14	85,599
72.000	0.268	1.255	392.01	108.89	252.000	0.368	7.470	299.59	83.21
90.000	0.306	1.692	439.38	122.05	270.000	0.368	8.032	292.46	81.24
108,000	0.341	2.223	452,11	125.58	288.000	0.368	8.750	286.76	79,65
126.000	0.358	2.660	437.96	121.65	306.000	0.368	9.094	286.76	79.65
144.000	0.368	3.254	416.73	115.75	324,000	0.368	9,625	282.48	78.45
162.000	0.368	3,972	393.65	109.34	342,000	0.368	9,812	281,06	78.07

Risultati elaborazione fase di rottura

Alterza iniziale : 30.50 mm : 125.92 kPa Sh : 2.21 mm

Sperinder Holofe/ Dr. ssa Geol, Maria R. KNGELD Direttore Laboratorio Geotecnica

Ministero delle infrastrutture - Consessione Sentore A e C

Decreto nº 4951 del 04/06/2010

Dati cliente

Cliente : DR. GEOL. GIUSEPPE TROISI
Indirizzo : /CANTIERE: DEMOLIZIONE E RICOSTRUZIONE FABBRICATO

Sito : BELLIZZI (SA)
Sondaggio : S1
Campione : C1
Profonditá : 5.00-5.50

Caratteristiche fisiche

Data prelievo :							
Sezione provino :	36.000	cm2	Peso di volume iniziale	1	1.742	g/cm3	Yn
Altezza iniziale :	30.500	mm.	Peso di volume finale	ī	1.793	g/cm3	Yr
Altezza finale :	28.590	mu	Peso di volume secco	r	1.250	g/cm3	Υa
NumTara 1 :	1		Contenuto d'acqua iniz.	;	39.356	8	$W_{\rm o}$
Peso Tara 1	102.90	g	Contenuto d'acqua finale	:	34.447	2 6	$W_{\mathfrak{p}}$
Tara+p.umido inizial:	294.25	g	Saturazione iniziale	:	91.388	윰	$S_{\mathfrak{s}}$
Num Tara 2 :	2		Saturazione finale	:	90.515	용	S_x
Peso Tara 2 :	102.90	g	Indice dei vuoti inizial:	i. :	1.167		€,
Tara+p.umido finale :	287.51	q	Indice dei vuoti finali	7	1.031		e,
Tara+p.provino secco:	240.21	q	Peso vol. secco finale	*	1.334	g/cm3	γυς
Peso specifico grani:		-				-	100
}		J					
(

Risultati fase finale di consolidazione

Altezza fin. provinc	, :	28.590	Inm
Carico applicato	t	300.00	kPa
Valore di t100	:	0.e+00	min

Risultati fase di rottura

Turn		182.97 kPa
VMax		
l Sh	*	1.49 mm

Sperimentatore/ Dr. ssa Geol. Maria 10: AMSELO)

Dr. Geol/F.

Ministero delle infrastrutture - Concessione Settore A e C

e Laboratøria

MTONE

Decreto n° 4951 del 04/06/2010

Dati cliente

Cliente

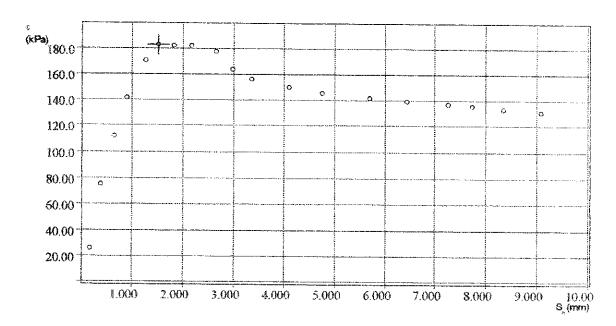
: DR. GEOL. GIUSEPPE TROISI Indirizzo

: /CANTIERE: DEMOLIZIONE E RICOSTRUZIONE FABBRICATO

Sito

: BELLIZZI (SA)

Sondaggio Campione


: S1 : Ci

Profonditá

: 5.00-5.50

Dati relativi al passo 01

dt	ан	Sh	F	T	dt	dн	Sh	F	τ
min	mm	mm	N	KPa	min	mm	mm	N	KPa
0.000	-0.001	-0.024	-1.629	~0.452	180.000	0.520	2,973	588.99	163.60
18.000	0.099	0.162	94.092	26.136	198.000	0.520	3.347	562.51	156.25
36.000	0.191	0.381	271.27	75.355	216.000	0.520	4.097	540.11	150.03
54.000	0.281	0.630	403.66	112.12	234.000	0.520	4.753	523.82	145.50
72.000	0.352	0.880	509.56	141.54	252.000	0.520	5.690	509.56	141.54
90.000	0.414	1.255	615.89	171.08	270.000	0.520	6.439	501.41	139.28
108.000	0.472	1.505	659.11	183.08	288.000	0.520	7.251	493.27	137.02
126.000	0.503	1.817	657.06	182.51	306.000	0.520	7.720	487.16	135.32
144.000	0.516	2.161	657.06	182.51	324.000	0.520	8.344	479.01	133.06
162.000	0.520	2.660	639.91	177.75	342.000	0.520	9.094	470.86	130.79

Risultati elaborazione fase di rottura

Altezza iniziale : 30.50 mm : 182.97 kPa : 1.49 mm

Sperimentatore/
Dr. ssa Geol, Maria B'ANGELO

bre Labordfof METONE

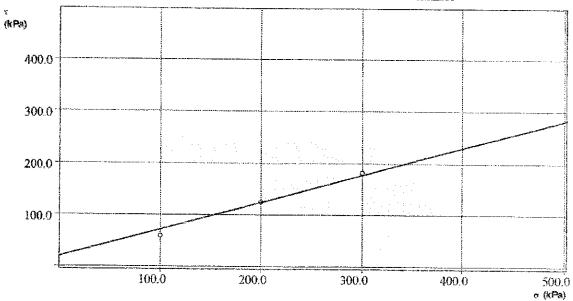
Ministero delle Infrastrutture - Concessione Settore A e C

Decreto nº 4951 del 04/06/2010

GRUPPO DI PROVE DI TAGLIO DIRETTO 1/2

Dati cliente

Cliente : DR. GEOL. GIUSEPPE TROISI
Indirizzo : /CANTIERE: DEMOLIZIONE E RICOSTRUZIONE FABBRICATO


Sito : BELLIZZI (SA)
Sondaggio : S1
Campione : C1
Profonditá : 5.00-5.50

Caratteristiche dei provini

	···							
Campione	H_{α}	A _n	٧.	*4	W.	W.	S.	S
	mm	cm2	g/cm3	g/cm3	ું ક	- F	- 9	¥ .
C1	30.500	36.000	1.761	1.275	38.051	36.816	91.751	90.512
C1	30,500	36.000	1.751	1.266	38.253	34.011	91.001	89,204
CI	30.500	36.000	1.742	1,250	39.356	34.447	91,388	90.515

Caratteristiche fasi consolidazione e rottura

Campione	G	H	Δt	τε	S,	A
ļ	kPa_	min	ore	k₽a	mm	um/min
C1	100.00	30.190	10.000	60.368	2.767	10.000
C1	200.00	28.989	10.000	125.92	2.212	10.000
C1	300.00	28.590	10.000	182.97	1.493	10.000

Risultati		
o 2	7.80 Gradi	
<u>c' ; :</u>	17.61 kPa	ļ

Ministero delle Infrastrutture - Concessione Settore A e C Decreto nº 4951 del 04/06/2010

D.P.R. 246/93 - Circolare LL.PP. n° 349/STC del 16/12/99

Prova Edometrica

(PP7.10/8 ED01/05)

SETTORE "A"

Richiedente:

Proprietario:

Dr. Geol. Giuseppe Troisi

Protocollo: 675-2011

Data:

03.06.2011

Accettazione: 525-2011

De Metri Gerardo

Data:

24.05.2011

Cantiere:

Demolizione e ricostruzione di un tabbricato

Via Trieste - BELLIZZI (SA)

Identificativo campione

Sondaggio	Campione	Profondità	Classe di qualità
SI	C1	5.00-5.50	Q5

Caratteristiche geometriche del campione

	Diametro (mm)	Alfezza (mm)	Sezione (cmq)
	(mm)	(mm)	(cmq)
Provino 1	50.50	20.00	20.02

Parametri indici iniziali

	Peso volume	indice dei vuoti
Provino 1	(gr/cmc) 1.77	1.11

Riferimento BS 1337

Tecnico sperimentajórs Dr. ssa Geol. Mada DA

Prospezioni Laboratorio Prove del Geom. Domenico Rocco & C. S.n.c.

Via Cutinelli, 121/C (Parco del Ciliegio) - 84081 BARONISSI (SA) Tel. 0825 523971 / 523550 - Fax 0825 523767 Casella Postale n. 47 - C.F. Iscrizione R.I. SA n. 0486410 064-7

R.E.A. SA n. 232841 - P. IVA: 0288910 065 3 info@pipgroup.it - www.pipgroup.it

Direttore Labora Dr Geol, Francesco

Laboratorio: Loc. Paccone, 15 - Svincolo aut, SA-RC 84029 SICIGNANO DEGLI ALBURNI (SA) Tel. 0828 978225 - Fax 0828 978197 / 978110 Cell. 335 1011485 - 335 6587734 - 333 1947038 Numero Verde 800 04 05 06

AZIENDA CON SISTEMA DI QUALITÀ CERTIFICATO SECONDO LA NORMA UNI EN ISO 9001:00

PROVA EDOMETRICA A GRADINI DI CARICO

Dati cliente

Cliente	: DR. GEOL GIUSEPPE TROISI
Indirizzo	: /CANTIERE: DEMOLIZIONE E RICOSTRUZIONE FABBRICATO
Sito	: BELLIZZI (SA)
Sondaggio	: S1
Campione	: C1
Profonditá	: 5.00-5.50

Caratteristiche fisiche

1				
Data prelievo	*			
Sezione provino	20.0	00 cm2	Peso di volume iniziale : 1.759 g/cm3	
·	20.0	OO mm	Peso di volume finale : 1.809 g/cm3	Ýπ
	18.7	00 mm	Peso di volume secco : 1.266 q/cm3	γr
NumTara i	: 1		Contenuto d'acqua iniz. : 38.961 %	Ya Wa
Peso Tara 1	58.6	50 g	10	W.
Tara+p.umido inizial	129.	02 g		
Num Tara 2	: 2		Saturazione finale : 91.109 %	S,
Peso Tara 2	29.3	60 g	Indice dei vuoti iniziali: 1.140	e,
Tara+p.umido finale :	97.0	50 <i>g</i>	Indice dei vuoti finali : 1.001	e,
Tara+p.provino secco:		00 g	Peso vol secco finalo . 1 354 m/	
Peso specifico grani:	2.7	10 g/cm3		Yar
		<u>.</u>		İ
			I because the second se	

Letture cedimenti in funzione del tempo

1		ediment	111	1 (11) 2, 7	.one	del ter	uzo_	η				· · · · · · · · · · · · · · · · · · ·			
Passo	1	25.000	kPa	Passo	2	50.000	kPa	Passo	3	100.00	kPa	Passo	4	200.00	kPa
*	dt /-	dН			dt	dH			dt	dH			dt	ਰਸ਼	
Ta.	ın	min		17	<u>lin .</u> .	mm		n n	in_	mm		n	un	man	
0. 0. 0. 0. 0. 1. 2. 4. 5. 6. 4. 2. 4. 17. 22. 49. 84. 159	883 833 033 .68	-0.000 0.003 0.004 0.007 0.008 0.011 0.013 0.016 0.018 0.024 0.033 0.040 0.065 0.098 0.133 0.148 0.175 0.191 0.198		0. 0. 0. 0. 0. 1. 2. 4. 6. 9. 17. 22. 49.	016 100 166 250 366 565 866 916 866 316 000 483 716 583 883 033 .68			0. 0. 0. 0. 0. 1. 2. 4. 5. 6. 9. 17.	016 100 166 250 366 566 850 266 916 8316 483 716 583 883 833	0.289 0.291 0.293 0.294 0.296 0.299 0.306 0.323 0.347 0.365 0.383 0.387 0.396 0.401 0.407 0.409		0. 0. 0. 0. 0. 1. 2. 4. 5.	016 100 166 250 366 566 850 266 916 883 166 483 716 883 883 903		
368 667 1149	.13	0.200 0.198 0.200			.25 .13	0.290 0.290):	368 667 114	.25 .13	0.409 0.409		368 667	. 25 . 13	0.590 0.590	
								114	:	0.409		114	9.6	0.590	

	Risultati	Risultati	Risultati
s : 1.000 %	a : 1.448 %	s : 2.045 %	s : 2.950 %
	e : 1.109	e : 1.096	e : 1.077
	Metodo: CASAGRANDE	Metodo: CASAGRANDE	Metodo: CASAGRANDE
Cv :0.00e+00cm2/s	Cv :0.00e+00cm2/s	Cv :0.00e+00cm2/s	Cv :0.00e+00cm2/s
Ca : 0.e+00 %	Ca : 0.e+00 %		Ca : 0.e+00 %
	M : 5.582 MPa	M : 8.377 MPa	M : 11.046 MPa
	K :0.00e+00 m/s	K :0.00e+00 m/s	K :0.00e+00 m/s

Sperintentature Dr. ssa Gegl. Murja D'ANGELO Directore Laboratorie/Zeotecnica Dr. Geol. fr/MARTONE

Ministero delle Infrastrutture Cancessione Settore A e C

PROVA EDOMETRICA A GRADINI DI CARICO

Dati cliente

Cliente : DR. GEOL GIUSEPPE TROISI Indirizzo

: /CANTIERE: DEMOLIZIONE E RICOSTRUZIONE FABBRICATO

: BELLIZZI (SA)

Sondaggio : S1 Campione : C1

Profonditá : 5.00-5.50

Caratteristiche fisiche

Letture cedimenti in funzione del tempo

	·	 					
Passo 5 dt	400.00 kPa	Passo 6	800.00 kPa	Passo 7	200.00 kPa	Passo 8 dt	25.000 kPa
min	mm	min	mm	min	mm		
	,	1	110112	MILL		min	rain
0.016	0.589	0.016	0.848	0.016	1.299	0.016	1.279
0.100	0.597	0.100	0.860	0.100	1.299	0,100	1.279
0.166	0.599	0.166	0.862	0.166	1.298	0.166	1,278
0.250	0.600	0.250	0.867	0.250	1.297	0.250	1.277
0.366	0.603	0.366	0.875	0.366	1.295	0.366	1,276
0.566	0.608	0.566	0.889	0.566	1.294	0.566	1.274
0.850	0.612	0.850	0.905	0.850	1.292	0.850	1,272
1.916	0.621	1.266	0.949	1.266	1.290	1.266	1.270
2.866	0.634	1.916	1.000	1.916	1.288	1.916	1.269
4.316	0.653	2.866	1.038	2.866	1.287	2,866	1.268
5.000	0.674	4.316	1.078	4.316	1.285	4.316	1.266
6.483	0.690	5.000	1.088	5.000	1.284	5.000	1.266
9.716	0.709	6.483	1.105	6.483	1.283	6.483	1.265
17.583	0.745	9.716	1.151	9.716	1.282	9.716	1.264
29.883	0.766	17.593	1.198	17.583	1.282	17.583	1.263
49.833	0.782	22.883	1.228	22.883	1.281	22.883	1.262
84.033	0.802	49.833	1.262	49.833	1.281	49.833	1.262
159.68	0.814	84.033	1.280	84.033	1.281	84.033	1.261
368.25	0.827	159.68	1.288	159.68	1.280	159.68	1.261
667.13	0.836	368.25	1.294	368.25	1.280	368.25	1.260
1149.6	0.843	667.13	1.299	667.13	1.280	667.13	1.260
		1149.6	1.297	1149.6	1.280	1149.6	1.260
Á		*					
Į.]					
l		4					

Risultatí Risultati Risultatí Risultati e : 4.211 % e : 1.050 s : 6.481 % e : 1.001 e: 6.400 % e: 1.003 e : 6.301 % e : 1.005 Metodo: CASAGRANDE Metodo: CASAGRANDE

Cv :0.00e+00cm2/s Cv :0.00e+00cm2/s Ca : 0.e+00 % Ca : 0.e+00 %

: 0.e+00 % Ca : 0.e+00 % : 15.855 MPa M : 17.621 MPa :0.00e+00 m/s K :0.00e+00 m/s M X

Sperimer/tatore Dr. ssa Geolf Maria 12 ANGELO

Directore Laboratore dectecnica Er. Geøl. F. MARTONE

Ministero delle Infrastrutture Concessione Settore A e C

Dati cliente

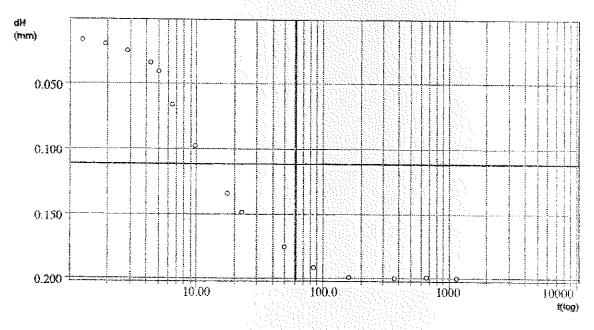
Cliente : DR. GEOL GIUSEPPE TROISI

Indirizzo : /CANTIERE: DEMOLIZIONE E RICOSTRUZIONE FABBRICATO

Sito

: BELLIZZI (SA)

Sondaggio Campione


: S1 : C1

Profonditá

: 5.00-5.50

Dati relativi al passo 01

. 25.000 kPa	and the second second
dt dH	dt dH dt dH
min mm	min mm min mm
0.016 -0.000	4.316 0.033 667.13 0.198
0.100 0.003	5.000 0.040 1149.6 0.200
0.166 0.004	6.483 0.065
0.250 0.007	9.716 0.098
0,366 0,008	17.583 0.133
0.566 0.011	22.883 0.148
0.850 0.013	49.833 0.175
1.266 0.016	84.033 0.191
1.916 0.018	159.68 0.198
2.866 0.024	368.25 0.200

Risultati elaborazione

Sperifications

Dr. ssa Geolymania of Aliceto

ABORATO

Direttore Laboratorio Geologicnica Dr. Geol. F. Mapri DNE

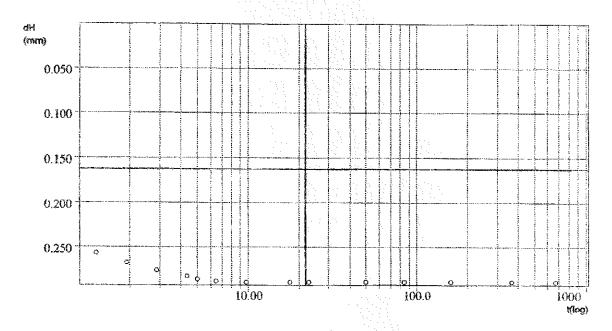
Ministero delle Infrastrutture - Concessione Settore A e C

Decreto nº 4951 del 94/06/2010

Dati cliente

Cliente : DR. GEOL GIUSEPPE TROISI

Indirizzo : /CANTIERE: DEMOLIZIONE E RICOSTRUZIONE FABBRICATO


Sito : BELLIZZI (SA)

Sondaggio : S1 Campione : C1

Profonditá : 5.00-5.50

Dati relativi al passo 02

dt dH	dt dH	dt	ďН
min mm	min mm	min	mn
0.016 0.199	4.316 0.283	667.13	0.290
0.100 0.201	5.000 0.286		
0.166 0.203	6.483 0.288		
0.250 0.207	9.716 0.290		
0.366 0.212	17.583 0,290		
0.566 0.223	22,833 0,290		
0.850 0.242	49.833 0.290		
1.266 0.256	84.033 0.290		
1.916 0.268	159.68 0.290		
2.866 0.276	368.25 0.290		

Risultati elaborazione

6 : 1.448 %
e : 1.109
Metodo: CASAGRANDE
Cv : 0.00e+00cm2/s
Ca : 0.e+00 %
M : 5.582 MPa
K : 0.00e+00 m/s

Sperimentatigle/) Dr. ssa Geol/Marik: 10: ANGERO Direttore Laboratorio Georgeonica Dr. Geol. F. MARMONE

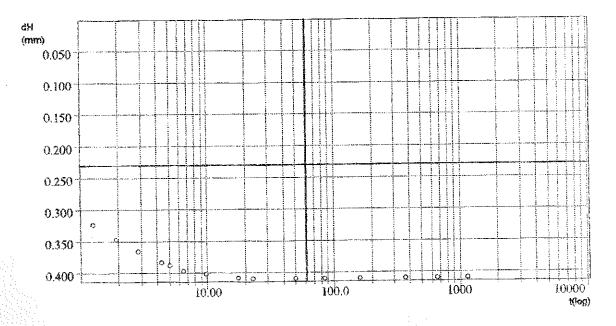
Ministero delle Infrastrutture - Concessione Settore A e C

Decreto nº 4951 del 04/06/2010

Dati cliente

Cliente : DR. GEOL GIUSEPPE TROISI

Indirizzo : /CANTIERE: DEMOLIZIONE E RICOSTRUZIONE FABBRICATO


Sito : BELLIZZI (SA)

Sondaggio : S1 Campione : C1

Profonditá : 5.00-5.50

Dati relativi al passo 03

100.00 kPa	dt	dH dt	dH
dt dH			mm
min mm	min	mm min	Huit
0.016 0.289	4.316 0.3	383 667.13	0.409
0.100 0.291	5.000 0.3	387 1149.6	0.409
0.166 0.293	6.483 0.3	396	
0.250 0.294	9.716 0.4	401	
0.366 0.296		407	
0.566 0.299		409	
0.850 0.306		409	
1.266 0.323	1 0 1 1 1 2 2 2	409	
1.916 0.347		409	
2.866 0.365	368.25 0.	409	

Risultati elaborazione

g ; 2.045 %
e : 1.096
Metodo: CASAGRANDE
Cv : 0.00e+00cm2/s
Ca ; D.e+00 %
M : 8.377 MPa
K : 0.00e+00 m/s

Sperimentatore Dr. ssa Geod. Matia DANGELO Directore Laboratorio Geoffecnico

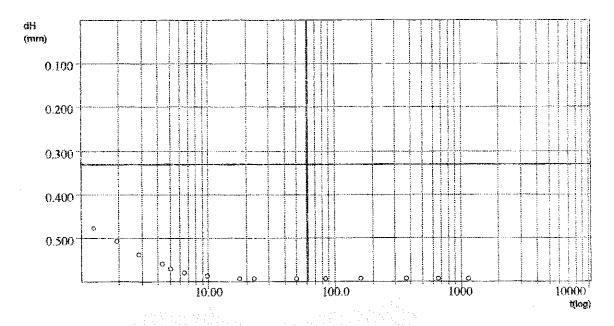
Ministero delle Infrastrutture - Concessione Settore A e C

Decreto nº 4951 del 04/06/2010

Dati cliente

Cliente : DR. GEOL GIUSEPPE TROISI

Indirizzo ; /CANTIERE: DEMOLIZIONE E RICOSTRUZIONE FABBRICATO


Sito : BELLIZZI (SA)

Sondaggio : S1 Campione : C1

Profonditá : 5.00-5.50

Dati relativi al passo 04

dt dH	dt	dH	dt	dH
min mm	min	mm	min	mm
0.016 0.409	4.316	0.555	667.13	0.590
0.100 0.413	5.000	0.568	1149.6	0.590
0.166 0.415	6.483	0.575		
0.250 0.417	9.716	0.582	1	
0.366 0.421	17.583	0.588		
0.566 0.429	22.883	0.590		
0.850 0.444	49.833	0.590		
1.265 0.477	84.033	0.590		
1.916 0.506	159.68	0.590		
2.866 0.534	368.25	0.590		

Risultati elaborazione

a : 2.950 %
e : 1.077

Metodo: CASAGRANDE
Cv : 0.00e+00cm2/s
Ca : 0.e+00 %
M : 11.046 MPa
K : 0.00e+00 m/s

Sperinlertglore Dr. ssa Geol Mario BLANGELO Diret

Direttore Laboratorio Geofecnica Dr. Geol/F. MARTUNE

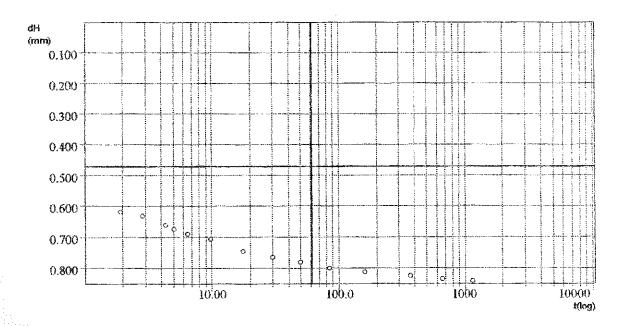
Ministero delle Infrastrutture - Concessione Settore A e C

Decreto nº 4951 del 04/06/2010

Dati cliente

Cliente : DR. GEOL GIUSEPPE TROISI

Indirizzo : /CANTIERE: DEMOLIZIONE E RICOSTRUZIONE FABBRICATO


Sito : BELLIZZI (SA)

Sondaggio : S1 Campione : C1

Profonditá : 5.00-5.50

Dati relativi al passo 05

at dH	dt	дH	dit	dн
rin mm	min_	mm	min	mm
0.016 0.589	5.000	0.674	1149.6	0.843
0.100 0.597	6.483	0.690	1	
0.166 0.599	9.716	0.708		
0.250 0.600	17.583	0.745		
0.366 0.603	29.883	0.766		
0.566 0.608	49.833	0,782		
0.850 0.612	84.033	0.802		
1.916 0.621	159.68	0.814		
2.866 0.634	368.25	0.827		
4.316 0.663	667.13	0.836		

Risultati elaborazione

2 : 4.211 %
6 : 1.050
Metodo: CASAGRANDE
Cv : 0.00e+00cm2/s
Ca : 0.e+00 %
M : 15.855 MPa
K : 0.00e+00 m/s

Sperimentatore Dr. ssa Geol Maria DIANGELO Directore Laboratorio (Ceptecnica Dr. Geor F. MANONE

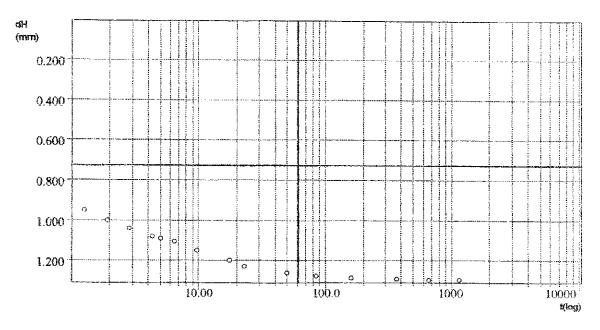
Ministero delle Infrastrutture - Concessione Settore A e C

Decreto nº 4951 del 04/06/2010

Dati cliente

Cliente : DR. GEOL GIUSEPPE TROISI

Indirizzo : /CANTIERE: DEMOLIZIONE E RICOSTRUZIONE FABBRICATO


Sito : BELLIZZ1 (SA)

Sondaggio : S1 Campione : C1

Profonditá : 5.00-5.50

Dati relativi al passo 06

dt dE	dt	dH	dt	dH
min mm	min	mm	min	mm
0.016 0.848	4.316	1.078	667.13	1.299
0.100 0.860	5.000	1.088	1149.6	1.297
0.166 0.862	6.483	1.105		
0.250 0.867	9.716	1.151		
0.366 0.875	17.583	1.198		
0.566 0.889	22.883	1,228		
0.850 0.905	49.833	1.262		
1.266 0.949	84.033	1.280		
1.916 1.000	159.68	1.288		
2.856 1.030	368.25	1.294		

Risultati elaborazione

\$: 6.451 %
e : 1.001
Metodo: CASAGRANDE
Cv : 0.00e+00cm2/s
Ca : 0.e+00 %
M : 17.621 MPa
K : 0.00e+00 m/s

Sperimentatore/ Dr. ssa Geoir Maria bishi SELO Dirett

Direttore Laboratorio Godiecnica Dr. Geol, F/MARIONE

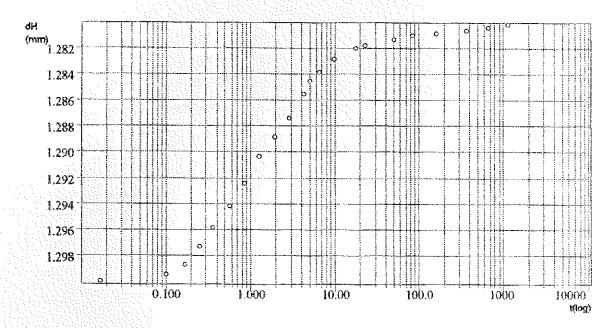
Ministero delle Infrastrutture – Concessione Settore A e C

Decreto nº 4951 del 04/06/2010

Dati cliente

Cliente : DR. GEOL GIUSEPPE TROISI

Indirizzo : /CANTIERE: DEMOLIZIONE E RICOSTRUZIONE FABBRICATO


Sito : BELLIZZI (SA)

Sondaggio : S1 Campione : C1

Profonditá : 5.00-5.50

Dati relativi al passo 07

dt. dH	dt dH	dt dH
min mm	min mm	min mm
0.016 1.299	4.316 1.285	667,13 1,280
0.100 1.299	5.000 1.284	1149.6 1.280
0.166 1.298	6.483 1.283	
0.250 1.297	9.716 1.282	
0.366 1.295	17.583 1.282	1
0.566 1.294	22.883 1.281	
0.850 1,292	49.833 1.281	
1.266 1.290	84.033 1.281	
1.916 1.288	159.68 1.280	
2.866 1.287	368.25 1.280	

Risultati elaborazione

s : 6.400 % e : 1.003

Sperimentatore

Dr. ssa Geod Maria D ANGELO

SOR OF SOR

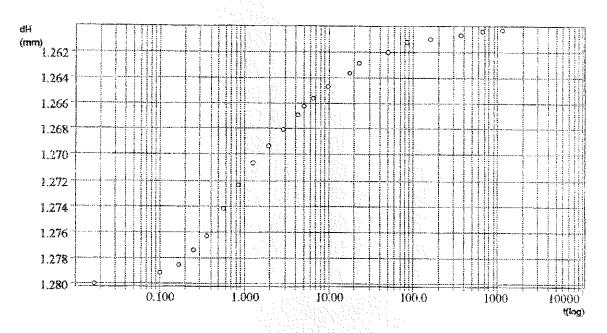
Direttore Laboratorio Georgeanica Dr. Geol, F. Mystione

Ministero delle Infrastrutture – Concessione Settore A e C

Decreto nº 4951 del 04/06/2010

Dati cliente

Cliente : DR. GEOL GIUSEPPE TROISI


Indirizzo : /CANTIERE: DEMOLIZIONE E RICOSTRUZIONE FABBRICATO

Sito : BELLIZZI (SA)

Sondaggio : S1 Campione : C1 Profonditá : 5.00-5.50

Dati relativi al passo 08

25.000 kPa dt dH	3.1	177	
	,	dH dt	dН
min mm	min n	min min	min
0.016 1.279	4.316 1.26	66 667,13	1.260
0.100 1.279	5.000 1.26	56 1149.6	1.260
0.166 1.278	6.483 1,26	55	
0.250 1.277	9.716 1.26	54	
0.366 1.276	17.583 1.26	63	
0.566 1.274	22.883 1.26	52	
0.850 1.272	49.833 1.26	52	
1.266 1.270	84.033 1.26	51	
1.916 1.269	159.68 1.26	51	
2.866 1.268	368.25 1.26	· ·	

Risultati elaborazione

s : 6.301 % e : 1.005

Spermentationed Dr. ssa Geol Marka & ANGELO Directore Laboratoria Segregatica Dr. Geol, F. MANYOVSE

Ministero delle Infrastrutture - Concessione Settore A e C

Decreto nº 4951 del 04/06/2010

PROVA EDOMETRICA 1/4

Dati cliente

Cliente : DR. GEOL GIUSEPPE TROISI

Indirizzo : /CANTIERE: DEMOLIZIONE E RICOSTRUZIONE FABBRICATO

Sito : BELLIZZI (SA)

Sondaggio : S1 Campione : C1

Profonditá : 5.00-5.50

Caratteristiche fisiche

NumTara 1 Peso Tara 1 Tara+p.umido inizial: Num Tara 2 Peso Tara 2 Tara+p.umido finale:	97.050 g	Peso di volume finale : Peso di volume secco : Contenuto d'acqua iniz. : Contenuto d'acqua finale : Saturazione iniziale : Saturazione finale : Indice dei vuoti iniziali : Indice dei vuoti finali :	92.569 % 91.109 % 1.140 1.001	Yr yr Wa Wr Sa Se e e e
Tara+p.umido finale : Tara+p.provino secco:	97.050 g			

Passo	kPa	6	0	M MPa	Cv cm2/s	K m/s		Metodo
01 02 03 04 05 06 07 08	25.000 50.000 100.00 200.00 400.00 200.00 25.000	1.000 1.448 2.045 2.950 4.211 6.481	1.096 1.077 1.050 1.001	5.582 8.377	cm2/s	m/s	8	

Sperimentatione Dr. ssa Geol, ManagolanicELO Direttore Laboratorio Gedin

Ministero delle Infrastrutture - Concessione Settore A e C

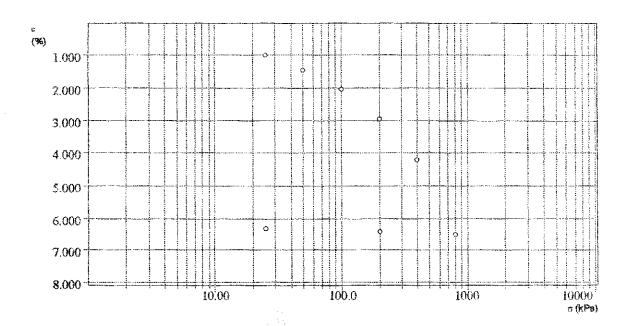
PROVA EDOMETRICA 2/4

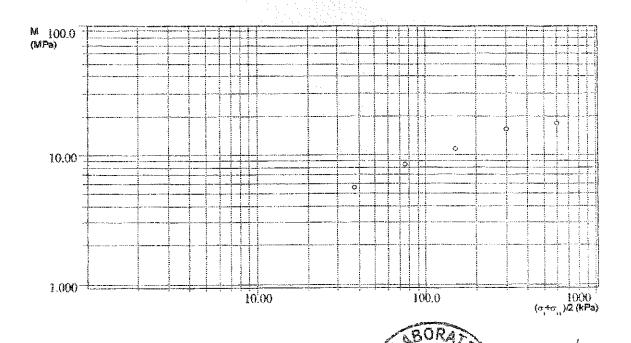
PLP Prospezioni

Dati cliente

Cliente Indirizzo : DR. GEOL GIUSEPPE TROISI

: /CANTIERE: DEMOLIZIONE E RICOSTRUZIONE FABBRICATO


Sito


: BELLIZZI (SA)

Sondaggio Campione : S1 : C1

Profondita

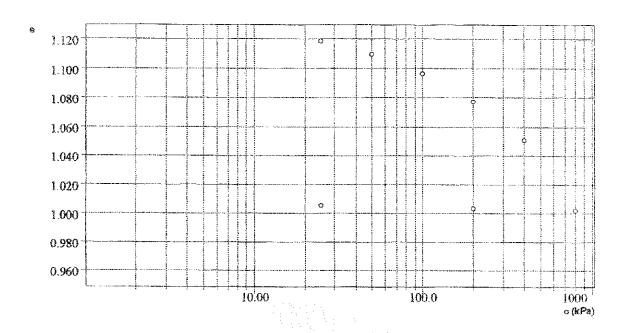
: 5.00-5.50

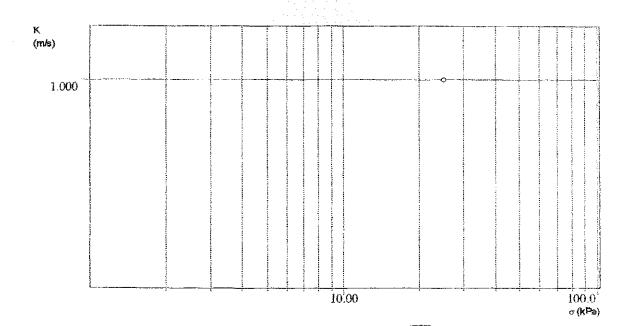
Sperifnerflafore Dr. ssa Geolf Mahard ANGELO Direttore Laboratorio Georganica Br. Geol. F. MAMONE

Ministero delle Infrastrutture - Concessione Settora de C

Decreto n' 4951 del 04) 651201 @

Dati cliente


Cliente : DR. GEOL GIUSEPPE TROISI


Indirizzo : /CANTIERE: DEMOLIZIONE E RICOSTRUZIONE FABBRICATO

Sito : BELLIZZI (SA)

Sondaggio : Sl Campione : C1

Profonditá : 5.00-5.50

Diretione Laboratorio/Ge pr. Geol. F. MARIO

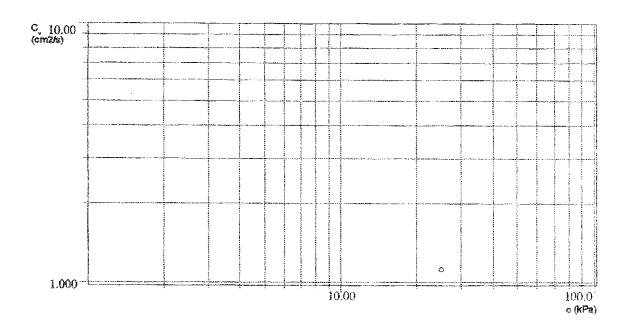
Ministero delle Infrastrutture Acancessione Settore A e C

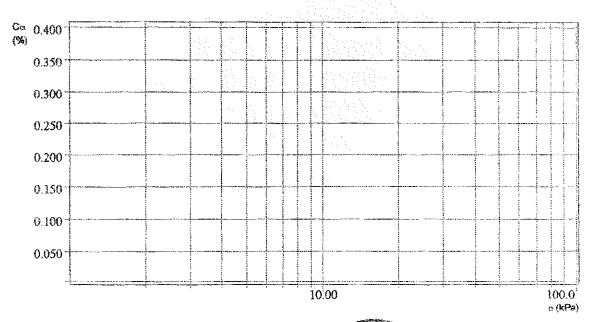
Decreto nº 4951 del 04/06/2010

PROVA EDOMETRICA 4/4

PLP Prospision

Dati cliente


Cliente : DR. GEOL GIUSEPPE TROISI


Indicizzo : /CANTIERE: DEMOLIZIONE E RICOSTRUZIONE FABBRICATO

Sito : BELLIZZI (SA)

Sondaggio : S1 Campione : C1

Profonditá : 5.00-5.50

Sperimenyayare/ Dr. ssa Geol. Maria D'ANGELO/ ABORA

Direttore Laboratorio Degrecinica Dr. Geol. F. MARTÓNE

Ministero delle infrastrutture Concessione Settore A e C

Decreto nº 4951 del-04/06/2010

SG-014

SETTORE C

Accettazione: 0109 - 2011 del 13-06-2011 Fratacollo: 175 - 2011 del 17-06-2011

Ministero delle Infrastrutture - Concessione Settore A e C Decreto nº 4951 del 04/06/2010 D.P.R. 246/93 - Circolare LL.P.P. nº 349/STC del 16/12/98

r. Sesso Stenie Pagina Tigo Carotaggio Profendita Badesunta Sendango 52 1 di 1 Continuo -17.00 mt Or Giuseppe Troisi Cantlese Località 10-11/05/2011 Demolizione e Ricostruzione Fabbricato Via Trieste Bellizzi (SA) Descrizione E.P.T Pocket Per, Name Test Camp 40 . Scala %Carotaggio Ng, sing sa/unsu 心点 Massetto 0.50 Limo argilloso ghialoso di colore marrone di buona plasticità. Presenza di Inclusi 8-8-8 carbonatici con diametro max pari a 1,00 -3.00 cm generalmente con spigoli poco 2,50 PC smussati 14-15-14 8.50 PC 11.00 Argilla limosa di colore marrone - grigia nei complesso di buona plasticità con scarse concentrazioni di litici carbonatici %C=3% 16.50 argilla con limo di colore marrone grigia 28-36/Rif. 17.00

Crist Sort, S-Freed Sottill, C-Ockethers, N-Hatter, F-Härpenegglieb - PA-Remengsjala da SPS France SPS: PA-Rentin Agestu, PS-Philada Calisso.

3.00 cm

con elevate concentrazioni di lifici

carbonatici di diametro max pari a 2,00 -

Comegge Consists

Tecnico incaricato

Responsable disto

17.00 PC

Diretogre Mulydronia

Ministero delle Infrastrutture – Concessione Settore A e C Decreto nº 4951 del 04/06/2010

D.P.R. 246/93 - Circolare LL.PP. nº 349/STC del 16/12/99

Identificazione campione DOC PP 07.10/21 ED01/10

SETTORE "A"

Accettazione: Data:

525-2011

24-05-2011

Prof. Terre: 676-2011

Data: 03-06-2011

Richiedenie:

Dr. Geol. Giuseppe Iroisi

Proprietario:

De Metri Gerardo

impresa:

Geo Campania S.r.i.

Demolizione e Ricostruzione fabbricato Via

Confiere:

Trieste - BELLIZZI (SA)

IDENTIFICAZIONE DEL TERRENO (ASTM D 2486 -00)

	CAI	RATTERI IDENTIFICATIVI				
Sondaggio S2	Campione C1	one C1 Profondità mi da P.C. 7,41				
Massa (Kg)	6.57	Diametro (cm)				
Condizione del campione estruso	Buone	Lunghezza (cm)	60			
Classe di qualità	Q5	Tipo Campione	Indisturbato			
	PROVE DI	CONSISTENZA SPEDITIVE	····			
Pocket Penetrometer Test (kg/crnq)	Kg/cm2	Packet Vane test (Kg/cmq)	* * * * Kg/cm			

CARATTERISTICHE VISIVE

Sabbia limosa ghiaiosa di colore grigio-beige.

COLORE (Yavola di Munsell)

10YR 5/2 GRAYISH BROWN

FOTO DEL CAMPIONE

Foto non richiesta

Tecnico/s

Via Cutinelli, 121/C (Parco del Cillegio) - 84031 BARONISSI (SA) Tel. 0825 523971 / 523550 - Fax 0825 523767 Casella Postale n. 47 - C.F. Iscrizione R.I. SA in 0186410 064 7 P.E.A. SA n. 232841 - P. IVA: 0288919 065 3

info@pipgroup.it - www.pipgroup.it

Laboratório:

Dijeticje Laborotorio

natione Laboratorio/Geologicalico Dir Geol, Francesco MARIONE

Loc. Paccone, 15 - Svincolo aut. SA-RC 84029 SICIGNANO DEGLI ALBURNI (SA) Tel. 0828 978225 - Fax 0828 978197 / 978110 Cell. 335 1011485 - 335 6587734 - 333 1947038 Numero Verde 800 04 05 06

Prospezioni Laboratorio Prove del Geom, Domenico Rocco & C. S.a.c.

Ministero delle Infrastrutture – Concessione Settore A e C Decreto n° 4951 del 04/06/2010

D.P.R. 246/93 - Circolare LL.PP. nº 349/STC del 16/12/99

Grandezze indici

Raccomandazioni UNI 10013 - ASTM D 2937 - ASTM D2216

DOC PP 7.10/11 - ED 01/05

Settore "A"

del

Accettazione n.

525-2011

24-05-2011

, 101,

Prof.Terre: 676-2011

Data: 03-06-2011

Richiedente:

Dr. Geol. Giuseppe îroisi

Proprietario:

De Metri Gerardo

Cantlere:

Demolizione e Ricostruzione Fabbricato Via Trieste -

BELLIZZI (SA)

impresa:

Geo Campania S.r.i.

Identificativo campione

Sondaggio	Campione	Profondità mt pc	Tipo campione
S2	C1	7,40-8,00	Indisturbato
Data prellevo:	***		
Classe di Qualità:	Q5		

Espressione dei risultati

	Grandezze rilevate în laboratorio	rilevate in Ighoratorio			
			2°	misura	Valori medi
Gn	Peso volume naturale (ASTM D 2216)	2,19	2,17	gr/cmc	2,18
G	Peso specifico dei granuli (UNt. 10013)	2,58	2,60	gr/cmc	2,59
W	Contenuto di ocqua naturale (ASTM 2937)	12,68	13,32	%	13,00

Grandezze derivate analiticamente

Gd	Peso volume secco 1,94 1,92 gr/		gr/cmc	1,93	
Þ	Porosità	24,67 26,29		%	25,48
8	Indice dei vuoti	0,33	0,38		0,34
s	Grado di saturazione	99,90	97,15	%	98,48
Gs	Peso volume saturo	2,19	2,18	gr/cmc	2,18
G'	Peso volunie sommerso	1,19	1,18	gr/cmc	1,18

Tecnico Spetimentatore

Dr. ssa. Geolf Mariato (ANGELO

Sade Legale:

Via Cutinelli, 121/C (Parco del Ciliegio) - 84981 BARONISSI (SA), Tel. 0825 523971 / 523550 - Fax 0825 523767

Casella Postale n. 47 - C.F. Iscrizione R.I. SA:n. 0186410 864 79 R.E.A. SA n. 232841 - P. IVA: 0288910 065 3

info@plpgroup.it - www.plpgroup.it

Laboratorio;

Direttore Laboratoria/Gd/

Los. Paccone, 15 - Svincolo aut. SA-RG 84029 SICIGNANO DEGLI ALBURNI (SA) Tel. 0828 978225 - Fax 0828 978197 / 978110 Cell. 335 1011485 - 335 6587734 - 333 1947038 Numero Verde 800 04 05 06

Prospezioni Laboratorio Prove del Geom. Domenico Rocco & C. S.n.e.

Ministero delle Infrastrutture – Concessione Settore A e C Decreto n° 4951 del 04/06/2010

D.P.R. 246/93 - Circolare LL.PP. n° 349/STC del 16/12/99

Prova di Taglio diretto

DOC PP 7.10/6 - ED 01/05

Selfore "A"

Accettazione n. 525-201 &

del

24.05.2011

Prof.Terre: Dala: 676-2011

03.06.2011

Richledente:

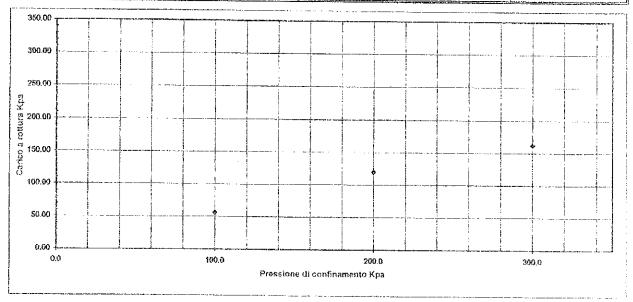
Dr. Geol. Giuseppe Troisi

Proprietario:

De Mehi Gerardo

Conflere:

Demolizione e ricostruzione di un fabbricatom - Via Trieste


Bellizzi (SA)

SONDAGGIO	CAMPIONE	PROFONDITA'	TIPO CAMPIONE	CLASSE QUALITA'
\$2	Cî	7.40-8.00	Indisturbato	Q5

TIPO DI PROVA	Consolidata drenata
VELOCITA' DI PROVA	10 Micron

Parametri meccanici a rottura

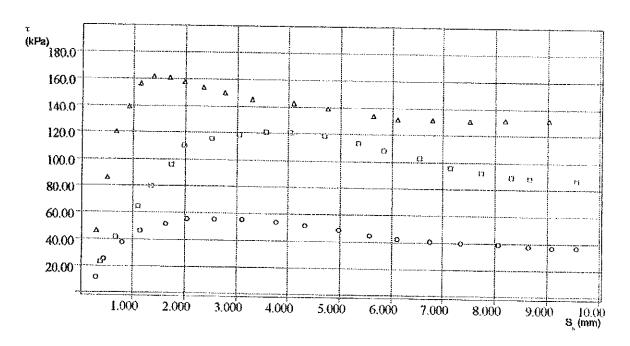
	Pressione di consolid.	Pressione di consolid. Unità di Comisura		Pressione di rottura	Unita di misura
Provino 1	100.0	KPa	24.00	56.11	КРа
Provino 2	200.0	KPa	24.00	119.96	KPcı
Provino 3	300.0	KPa	24.00	162,53	KPG

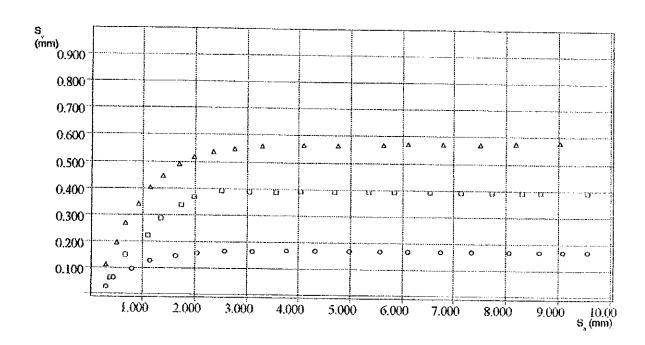
Tecnico Sperimentaline

Dr.ssa Gedy Mythics & ANGELO

PLP Prospezioni Laboratorio Prove del Geom, Domenico Rocco & C. S.n.o.

Sede Legale


Via Cutinelli, 121/C (Parco del Cillegio) - 84081 BARÒNISSI (SA) Tel. 0825 523971 / 523550 - Fax 0825 523767 Casella Postale n. 47 - C.F. Iscrizione R.I. SA n. 0186410 0677 R.E.A. SA n. 232841 - P. IVA: 0288910 065 3 info@pipgroup.it - www.pipgroup.it


Direttore Laboratorio Geoglecnico Dr. Geol. Francesco MARTONE

Laboratorio: Loc. Paccone, 15 - Svincoto aut. SA-RC 84029 SICIGNANO DEGLI ALBURNI (SA) Tel. 0828 978225 - Fax 0828 978197 / 978110 Cell. 335 1011485 - 335 6587734 - 333 1947038 Numero Verde 800 04 05 06

- TD02354 TD02355 - TD02356

Sperinfertylagre

Dr. ssa Gegl, Maria D'ANGELO

Direttore Laboratofic Deotecnica Dr. Geol. III MARTONE

Ministero delle infrastrutture - Concessione Soctore A e C

Decreto nº 4951 del 04/06/2010

Dati cliente

Cliente Indirizzo	: DR. GEOL. GIUSEPPE TROISI : /CANTIERE: DEMOLIZIONE E RICOSTRUZIONE FABBRICATO
Sito	: BELLIZZI (SA)
Sondaggio	; S2
Campione	: C1
Profonditá	: 7.40-8.00

Caratteristiche fisiche

Data prelievo	:					
Sezione provino	:	36.000 cm2	Peso di volume iniziale :	2.151	g/cm3	Υa
Altezza iniziale	b.	30.500 mm	Peso di volume finale :		g/cm3	הן עע
Altezza finale	2	29.989 mm	Peso di volume secco :		g/cm3	1.
NumTara 1	ę	1.	Contenuto d'acqua iniz. :	14.628		$N_{\rm o}$
Peso Tara 1	1	102.90 g	Contenuto d'acqua finale :	13.541	g _i	₩.
Tara*p.umido inizial	. :	339.14 g	Saturazione iniziale :	99.752	8	5,
Num Tara 2	4	2	Saturazione finale :	98.313	8	S.
Peso Tara 2	:	102.90 g	Indice dei vuoti iniziali:	0.379	_	e,
Tara+p.umido finale	:	336.91 g	Indice dei vuoti finali :	0.356		⊖-
Tara+p.provino secco	:	309.00 g	Peso vol. secco finale :	1,908		•
Peso specifico grani	:	2.589 g/cm3		21200	9, 01	Yor
Peso specifico grani	:	2.589 g/cm3				

Risultati fase finale di consolidazione

Altezza fin. provino:	29.989 mm
Carico applicato ;	100.00 kPa
Valore di t100	0.e+00 min

Risultati fase di rottura

V-10-10-10-10-10-10-10-10-10-10-10-10-10-	
THax	: 56.11 kPa
Thex Sh	: 2.56 mm

Specification of Specific Spec

Direttore Laboratora George Chica

Ministero delle Infrastrutture - Concessione Settore A e C

Dati cliente

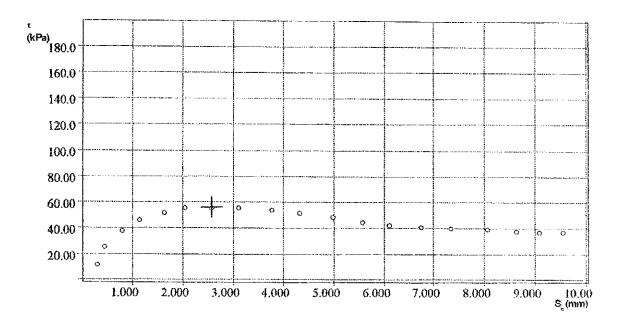
Cliente : DR. GEOL. GIUSEPPE TROISI

Indirizzo : /CANTIERE: DEMOLIZIONE E RICOSTRUZIONE FABBRICATO

Sito

: BELLIZZI (SA)

Sondaggio


: \$2 : C1

Campione Profonditá

: 7.40-8.00

Dati relativi al passo 01

dt	dH	Sh	F'	τ	dt.	dН	Sh	F	· · · · · · · · · · · · · · · · · · ·
<u>nin</u>	ກທາ	mm	N	KPa	min	mm	mm	N	KPa
0.000	~0.000	-0.024	-0.507	-0.141	100 000	0.100	4 27 5		
18.000	0.027	0.287	44.000	12.222	180.000	0.168	4.316	184.76	51.32
					198.000	0.168	4.971	173.34	48.15
36.000	0.064	0.443	92.130	25.591	216.000	0.168	5,565	161.92	44.97
54.000	0.097	0.787	135.27	37.577	234.000	0.168	6.096	153.67	42.68
72.000	0.128	1.130	165.73	46.037	252.000	0.168	6.752	147.33	40.92
90.000	0.146	1.630	186.03	51.677	270.000	0.168	7,345	144.16	40.04
108.000	0.157	2.036	198,09	55.026	288.000	0.168	8.063	140.98	39,16
126.000	0.164	2.567	200.50	55.694	306.000	0.168	8,625	135.91	37.75
144.000	0.167	3.098	198.51	55.171	324.000	0.168	9.094	134.64	37.40
162.000	0.168	3.753	192.96	53.601	342,000	0.168	9.562	132.10	36.69

Risultati elaborazione fase di rottura

Altezza iniziale : 30.50 mm : 56.11 kPa TNox Sh 2.56 mm

Sperimentalors Dr. ssa Geol/MohaliDtANGELO

re Laboratoliø Gødtecnica. Dr. Gool, F. MARKONE

Ministero delle Infrastrutture - Concessione Settore A e C

Dati cliente

Cliențe Indirizzo	: DR. GEOL. GIUSEPPE TROISI : /CANTIERE: DEMOLIZIONE E RICOSTRUZIONE FABBRICATO
Sito	: BELLIZZI (SA)
Sondaggio	: S2
Campione	: C1
Profonditá	: 7.40-8.00

Caratteristiche fisiche

Data prelievo	:					
Serione provino	:	36.000 cm2	Peso di volume iniziale :	2.143	g/cm3	Υn
Altezza iniziale	:	30.500 mun	Peso di volume finale :	2.213	g/cm3	yν
Altezza finale	:	28.639 mm	Peso di volume secco :	1.869	g/cm3	γ.
NumTara 1	;	1	Contenuto d'acqua iniz. :	14.681	ક	Ya Wa
Peso Tara 1	•	102.90 g	Contenuto d'acqua finale :	11.222	કુ	$W_{\mathbf{r}}$
Tara+p.umido inizial	:	338.25 g	Saturazione iniziale :	98.578	દ	S,
Num Tara 2	;	2	Saturazione finale :	96.487	*	$S_{\mathbf{r}}$
Peso Tara 2	I	102.90 g	Indice dei vuoti iniziali:	0.385		e,
Tara+p.umido finale	:	331.14 g	Indice dei vuoti finali :	0.301		e,
Tara+p.provino secco	:	308.11 g	Peso vol. secco finale ;	1.990	g/cm3	Yat
Peso specifico grani	:	2.589 g/cm3				,
-		_				

Risultati fase finale di consolidazione

Alteza fin. provino:	28.639 mm
Carico applicato :	
Valore di t100 :	0.e+00 min

Risultati fase di rottura

l as	: 119.96 kPa
Trax	, 172,20 yrr
Sh	: 4.02 mm

Speriment of the Dr. ssa Geol. Mario B'ANGELO

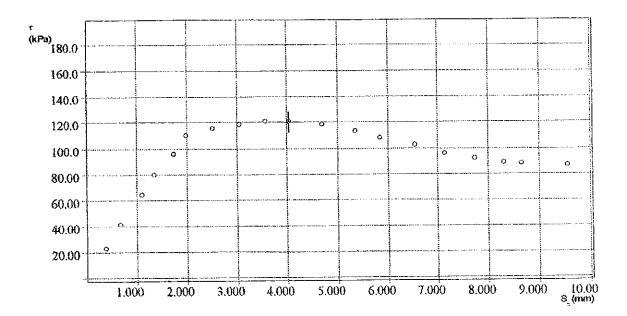
ettore Laboratorio George cnico Dr. Geol F. Myst ONE

Ministero delle Infrastrutture - Concessione Settore A e C

Dati cliente

Cliente : DR. GEOL. GIUSEPPE TROISI

Indirizzo : /CANTIERE: DEMOLIZIONE E RICOSTRUZIONE FABBRICATO


Sito : BELLIZZI (SA)

Sondaggio : S2 Campione : C1

Profonditá : 7.40-8.00

Dati relativi al passo 01

<u>σ</u> v	00.00 kP	Sh	F	Ť	dt	dH	Sh	F	τ
min	mn	mm	N	KPa	min	mn	mm	N	КРа
0.000	-0.000	-0.024	-1.013	-0.281	180.000	0.390	4.034	436.25	121.18
18,000	0.061	0.381	82,607	22.946	198.000	0.390	4.690	428.07	118.90
36.000	0.150	0.662	149.75	41.599	216.000	0.390	5.346	407.63	113.23
54.000	0.221	1.099	233.37	64.827	234.000	0.390	5.846	387.95	107.76
72,000	0.288	1.349	287.85	79.961	252.000	0.390	6.533	368.94	102.48
90.000	0.337	1,723	346.32	96.202	270.000	0.390	7.126	346.14	96.150
108.000	0.369	1.973	398.10	110.58	288.000	0.390	7,720	330.93	91.927
126,000	0.390	2.504	417.17	115.88	306.000	0.390	8.313	319.53	88.759
144.000	0.387	3.035	428,07	118.90	324.000	0.390	8.657	317.00	86.055
162,000	0.388	3.566	434.88	120.80	342.000	0.390	9.562	311.93	86.648

Risultati elaborazione fase di rottura

Altezza iniziale : 30.50 mm : 119.96 kPa Sh : 4.02 mm

Sperimentatorel
Dr. ssa Geol Warle D' ANGELO

Direttore Laboratorio Georganica Dr. Geol, F. Majfridus

Ministero delle Infrastrutture - Concessione Settore A e C

Dati cliente

Cliente Indirizzo	: DR. GEOL. GIUSEPPE TROISI : /CANTIERE: DEMOLIZIONE E RICOSTRUZIONE FABBRICATO
Sito	: BELLIZZI (SA)
Sondaggio	; 52
Campione	; C1
Profonditá	: 7.40-8.00

Caratteristiche fisiche

Data prelievo	:			
Sezione provino	;	36.000 cm2	Peso di volume iniziale : 2.133 g/cm3 y,	.
Altezza iniziale	:	30.500 mm	Peso di volume finale : 2.215 g/cm3 v	
Altezza finale	:	28.430 mm	Peso di volume secco : 1.852 g/cm3 7	- 1
NumTara l	:	1	Contenuto d'acqua iniz. : 15.210 % W	i l
Peso Tara 1	:	102.90 g	Contenuto d'acqua finale: 11.487 % W	
Tara+p.umido inizial	ï	337.17 g	Saturazione iniziale : 98,860 % S	
Num Tara 2	;	2	Saturazione finale : 98.009 % S	
Peso Tara 2	:	102.90 g	Indice dei vuoti iniziali: 0.398 o	
Tara+p.umido finale	:	329.60 g	lles se es como es	∍.
Tara+p.provinc secco	:	306.25 g	Dogo vol gogo finale . 1 005 -/2	d£
Peso specifico grani	:	2.589 g/cm3		ar
				-

Risultati fase finale di consolidazione

Altezza fin. provin	10:	28,430	īņm.
Carico applicato	:	300.00	kPa
Valore di t100	:	0.e+00	min

Risultati fase di rottura

1	
l en.	: 162.53 kPa
į unsk	I TOUTOU KLU
Sh	: 1.37 mm

Sperimentatore Dr. ssa Geol, Maria D'ANGELO Direttore Laboratorio Cempecnica Dr. Geol. E. Malynovie

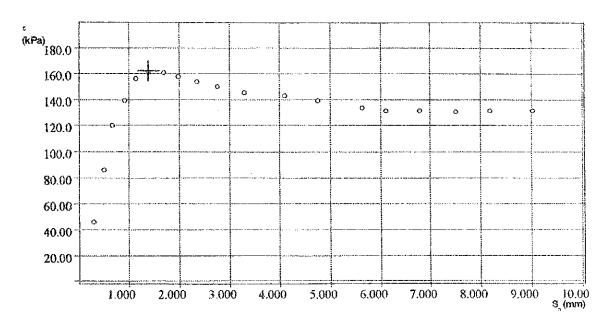
Ministero delle Infrastrutture - Concessione Settore A e C

Dati cliente

Cliente : DR. GEOL. GIUSEPPE TROISI

Indirizzo

: /CANTIERE: DEMOLIZIONE E RICOSTRUZIONE FABBRICATO


Sito : BELLIZZI (SA)

Sondaggio : S2 Campione ; Cl

Profonditá : 7.40-8.00

Dati relativi al passo 01

d†.	dH	Sh	F,	τ	dt	dĦ	Sh	F	τ
min	uso	mm	N	KPa	min	mm	mm	И	KPa
0.000	-0.001	-0.024	-1.571	-0.436	180.000	0.549	2.754	539.63	149.89
18.000	0.112	0.287	167.36	46.490	198.000	0.558	3.285	525.06	145.85
36.000	0.195	0.505	308.80	85.778	216.000	0.561	4.097	516.74	143.54
54.000	0.268	0.662	432.56	120.15	234.000	0.563	4.753	501.31	139.25
72.000	0.340	0.911	501.31	139.25	252.000	0.569	5.627	483.63	134.34
90.000	0.402	1.130	562.21	156.16	270.000	0.570	6.096	475.77	132.16
108,000	0.445	1.380	581.53	161.53	288.000	0.570	6.783	475,77	132,16
126.000	0.491	1.692	579.71	161.03	306.000	0.570	7.501	471.84	131.06
144.000	0.516	1.973	568.78	157.99	324.000	0.576	8.188	475.77	132,10
162.000	0.536	2.348	554.21	153.94	342.000	0.578	9.031	475.77	132.16

Risultati elaborazione fase di rottura

: 30.50 min Altezza iniziale : 162.53 kPa η_{tax} Sh 1 1.37 mm

Sperimentatore

Dr. ssa Georgia and D'ANGELO

Blrettore Laboratolia Dr. Geol/F. M

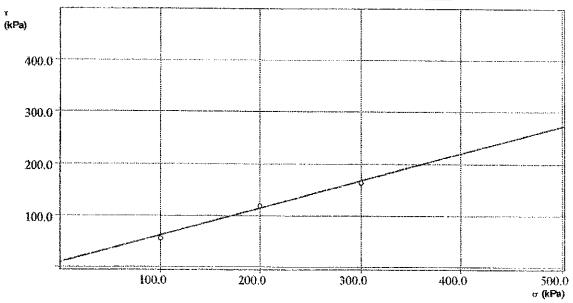
Ministero delle Infrastrutture - Concessione Settore A e C

Decreto nº 4951 del 04/06/2010

GRUPPO DI PROVE DI TAGLIO DIRETTO 1/2

Dati cliente

Cliente : DR. GEOL. GIUSEPPE TROISI
Indirizzo : /CANTIERE: DEMOLIZIONE E RICOSTRUZIONE FABBRICATO


Sito : BELLIZZI (SA)
Sondaggio : S2
Campione : C1
Profonditá : 7.40-8.00

Caratteristiche dei provini

Campione	H_0	A ₃	Y ₂₁	V _d	W _o	W.	\$,	S,
	mm	cm2	g/cm3	g/cm3	ે કુ	<u>₹</u>	ું જ	કુ
C1	30.500	36.000	2.151	1.877	14.628	13.541	99.752	98.313
C1	30.500	36.000	2.143	1.869	14,681	11.222	98.578	96.487
C1	30.500	36.000	2.133	1.852	15.210	11.487	98.860	98.009

Caratteristiche fasi consolidazione e rottura

Campione	σ	H	Δţ	$\tau_{\rm r}$	S,	v
	kPa	mm	ore	kPa	min	um/min
C1	100.00	29.989	10.000	56.111	2.562	10.000
C1	200.00	28.639	10.000	119.96	4.020	10.000
C1	300.00	28.430	10.000	162.53	1.370	10.000

Яi	su.	1 i t.	at	i
***	SO.		aL	

© '	1	27.59	Gradi		
c†	_:	9,66	kPa	·····	

Ministero delle Infrastrutture - Concessione Settore A e C Decreto nº 4951 del 04/06/2010

D.P.R. 246/93 - Circolare LL.PP, n° 349/STC del 16/12/99

Prova Edometrica

(PP7.10/8 ED01/05)

SETTORE "A"

Richledente:

Dr. Geoi. Giuseppe Troisi

Data:

Protocollo: 676-2011

03.06.2011

Accettazione: 525-2011

Proprietario:

De Metri Gerardo

Data:

24.05,2011

Cantiere:

Demolizione e ricostruzione di un fabbricato

Via Triesie - BELLIZZI (SA)

Identificativo campione

\$2	C1	7.40-8.00	Q5
Sondaggio	Campione	Profondità	Classe di qualità

Caratteristiche geometriche del campione

	Diametro (mm)	Altezza (mm)	Sezione (cmq)	
	(mm)	(mm)	(cmq)	
Provino 1	50.50	20.00	20.02	

Parametri indici iniziali

	Peso volume (gr/cmc)	Indice dei vuoti
Provino î	2.18	0.34

Riferimento BS 1337

Tecnico sperimentojoje Dr. ssa Gepl, Model B'ANGELO

Prospezioni Laboratorio Prove del Geom. Domenico Rocco & C. S.n.c.

Sede Legale:

Via Cutinelli, 121/C (Parco del Ciliegio) - 84081 BARONISSI (SA) Tel. 0825 523971 / 523550 - Fax 0825 523767 Tel. 0825 523971 / 523550 - Fax 0825 523767 Casella Postale n. 47 - C.F. Iscrizione R.I. SA n. 0 864 7 064 7 R.E.A. SA n. 232841 - P. IVA: 0288910 065 3 info@plpgroup.it - www.plpgroup.it

Direttore Laboration Q DFGeol. Francèsco 5 . in . in .

oratorio: c. Paccone, 15 - Svincolo aut. SA-RC 4029 SICIGNANO DEGLI ALBURNI (SA) tel. **0828 978225** - Fax 0828 978197 / 978110 Cell. 335 1011485 - 335 6587734 - 333 1947038 Numero Verde 800 04 05 06

AZIENDA CON SISTEMA DI QUALITÀ CERTIFICATO SECONDO LA NORMA UNI EN ISO 9001:00

SG-015

COMMITTENTE: COMUNE DI BELLIZZI						
COMUNE DI: Belli:	zzı (Sa)	LOCA	ALITA' : Via Trieste			
DITTA ESECUTRIC	E: Edıl Soıl sr					
Quota boccaforo (m si	ul I. del m.): 60	1				
METRI UNEAR: PROFONDITA! (m.dal.p.c.) SPESSORE (m) STRATIGRAFIA	FALDA S.P.T.	PERCENTUALE CAROTATA CARO	DESCRIZIONE	Foto Cassette		
1,00 1,00			RENO VEGETALE DI LORE MARRONE SCURO DRITATO			
1.0		MA Incl Scu met Spic	O SABBIOSO DI COLORE RRONE SCURO presenta usioni sferoidali di colore ne e micancee. Nell'ultimo ro ghaie eterometriche a goli vivi in matrice limo biosa			
3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00	<u> 4,60</u>	ıncl	o argilloso giallastro con usioni organiche			
2.50			bia grossa con ghiaia			
10.00	.0.60 300.0	con	o argilloso di colore scuro abbondante materiale anico			
5.50 Santa S		chi	illa limosa da marrone iro a giallastra con rado vetto			
1.00	3.00 (8.10.74	Sat	ibia media limosa			
17.00		Ara	illa con ghraia			
1,50 19,50		Sat	obia grossa con ghiaia			
2,50		Are	illa con ghiaia			
		arc sab	rosito di ghiale grosse e toli con spigoli sub itondati in matrice biosa			
PROGETTO: PUA di riqualitic 5 della L.R. 19/09 e smi	azione urbanistica ai	ены аекат. / сотта		Sondaggio S1		

CERTIFICATO DI PROVA

Rev00 del 03/02/03

DATI GENERALI

Archivio lavoro amm.	LAB 10/093
Codice qualità	1265/10L078/582
Committente	Comune di Bellizzi
Cantiere .	Realizzazione polo sportivo
Località	Via trieste Bellizzi (SA)
Impresa	Edil Soil.srl
Tecnico	Geol. Antonio Senese

PROVE ESEGUITE SUL CAMPIONE

C.	N° cod.	Prova
Α	Х	Apertura campione
В	Х	Caratteristiche fisiche
С	X	Analisi granulometrica
D	Х	Limiti di Atterberg
E	Х	Prova edometrica
F		Prova di permeabilità
G		Prova triassiale UU
Н		Prova triassiale CID
-	Х	Prova taglio diretto CD/Residuo
Ł		Prova compattazione
М		Prova Espansione Libera

APERTURA CAMPIONE	CARATTERISTICHE DI PERFORAZIONE
DATI SONDAGGIO	Sondaggio N° S1 Campione N° C1 Data sondaggio 01/03/2010
	Profondità (m) Profondità (m) 6,50-7,00 Data prelievo 01/03/2010
ATTREZZATURA DI SONDAGGIO	Rotazione Φ (mm) Percussione Φ (mm) Elica Φ (mm) carot. e/o doppio carot. Curetta, sonda o scalpello elica continua
CARATTERISTICHE DI C	AMPIONAMENTO
ATTREZZATURA PRELIEVO	MODALITA' DI PRELIEVO
Parete sottile con pistone shelby Parete sottile senza pistone	Percussione Pressione Altro
Parete spessa Continua Carotiere rotativo	CONTENITORE CAMPIONE
Cucchiaia	Inox The P.V.C. Sacchetto
DATI CAMPIONE	
Diametro campione (mm)	89 Altezza campione (mm) 500 Paraffina
Indisturbato	Rimaneggiato
IDENTIFICAZIONE VISIV	Α
Data apertura 04-mar-10	Colore Marrone scuro Struttura Omogenea
Consistenza Poco	consistente Denominazione Sabbia limosa
Condiz. Mat. estruso	Ottime Buone Suff. Med. Insuff.
Classe del campione	Q5 🗍 Q4 🔲 Q3 🔲 Q2 🔲 Q1 📗
Note	
M/LAB02/01Rev 00 Del 03/02/0	3

M/LAB02/01.3 Rev. 01 Del 15/09/04

LABORATORIO DI GEOTECNICA D.I.M.M.S. CONTROL S.R.L.

Area Industriale A.S.I. Avellino Via Campo di Fiume, 13 83030 Arcella di Montefredane (AV) Tel. 0825.24353 Fax 0825.248705 - e-mail: info@dimms.it - P.IVA 01872430648

CARATTERISTICHE FISICHE GENERALI, PROPRIETA' INDICE E GRANDEZZE DI STATO

24/3/2010

Certificato:

egina 1 di 1

Orta;

ommittente: Comme di Bellizzi

Laworo: Realizzazione polo apertivo

H' Verbale di Accettazione:

763

Data Ricevimento Campione: | 03/02/2010

6,50-7,00

M* Sondeggio: S1 Profondità (m): M* Campione: C1 Profondità (m): 6,50-Tapologia di Campione: Campione andisturbato Data Esecuzione Prova: 04/03/2010

DETERMINAZIONE DEL PESO DI VOLUME y (BS 1377 T15/e)

Metodo campionatore	Pro	ovino	
	1 1	2	3
Peso fustella (g)	55,22	93,12	90.52
Peso fustella + campione umido (g)	132,34	233.26	229,56
Peso campione umido (g)	77.1	140,1	139,D
Volume fustella (cm²)	40,00	72.00	72,00
Peso di volume γ (kN/m³)	18,907	19,088	18,938
MEDIA	18,98	200 (100 (100 (100 (100 (100 (100 (100 (10000000000
C.Q. Ay<2% Ay %	0,37	0,58	0,21
	100000	Distriction,	44.75 a. 145

DETERMINAZIONE DEL PESO SPECIFICO GRANIY (ASTM D854)

			Provino	
	. 14		1	2
Picnometro n°			A	Y
Peso campione secco (g)	1	: 1	35,82	39,01
Temperatura di prova (°C)		100	20,00	20,00
Peso specifico acqua _{Yw} (kN/m ³))		9,80665	9,80665
Peso pic. + acqua + camp, seco			824,90	827,03
Peso picnometro + acqua (g)			802,5	802,5
Peso specifico dei grani y _s (kN/m	1 ³)		26,27	26,51
	ME	DIA	26,39	
C.Q. Ays<1,0% Ays %	4	0.45		

DETERMINAZIONE GRANDEZZE DI STATO

Peso vol. secco Yd (kN/m3)	17,1
Indice dei vuoti e	0,55
Porosità n (%)	35,4
Grado di saturazione (Sr) %	55

PESO DI VOLUME IMMERSO γ_w E SATURO γ_{sat}

r' = γ _{sat} - γ _w	
Peso volume immerso γ (kN/m³)	10,72
Yeat Yd + Yw N	
Peso volume saturo y _{sat} (kN/m ³)	20,52

CONTENUTO SOSTANZE ORGANICHE (UNI EN 8520/14)

Determinazione n°		1	
Peso tara	g		
Peso campione	9		
Peso campione calcinato + tara	q		
Contenuto in sostanze organiche	%		
Media contenuto in sos, organiche	%		

Lo Sperimentatore

Manufleli

CONTENUTO IN SOLFATI (UNI EN 1744-1:1999) determinazione Peso campione (g)

Peso precipitato (g) Peso acqua utilizzata (g) Contenuto in solfati (%) MEDIA

DETERMINAZIONE DEL PESO DI VOLUME Y (ASTM D1188)

Metodo volumometro	Pr		
	1	2	3
Volumometro n°			Ī
Peso volumometro + acqua (g)	1		
Peso campione umido (g)	•	1	
Peso volumometro + camp. umido (g)	}		
Differenza volume volumometro (cm²)	l		1
Peso di volume γ (kN/m³)	1		1
MEDIA			***************************************
	1	-	

DETERMINAZIONE DEL CONTENUTO DIACQUA W (ASTM D2216)

	Pn	Provino			
	1	2	3		
Contenitore n°	A	В	С		
Peso contenitore (g)	20,15	20,87	18,20		
Peso cont.+ peso campione umido (g)	88,99	90,57	87,78		
Peso cont. + peso camp. secco (g)	81,74	83,71	80,80		
Peso campione secco (g)	61,59	62,84	62,60		
Contenuto di acqua w (%)	11,77	10,92	11,15		
MEDIA	11,3				
C.Q. Ay<15% Ay %	4,36	3,22	1,15		
		44544			

DETERMINAZIONE DEL CONTENUTO CaCO₃ (ASTM 04373)

		Pr	ovino
		1	2
Pressione atmosferica (bar)]
Temperatura atmosferica (°C)			
Quantità camp. secco (g)			1
Svolgimento reazione (cm²)			ĺ
Assorbimento reazione (cm²)]
Contenuto carbonato di calcio (%)	ļ		-
	MEDIA		1
C.Q. ACaCO _{3 <} 10% ACaCO ₃	%		1

NOTE	F	PRECISAZIONI
11016	_	FREGISALION

If Direttore

DIMMS CONTROL s.r.i. Area Industriale A.S.I. Aveilino (
Lea Campo di Rigie Ha)

2000 misella di Montella dino (AV)

P.IVA 01872430648 Dott. Geol. Serena De lasi DIRETTORE TECNICO

LABORATORIO DI GEOTECNICA D.I.M.M.S. CONTROL S.R.L.

Area Industriale A.S.f. Avellino Via Campo di Fiume, 13 83030 Arcella di Montefredane (AV)

Tel. 0825.24353 Fax 0825.248705 -e-mail: info@dimms.it - P.IVA 01872430648

GRANULOMETRIA UMIDA

(ASTM D422)

Committente: Comune di Belizzi
Layoro: Resiszazione poto sportivo
All' Verbale di Accettazione: 763
Deta Ricevimento Campione: 03/02/2010
All' Saedeggio: S1 Profondità: 6,50-7,00
Tipologia di Campione: Campione indisturbato
Deta Esecuzione Prova: 94/03/2010

CATCON
Market Company of the
· 不是,这种是一种,是一种,

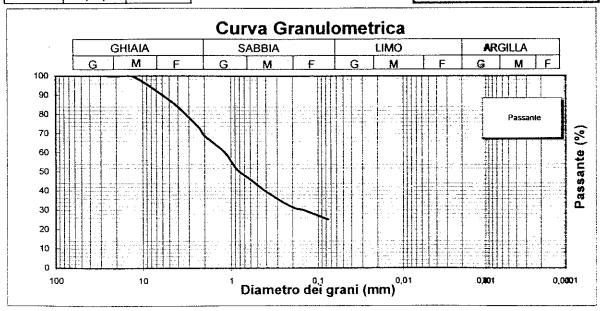
Note:

VAGLI	APERTURE	TRATT.	% TRATT.	% TRATT.	% Passante
AŞTM	(mm)	(g)		Progres.	
1"	25,000	0,00	0,00	0,00	100,00
3/4"	19,000	0,00	0,00	0,00	100,00
1/2"	12,500	2,40	0,50	0,50	99,50
4	4,750	61,43	12,78	13,28	86,72
8	2,360	62,94	13,10	26,38	73,62
10	2,000	22,46	4,67	31,05	68,95
16	1,180	41,34	8,60	39,65	60,35
20	0,850	43,86	9,13	48,78	51,22
30	0,600	24,20	5,04	53,82	46,18
40	0,425	26,22	5,46	59,27	40,73
60	0,250	33,39	6,95	66,22	33,78
80	0,180	13,87	2,89	69,10	30,90
100	0,150	3,50	0.73	69,83	30,17
200	0,075	23,70	4,93	74,76	25,24
FONDO	#	120,39	25,05	99,81	#
TOTALI		479,7	99,81	C.Q. > 97 %	

OPERAZIONE LAVAGGIO CAMPIONE

Contenitore n°	157
Peso contenitore:	298.22
Peso umido campiane (g)	535.4
Peso secco campine (g)	480,59
Peso secco campine lavato (g)	360,20
Peso quantità > 25 mm (g)	0,00
Perdita lavaggio 📹 🔻 🔻	120,39
Riscontro pesi (g)	0,89

RISULTATI


LIMO/A	RGILLA	34
44	Fini	
	Medie	16
SABBIE	Grosse	20
32	Fini	24
	Medie	
GHIAIE	Grosse	10

Coefficienti granulometrici

Descrizione campione (AGI):

D60	(mm)	Coeff. Uniformità (Cu)
D30	(mm)	Coeff. Curvatura (Cc)
D10	(mm)	

Lo Sperimentatore

Manuflela

A.L.G.I.

Il Direttore

DIMMS CONTROL S.r.I.

Area Industrialer A.S.I. Aveilino

Wis Campo de Pe.

Band reella di monteredano AV

P.IVA 01872430648

Dott. Geol. Serena De lasi

DIRETTORE TECNICO

Laboratorio Autorizzato al sensi del D.P.R.380/2001 art. 59 - Concessione Nº 53996

M/LAB02/01.2 REV 00 Del 03/02/03

Area Industriale A.S.I. Avellino Via Campo di Fiume, 13 83030 Arcella di Montefredane (AV)

Tel. 0825.24353 Fax 0825.248705 - e-mail: info@dimms.it - P.IVA 01872430648

ANALISI GRANULOMETRICA PER **SEDIMENTAZIONE** (ASTM D422)

Committente: Comme di Bellizzi Lavoro: Renizzazione polo sportivo

763 N° Verbale di Accettazione:

Data Ricevimento Campione: 303/02/2010

M* Sondaggio: S1

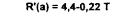
N° Campioné: C1 Tipologia di Campione: Campione indisturbato Data Esecuzione Prova: 04/03/2010

Profondità: Profondità: 6,50-7,00

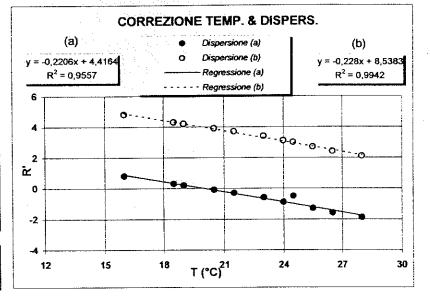
Nº Certific	ato; 51593
	24/3/2010
Pagina 1 d	i 2 fi 🧸 🚉 🤃 🔭
E APPAREN	March September 18 v

the state of the s		
Volume bulbo densimetro (cm³)	V _B	28,0
Altezza bulbo densimetro (cm)	H _B	17.4
Sezione cilindro sedimentazione (cm²)	Sc	27.8
Soluzione disperdente (g/l)		125

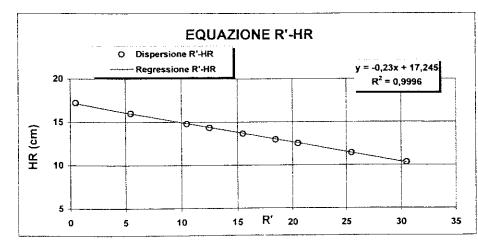
Quantità materiale per prova e peso specifico


Peso totale campione granulometria (g)	480,6
Peso campione granulometria <0,075 mm (g)	120,4
Peso secco campione per densimetria (g)	40,00
Peso specifico dei grani (kN/m³)	26,39

Correzioni per lettura densimetro


		- -	
Correzione del menisco	CM		0,5
Correzione temperatura	CT	-4,4 0,22	
Correzione dispersivo	Cp	(4,4-8,5)	-4,1

Analisi delle correzioni

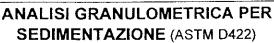

Acqu	ıa distil	ata	Acqua + dispersivo			
T (°C)	R _{lett}	R' (a)	T (°C)	R _{lett.}	R' (b)	
16	0,3	0,8	16	4,3	4.8	
18,5	-0,2	0,3	18,5	3,8	4,3	
19	-0,3	0,2	19	3,7	4,2	
20,5	-0,6	-0,1	20,5	3,4	3,9	
21,5	-0,8	-0,3	21,5	3,2	3,7	
23	-1,1	-0,6	23	2,9	3.4	
24	-1,4	-0,9	24	2,6	3,1	
24,5	-1,0	-0,5	24,5	2,5	3,0	
25,5	-1,8	-1,3	25,5	2,2	2,7	
26,5	-2.1	-1,6	26.5	1,9	2,4	
28	-2.4	-1,9	28	1,6	2,1	

R'(b) = 8,5-0,22 T

Determinazione coefficienti retta H_R - R' (Con solo acqua)

R _{lett.}	R'	H ₁	H_R
(-)	(-)	(cm)	(cm)
30	30,5	2,10	10,3
25	25,5	3,20	11,4
20	20,5	4,30	12,5
18	18,5	4,76	13
15	15,5	5,45	13,6
12	12,5	6,14	14,3
10	10,5	6,60	14,8
5	5,5	7,80	16
0	0,5	9,00	17,2

H_R=14,83-0,230 R' 14,84 b -0,23


Lo Sperimentatore Maneglela

DIMMBROOMTROL s.r.l. rea Industriale A.S.I. Aveilino
L.P. Gampo de 130
D. Arcella or Montaneda (1917A) 90 Arcella de Monterredante P.IVA 01872430648 Dott. Geol, Serena De lasi DIRETTORE TECNICO

M/LAB02/01.2 REV 00 Del 03/02/03

Area Industriale A.S.I. Avellino Via Campo di Fiume. 13 83030 Arcella di Montefredane (AV)

Tel. 0825,24353 Fax 0825,248705 - e-mail; info@dimms.it - P.IVA 01872430648

-- **51593** SEDIMENTAZIONE (Legge di Stokes) N° Certificato: 24/3/20)10 Pagina 2 di 2

Granulometria completa

VAG.	D	pass.
ASTM	(mm)	Tot %
1"	25,00	100,0
3/4"	19,00	100,0
1/2	12,50	99,5
4	4,750	86,7
8	2,360	73,6
10	2,000	68,9
16	1,180	60,3
20	0,850	51,2
30	0,600	46,2
40	0,425	40,7
60	0,250	33,8
80	0,180	30,9
100	0,150	30,2
200	0,075	25,2
S	0,0600	21,2
S	0,0435	19,2
s	0,0317	16,7
s	0,0229	14,7
s	0,0168	11,7
S	0,0124	10,3
S	0,0089	8,8
S	0,0065	6,3
S	0,0047	4,3
s	0,0030	2,3
s	0,0021	0,8
s	0,0014	0,3

<u> </u>	SEDIMENTAZIONE (Legge di Stokes)											
tempo	Т	R _{Lett.}	H ₁	HiR	R'	HR	Ст	ΥL	ηլ	D	R"	pass.
(min)	(°C)		(cm)	(cm)		(cm)				(mm)		Tot %
0,5	15,0	26,0		8.2	26,5	8,75	-1,10	0,9982	0,000	0,0600	21,30	21,2
1	15,0	24,0		8,2	24,5	9,21	-1,10	0,9982	000,0	0,0435	19,30	19,2
2	15,0	21,5		8.2	22,0	9,78	-1,10	0,9982	0,000	0,0317	16,80	16,7
4	15,0	19,5		8,2	20,0	10,2	-1,10	0,9982	0,000	0,0229	14,80	14,7
8	15,0	16,5		8,2	17,0	10,9	-1,10	0,9982	0,000	0,0168	11,80	11,7
15	15,0	15,0		8,2	15,5	11,3	-1,10	0,9982	0,000	0,0124	10,30	10,3
30	15,0	13,5		8,2	14,0	11,6	-1,10	0,9982	0,000	0,0089	8,80	8,8
60	15,0	11,0		8,2	11,5	12,2	-1,10	0,9982	0,000	0,0065	6,30	6,3
120	15,0	9,0		8,2	9,5	12,7	-1,10	0,9982	0,000	0,0047	4,30	4,3
300	15,0	7,0		8,2	7,5	13,1	-1,10	0,9982	0,000	0,0030	2,30	2,3
600	15,0	5,5		8.2	6,0	13,5	-1,10	0,9982	0,000	0,0021	0,80	0,8
1440	15,0	5,0		8,2	5,5	13,6	-1,10	0,9982	0,000	0,0014	0,30	0,3

Coefficienti granulometrici

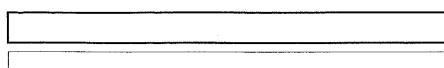
D60	(mm)	0,0750	
D30	(mm)	0,0190	
D10	(mm)	0,0030	

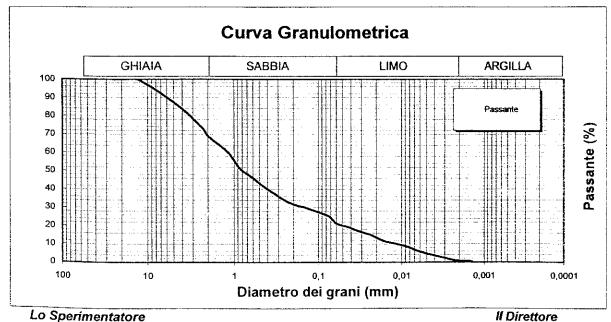
Coeff. Uniformità (Cu)

25

Coeff. Curvatura (Cc)

1,6


Percentuali passanti


GHIAIA	(%)	32
SABBIA	(%)	44
LIMO	(%)	23
ARGILLA	(%)	1

Descrizione campione (AGI):

Sabbia con ghiaia, limosa

Note:

Lo Sperimentatore

Manylela

A.L.G.I.

DIMMS CONTROL s.r.l. Area Industriale A.S. Avelling

De Campo di Fiume (68)

8 000 Arcella di Montenedane (AV)

P.IVA 01872430648

Dott. Geol, Serena De lasi

DIRETTORE TECNICO

LABORATORIO DI GEOTECNICA D.I.M.M.S. CONTROL S.R.L.

Area Industriale A.S.t. Avellino Via Campo di Fiume, 13 83030 Arcella di Montefredane (AV) Tel. 0825.24353 Fax 0825.248705 -e-mail: info@dimms.it -P.IVA 01872430648

PROVA DI TAGLIO **ASTM D3080**

Comune di Bellizzi Committente:

Realizzazione polo sportivo Lavoro: 763

N" Verbale di Accettazione: Data Ricevimento Campione: 03/02/2010

N* Sondaggio: S1 N* Campione: C1 Profondità: 6,50-7,00 Tipologia di Campione: Campione indisturbato

Data Esecuzione Prova: 04/03/2010

N° Certificato: 51594 - 24/3/2010 Pagina 1 di 3

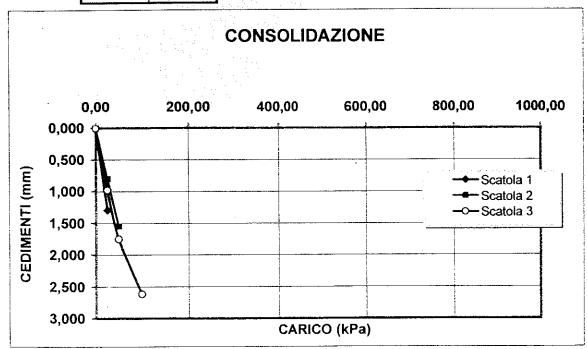
Caratteristiche scatola taglio

Į	unghezza scatola (mm)	60,00
5	Sezione scatola A (cm²)	36,00
/	Altezza scatola H (mm)	22,00
l	Volume scatola V (cm3)	79,20

Determinazione Cu con Vane Test

Profondită:

Misura	Cu (N/cm²)
1	
2	
3	
MEDIA	


Pocket penetrometer

Misura	Q _c (kPa)
1	
2	:
3	
4	
MEDIA	

FASE DI CONSOLIDAZIONE

	Scatola 1	Scatola 2	Scatola 3
Q _{max} (kPa ₎	24,52	49,03	98,07
V _{prov} ₄ (mm/min)		0,010	

	Scatola 1	Scatola 2	Scatola 3
Carico	Cedim. Fin.	Cedim, Fin.	Cedim, Fin.
kPa	mm	mm	mm
0,00	0,000	0,000	0,000
24,52	1,300	0,800	0,980
49,03		1,550	1,750
98,07			2,610
196,13			
392,27			
784,53			

Lo Sperimentatore

Il Direttore

Maneglela A.L.G.I.

DIMMS CONTROL s.r.l. Area Industriale A.S.I. Ayellino
Dia Campo Tijumi, 13
Diso Arcella di Menterreta Propositione Priva 01872430648
Dott. Gool. Serena De lasi
DIRETTORE TECNICO

LABORATORIO DI GEOTECNICA D.I.M.M.S. CONTROL S.R.L.

Area Industriale A.S.I. Avellino Via Campo di Fiume, 13 83030 Arcella di Montefredane (AV) Tel. 0825.24353 Fax 0825.248705 - e-mail: info@dimms.it -P.IVA 01872430648

- 51594

PROVA DI TAGLIO ASTM D3080

Committente: Comune di Bellizzi
Linvoro: Réalizzazione polo sportivo 763

N° Verbale di Accettazione:

Data Ricevimento Campione: 03/02/2010

N'Sondeggio: S1

N° Campione: C1

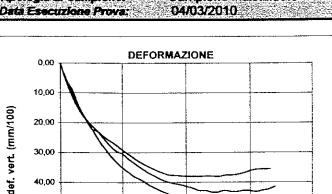
30,00

40,00

50,00

60,00

0,00


2,00

Profondita:

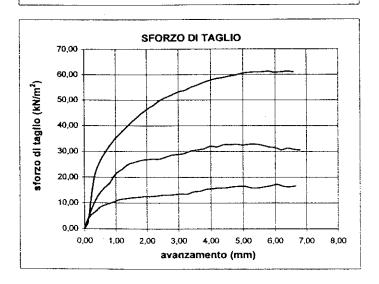
Tipologia di Campione:

** Profondità: : 8,50-7,00

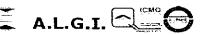
Campione indisturbato

4,00

avanzamento (mm)


6,00

8,00



N° Certificato:

Data: 24/3/2010 Pagina 2 di 3

Lo Sperimentatore

Il Direttore

DIMMS CONTROL s.r.l. Area Industriale A.S. Avellino, Oce Campa of Fiume 13 (2) P.IVA 01872430648
Dott. Geol. Serena De lasi
DIRETTORE TECNICO

LABORATORIO DI GEOTECNICA D.I.M.M.S. CONTROL S.R.L.

Area Industriale A.S.I. Avellino Via Campo di Fiume, 13 83030 Arcella di Montefredane (AV) Tel. 0825.24353 Fax 0825.248705 -e-mail: info@dimms.it -P.IVA 01872430648

PROVA DI TAGLIO ASTM D3080

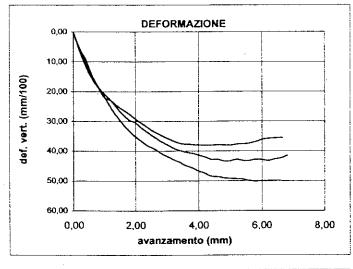
Committente: Comune di Bellizzi

Lavoro: Realizzazione polo sportivo

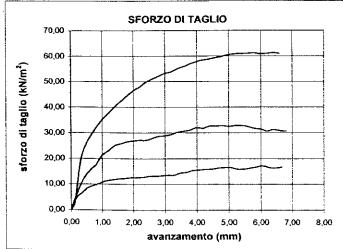
763 N° Varbale di Accettazione:

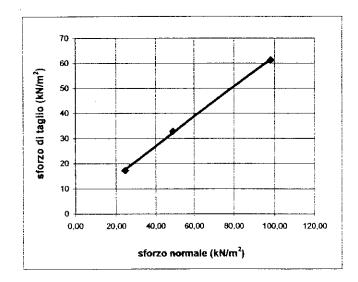
Data Ricevimento Campione: 03/02/2010

Profondità:


N° Sondaggio: S1 N° Campione: Cl

Profondită: 6,50-7,00


Tipologia di Campione:


Campione indisturbato

ta Esecuzione Prova: 04/03/2010

UMIDITA' NATURALE, %=	11,28
DENSITA' NATURALE,Kn/m³	18,98
DENSITA' SECCA,Kn/m³	17,05
INDICE DEI VUOTI=	0,55
POROSITA'%=	35,38
PESO SPECIFICO DEI GRANULL,Kr/m³	26,39
GRADO DI SATURAZIONE, %=	55
AREA SCATOLA DI TAGLIO,cm² =	36
VELOCITA' DI AVANZAMENTO, mm/min =	0,01
TIPO DI PROVA: Taglio diretto	
TIPO DI CAMPIONE:	

Coesione (kN/m2): Angolo di attrito:

3,00 30,77

LABORATORIO DI GEOTECNICA D.I.M.M.S. CONTROL S.R.L.

Area Industriale A.S.I. Avellino Via Campo di Fiume, 13 83030 Arcella di Montefredane (AV) Tel. 0825.24353 Fax 0825.248705 - e-mail: info@dimms.it -P.IVA 01872430648

PROVA DI TAGLIO

ASTM D3080

Committente: Comune di Bellizzi

Lavoro: Realizzazione polo sportivo

M' Sondaggio: SI Profondità:
M' Campione: CI Profondità: 6,50-7,00
Tipologia di Campione: Campione indisturbato
Data Esecuzione Prove: 04/03/2010

N° Certificato: 51594 Data: 24/3/2010 -

Pagina 3 di 3 🚟 🐃

Dati Sperimentali

Pi	rovino n°1			Provino r	ı°2		Provino n°3	
Avanzamento	Def. Vert.	Sforzo Taglio	Avanzame nto	Def. Vert.	Sforzo Taglio	Avanzamen to	Def. Vert.	Sforzo Taglio
(mm)	(mm/100)	(kN/m²)	(mm)	(mm/100)	(kN/m²)	(mm)	(mm/100)	(kN/m ²)
0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
0,17	5,40	4,62	0,20	5,90	6,81	0,12	3,60	2,70
0,34	10,50	6,47	0,40	9,40	12,05	0,29	7,80	18,29
0,53	14,50	8,51	0,60	14,70	15,21	0,48	12,40	25,35
0,72	17,70	9,43	0,80	18,70	17,59	0,68	16,20	29,72
0,92	20,10	10,36	1,00	22,10	21,16	0,86	19,60	33,04
1,12	22,10	11,28	1,20	23,00	22,93	1,05	22,70	35,74
1,32	24,10	11,65	1,40	25,50	24,97	1,24	26,00	38,03
1,52	25,60	12,02	1,60	27,70	25,70	1,44	28,90	40,52
1,72	27,00	12,21	1,80	29,60	26,49	1,64	31,40	42,60
1,92	28,50	12,58	2,00	30,40	26,88	1,83	33,50	44,68
2,12	30,10	12,58	2,20	32,30	27,08	2,02	35,30	46,55
2,31	31,50	12,76	2,40	33,80	27,08	2,22	36,90	48,00
2,51	32,90	13,13	2,60	35,30	27,87	2,42	38,30	49,87
2,70	34,10	13,13	2,80	36,70	28,65	2,61	39,30	51,12
2,90	35,10	13,32	3,00	37,80	28,85	2,81	40,70	52,16
3,10	36,10	13,50	3,20	39,00	29,26	3,01	41,80	53,20
3,29	37,00	13,50	3,40	39,80	30,24	3,21	42,90	53,82
3,49	37,60	14,43	3,60	40,40	30,64	3,40	43,70	55,07
3,68	37,70	14,61	3,80	40,80	31,03	3,60	44,90	55,90
3,87	37,90	15,35	4,00	41,40	32,01	3,79	45,60	56,94
4,07	38,00	15,54	4,20	42,00	31,78	3,99	46,70	57,77
4,27	38,00	15,91	4,40	42,80	32,62	4,19	47,40	58,39
4,46	38,00	15,91	4,60	42,80	32,62	4,39	48,40	58,73
4,66	37,90	16,28	4,80	43,40	32,80	4,58	48,60	59,35
4,86	38,00	16,46	5,00	43,40	32,41	4,78	49,00	59,77
5,06	38,00	16,46	5,20	42,80	32,80	4,98	49,20	60,37
5,27	37,60	15,91	5,40	43,20	32,80	5,18	49,30	60,78
5,47	37,60	15,91	5,60	43,20	32,41	5,38	49,40	60,99
5,66	37,30	16,28	5,80	42,80	31,78	5,58	49,90	60,99
5,86	36,70	16,65	6,00	42,90	31,42	5,78	50,10	61,20
6,06	36,00	17.20	6,20	43,20	30,64	5,98	50,00	60,78
6,26	35,70	16,46	6,40	42,70	31,23	6,18	50,00	60,99
6,46	35,60	16,28	6,60	42,40	30,83	6,38	49,90	61,20
6,66	35,50	16,65	6,80	41,50	30,64	6,58	49,90	60,99

Lo Sperimentatore

Many Cel.

Il Direttore

DIMMS CONTROL s.r.l. Area Industriale A.S.I. Aveilino
Area Industriale A.S.I. Aveilino
Area Industriale A.S.I. Aveilino
Area Industriale A.S.I. Aveilino
Botto Area Industriale A.S.I. Aveilino
Botto Area Industriale A.S.I. Aveilino
Botto Botto

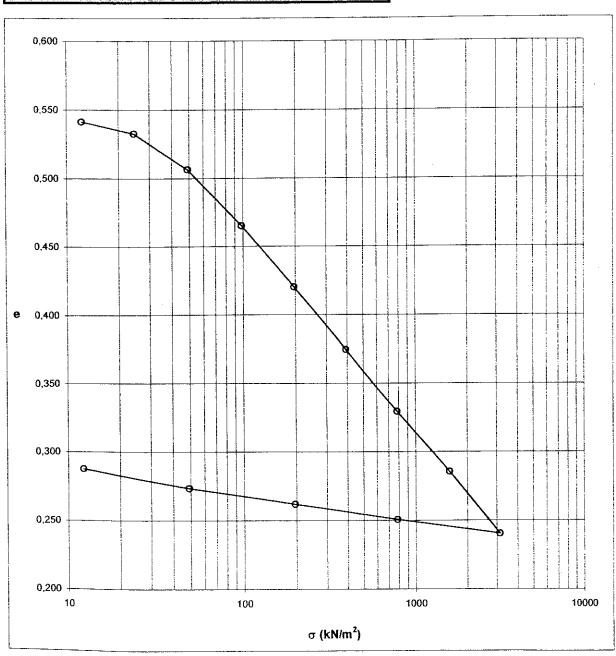
M/LAB02/01.5 Rev. 01 Del 16/11/04

Area Industriale A.S.I. Avellino Via Campo di Fiume, 13 83030 Arcelfa di Montefredane (AV) Tel. 0825.24353 Fax 0825.248705 - e-mail: info@dimms.it - P.IVA 01872430648

PROVA EDOMETRICA (ASTM D4186)

Committente: _____ Comune di Bellizzi Lavoro: Realizzazione polo sportivo

N° Verbale di Accettazione: 763 Data Ricevimento Campione:


N° Sondaggio: S1 Profondità: N° Campione: C1 Profondità: 6,50-7,00

03/02/2010

Tipologia di Campione: Campione indisturbato

Data Esecuzione Prova: 04/03/2010

N° Certificato: 51595 Data: 24/3/2010 Pagina 1 di 4

Lo Sperimentatore

Marcylela

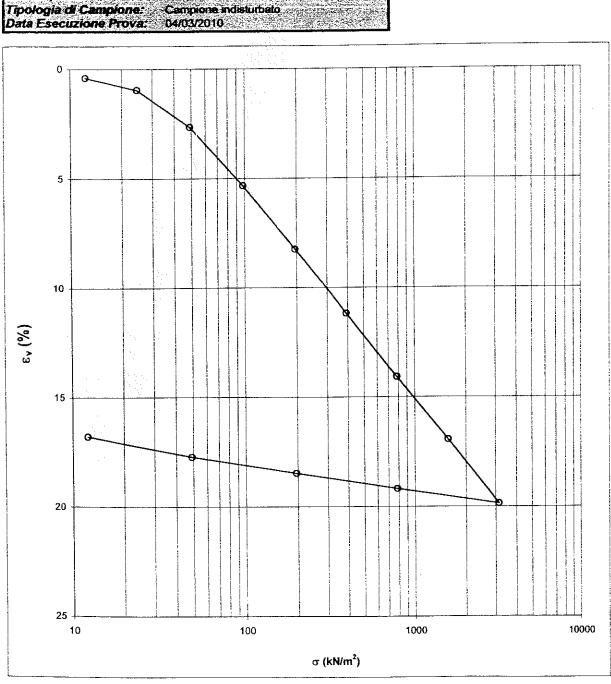
II Direttore

DIMMS CONTROL s.r.l. Area Industriale A.S.I. Avallino
Control of Flore, 145
Ancella di monterredana (AV)
P.IVA 01872430648
Dott. Geol. Serena De lasi
DIRETTORE TECNICO

M/LAB02/01.5 Rev. 01 Del 16/11/04

Area Industriale A.S.I. Avellino Via Campo di Fiume, 13 83030 Arcella di Montefredane (AV)

Tel. 0825.24353 Fax 0825.248705 - e-mail: info@dimms.it - P.IVA 01872430648


PROVA EDOMETRICA (ASTM D4186)

Committente: Comune di Bellizzi Lavoro: Realizzazione polo sportivo

N° Verbale di Accettazione. 763

N° Sondaggio: S1 Profondità:
N° Campione: C1 Profondità: 8,50-7,00

N° Certificato: 51595 Data: 24/3/2010 Pagina 2 di 4

Lo Sperimentatore

Manylela.

Il Direttore

DIMMS CONTROL s.r.l.

Area Industriale A.S.I. Avellino
Via Campo de June
23050 Area de Maltendada A.P.
P.IVA 01872430648
Dott. Geol. Serena De Iasi
DIRETTORE TECNICO

M/LAB02/01.5 Rev. 01 Del 16/11/04

Area Industriale A.S.I. Avellino Via Campo di Fiume, 13 83030 Arcella di Montefredane (AV)

Tel. 0825.24353 Fax 0825.248705 - e-mail: info@dimms.it - P.IVA 01872430648

PROVA EDOMETRICA (ASTM D4186)

Committente: Comune di Bellizzi
Lavoro: Realizzazione polo sportivo
N° Verbale di Accettazione: 783
Data Ricevimento Campione: 03/02/2010
N° Sondaggio: S1 Profondità:
N° Campione: C1 Profondità: 6,50-7,00
Tipologia di Campione: Campione indisturbato
Data Esecuzione Prova: 04/03/2010

Nº Certificato: 51595 Data: 24/3/2010

Pagina 3 di 4

σ _v	cedimenti	ε _ν (%)	e	mod. edo (kN/m²)	Cv (cm²/sec)	K (m/sec)
(kN/m²)	(µm)	(δH/H)100	e ₀ -€ _v (1+e ₀)	δσ./δε.,	197(H* ² /t ₅₀)	9,81C _{vYw} m _v 10 ⁻⁴
12,26	81	0,405	0,5413	-	-	-
24,52	192	0,960	0,5327	2209	-	_
49,03	531	2,655	0,5065	1446	-	_
98,07	1067	5,335	0,4650	1830	-	-
196,13	1648	8,240	0,4201	3376	-	-
392,27	2238	11,190	0,3744	6649	-	-
784,53	2819	14,095	0,3294	13503	-	-
1569,06	3387	16,935	0,2855	27624	-	-
3138,13	3972	19,860	0,2402	53643	-	_
784,53	3838	19,190	0,2506	_	-	-
196,13	3694	18,470	0,2617	<u>.</u>	-	-
49,03	3544	17,720	0,2733	-	-	_
12,26	3360	16,800	0,2876	-	-	-

CARATTERISTICHE GENERALI DE	L CAMPIONE
UMIDITA' NATURALE, %=	11,28
DENSITA' NATURALE,Kn/m³	18,98
DENSITA' SECCA,Kn/m³	17,05
INDICE DEI VUOTI=	0,55
POROSITA' %=	35,38
PESO SPECIFICO DEI GRANULI, Kn/m³	26,39
GRADO DI SATURAZIONE, %=	55
Ho (μm)=	20000

Lo Sperimentatore

Many lela.

A.L.G.I.

Il Direttore

DIMMS CONTROL s.r.l. Area Industriale A.S.I. Areilino
Ovia Campo Ciune
33039 Assilla di Mariteredahe (AV)
P.IVA 01872430648
Dott. Geol. Serena De lasi
DIRETTORE TECNICO

Area Industriale A.S.I. Avellino Via Campo di Fiume, 13 83030 Arcella di Montefredane (AV)

Tel. 0825.24353 Fax 0825.248705 - e-mail: info@dimms.it - P.IVA 01872430648

Committente: Conume di Bellizzi

M/LAB02/01.5 Rev. 01

Del 16/11/04

Lavoro: Realizzazione polo sportivo

N°. Verbale di Accettazione: 763 Data Ricevimento Campione: 03/02/201

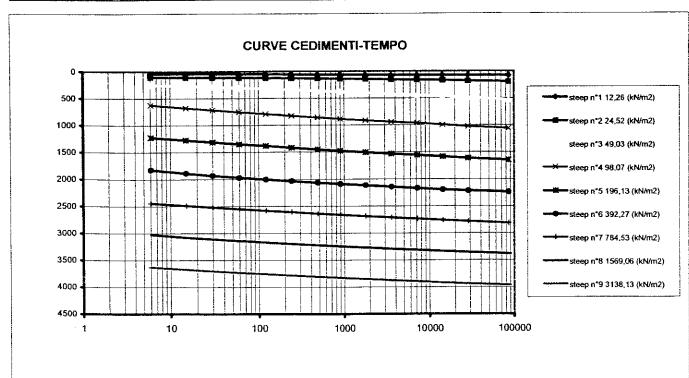
N° Sondaggio: S1 Profondità:
N° Campione: C1 Profondità: 6

Tipologia di Campione:

Data Esecuzione Prova:

03/02/2010

Profondità: 6,50-7,00


Campione indisturbato

04/03/2010

N° Certificato: 51595

Data: 24/3/2010 Pagina 4 di 4

				CE	DIMENTI (µ	ım)			
	steep n°1	steep n°2	steep n°3	steep п°4	steep n°5	steep n°6	steep n°7	steep n°8	steep n°9
Tempo	12,26	24,52	49,03	98,07	196,13	392,27	784,53	1569,06	3138,13
(sec)	(k N /m²)	(kN/m ²)	(kN/m²)	(kN/m ²)	(kN/m ²)	(kN/m²)	(k N /m²)	(kN/m²)	(kN/m ²)
6	39	104	253	626	1221	1821	2440	3024	3632
15	43	109	273	682	1272	1887	2488	3079	3677
30	47	112	290	720	1310	1929	2521	3111	3707
60	50	115	307	758	1347	1967	2553	3141	3735
120	53	120	325	797	1381	2001	2582	3170	3762
240	56	125	345	831	1416	2033	2611	3198	3787
480	59	131	366	864	1449	2063	2639	3223	3811
900	63	137	384	891	1476	2088	2663	3246	3832
1800	71	143	406	919	1504	2114	2689	3269	3855
3600	73	151	427	946	1533	2141	2714	3292	3879
7200	75	159	448	972	1559	2170	2739	3315	3902
14400	77	167	473	1004	1586	2194	2763	3337	3926
28800	79	180	496	1032	1614	2216	2789	3360	3949
86400	81	192	531	1067	1648	2238	2819	3387	3972

Lo Sperimentatore

Manerplela

Il Direttore

DIMMS CONTROL S.r.I. Area Industriate A. S.I. Avelling
Area Industriate A. S.I. Avelling
Area Industriate A. S.I. Avelling
Area Industriate A. S.I. Avelling
Area Industriate A. S.I. Avelling
Area Industriate A. S.I. Avelling
Area Industriate
Area I

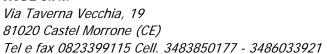
Laboratorio Autorizzato ai sensi del D.P.R.380/2001 art. 59 - Concessione Nº 53996

SG-016

Standard utilizzato: Emilia (30) [peso maglio Kg 63.5, volata cm 75, area punta cmq 20, angolo di apertura della punta 60°]

Committente: Dott.ssa Bassi M. Teresa per c/o del Sig. De Chiara Bruno

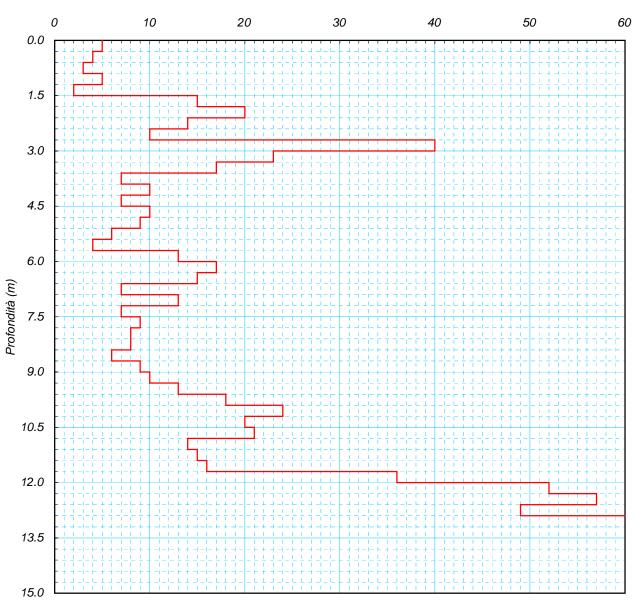
Cantiere: Via Olmo - Bellizzi (SA)

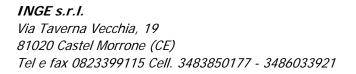

Data esecuz. prova: 23/03/2010

Prova (n): DPSH n. 1 Profondità della falda (m) n.d. Protocollo n.: 227/10

Prof.	Colpi	Prof.	Colpi	Prof.	Colpi	Prof.	Colpi	Prof.	Colpi
(m)	(N)	(m)	(N)	(m)	(N)	(m)	(N)	(m)	(N)
0.30	5	9.30	10						
0.60	4	9.60	13						
0.90	3	9.90	18						
1.20	5	10.20	24						
1.50	2	10.50	20						
1.80	15	10.80	21						
2.10	20	11.10	14						
2.40	14	11.40	15						
2.70	10	11.70	16						
3.00	40	12.00	36						
3.30	23	12.30	52						
3.60	17	12.60	57						
3.90	7	12.90	49						
4.20	10	13.20	62						
4.50	7								
4.80	10								
5.10	9								
5.40	6								
5.70	4								
6.00	13								
6.30	17								
6.60	15								
6.90	7								
7.20	13								
7.50	7								
7.80	9								
8.10	8								
8.40	8								
8.70	6								
9.00	9								

Standard utilizzato: Emilia (30) [peso maglio Kg 63.5, volata cm 75, area punta cmq 20, angolo di apertura della punta 60°]


Committente: Dott.ssa Bassi M. Teresa per c/o del Sig. De Chiara Bruno


Cantiere: Via Olmo - Bellizzi (SA) Data esecuz. prova: 23/03/2010

Prova (n): DPSH n. 1 Profondità della falda (m) n.d. Protocollo n.: 227/10

GRAFICO NUMERO DI COLPI

Standard utilizzato: Emilia (30) [peso maglio Kg 63.5, volata cm 75, area punta cmq 20, angolo di apertura della punta 60°]

Committente: Dott.ssa Bassi M. Teresa per c/o del Sig. De Chiara Bruno

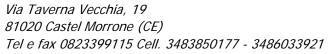
Cantiere: Via Olmo - Bellizzi (SA) Data esecuz. prova: 23/03/2010

Prova (n): DPSH n. 1 Profondità della falda (m) n.d. Protocollo n.: 227/10

	S	TRATI	GRAF	IA INT	ERPRI	ETATI\
			DAT	I GENI	ERALI	
Strato (n)	1	2	3	4	5	6
Profondità iniziale (m)	0.00	1.50	3.60	5.70	9.60	11.70
Profondità finale (m)	1.50	3.60	5.70	9.60	11.70	13.20
Potenza dello strato (m)	1.50	2.10	2.10	3.90	2.10	1.50
Peso di volume attribuito (g/cm³)	1.50	1.70	1.60	1.65	1.70	1.80
Pressione vert efficace (Kg/cm²)	0.23	0.61	0.91	1.58	1.99	2.38
Media numero colpi (N)	4	20	8	10	18	51
Media resist. alla Punta (Kg/cm²)	13.00	66.00	30.00	30.00	47.00	114.00
PARAMETE	RI GEO	TECNI	CI TEI	RRENI	DI NA	TURA
Angolo di attrito (°)	29	36	31	32	35	>38
Densità relativa (%)	35	79	50	56	74	100
Mod. di deformazione (Kg/cm²)	39	198	90	90	141	342
Mod. taglio dinamico (Kg/cm²)	51	173	222	397	546	708
Stato di addensamento	S	Μ	S	Μ	М	MD
PARAME	TRI GE	EOTEC	NICI T	ERRE	NI DI N	ATUR
Coesione non dren. (Kg/cm²)	0.64	3.27	1.45	1.42	2.25	5.58
Modulo edometrico (Kg/cm²)	28.00	145.00	66.00	66.00	103.00	250.00
Grado di sovracons. OCR (-)	2.27	1.44	10.81	3.23	2.04	1.49
Mod. di taglio dinam. (t/m²)	4'128	14'485	7'088	8'436	13'343	30'063
Stato di consistenza	Med	МC	С	С	МC	D

LEGENDA

Terreni di natura granulare - Stato di addensamento

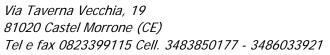

M S=Molto sciolto, S=Sciolto, M=Medio, D=Denso, M D=Molto Denso

Terreni di natura coesiva - Stato di consistenza

M=Molle, T=Tenero, Med=Medio, C=Compatto, M C=Molto Compatto, D=Duro

Standard utilizzato: Emilia (30) [peso maglio Kg 63.5, volata cm 75, area punta cmq 20, angolo di apertura della punta 60°]

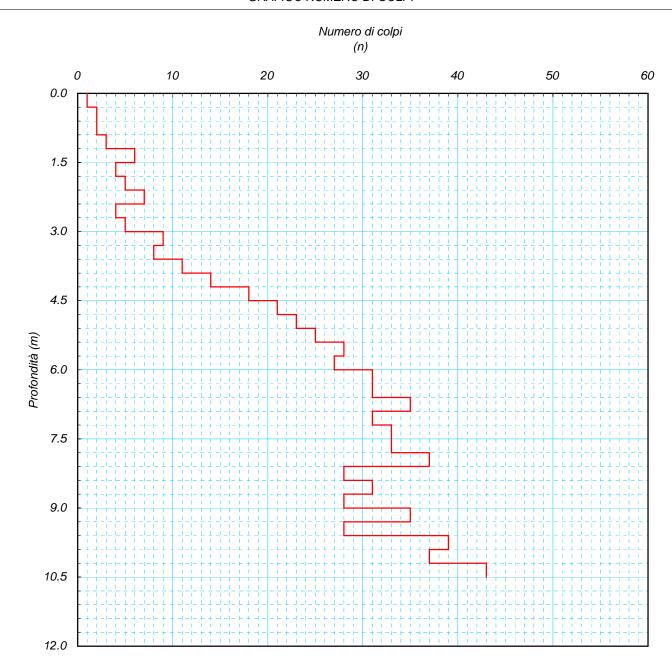
Committente: Sig. De Rosa Sergio

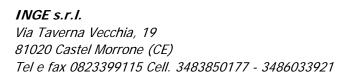

Cantiere: Via Ferrari - Bellizzi (SA) Data esecuz. prova: 11/11/2010

Prova (n): DPSH n. 1 Profondità della falda (m) 1.00 Protocollo n.: 621/10

Prof.	Colpi	Prof.	Colpi	Prof.	Colpi	Prof.	Colpi	Prof.	Colp
(m)	(N)	(m)	(N)	(m)	(N)	(m)	(N)	(m)	(N)
0.30	1	9.30	35						
0.60	2	9.60	28						
0.90	2	9.90	39						
1.20	3	10.20	37						
1.50	6	10.50	43						
1.80	4								
2.10	5								
2.40	7								
2.70	4								
3.00	5								
3.30	9								
3.60	8								
3.90	11								
4.20	14								
4.50	18								
4.80	21								
5.10	23								
5.40	25								
5.70	28								
6.00	27								
6.30	31								
6.60	31								
6.90	35								
7.20	31								
7.50	33								
7.80	33								
8.10	37								
8.40	28								
8.70	31								

Standard utilizzato: Emilia (30) [peso maglio Kg 63.5, volata cm 75, area punta cmq 20, angolo di apertura della punta 60°]


Committente: Sig. De Rosa Sergio


Cantiere: Via Ferrari - Bellizzi (SA)

Prova (n): DPSH n. 1 Profondità della falda (m)

Data esecuz. prova: 11/11/2010
Protocollo n.: 621/10

GRAFICO NUMERO DI COLPI

Standard utilizzato: Emilia (30) [peso maglio Kg 63.5, volata cm 75, area punta cmq 20, angolo di apertura della punta 60°]

Committente: Sig. De Rosa Sergio

Cantiere: Via Ferrari - Bellizzi (SA)

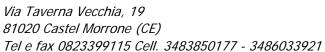
Data esecuz. prova: 11/11/2010

Prova (n): DPSH n. 1 Profondità della falda (m) 1.00 Protocollo n.: 621/10

STRATIGRAFIA INTERPRETATIVA							
			DAT	I GENE	ERALI		
Strato (n)	1	2	3	4			
Profondità iniziale (m)	0.00	3.60	6.00	10.20			
Profondità finale (m)	3.60	6.00	10.20	10.50			
Potenza dello strato (m)	3.60	2.40	4.20	0.30			
Peso di volume attribuito (g/cm³)	1.40	1.50	1.55	1.60			
Pressione vert efficace (Kg/cm²)	0.24	0.40	0.66	0.73			
Media numero colpi (N)	5	21	33	43			
Media resist. alla Punta (Kg/cm²)	16.00	65.00	96.00	108.00			
PARAMETI	RI GEO	TECNI	CI TEI	RRENI	DI NATURA GRANULARE		
Angolo di attrito (°)	30	36	>38	>38			
Densità relativa (%)	39	81	100	100			
Mod. di deformazione (Kg/cm²)	48	195	288	324			
Mod. taglio dinamico (Kg/cm²)	57	113	197	217			
Stato di addensamento	S	М	D	D			
PARAME	TRI GE	EOTEC	NICI T	ERREN	II DI NATURA COESIVA		
Coesione non dren. (Kg/cm²)	0.79	3.23	4.77	5.36			
Modulo edometrico (Kg/cm²)	35.00	143.00	211.00	237.00			
Grado di sovracons. OCR (-)	0.87	23.00	7.20	6.30			
Mod. di taglio dinam. (t/m²)	4'913	15'047	21'408	26'317			
Stato di consistenza	Med	МC	D	D			

LEGENDA

Terreni di natura granulare - Stato di addensamento


M S=Molto sciolto, S=Sciolto, M=Medio, D=Denso, M D=Molto Denso

Terreni di natura coesiva - Stato di consistenza

 $M=Molle,\ T=Tenero,\ Med=Medio,\ C=Compatto,\ M\ C=Molto\ Compatto,\ D=Duro$

Castel Morrone (CE), 23/11/2010

Accettazione n: TER261/2010 Data ricevimento: 19/11/10 Data esecuzione prova: 19/11/10

Committente: Sig. De Rosa Sergio Cantiere: Via Ferrari Bellizzi Salerno

Sondaggio: Campione: C1 Profondità di prelievo (m): 3.30-3.70

IDENTIFICAZIONE DEL TERRENO

(ASTM D2488-00)

CARATTERI IDENTIFICATIVI

Contenitore: Fustella pareti grosse in acciaio inox Diametro (cm): 8.45 Lungh. (cm): 42.00

Massa (Kg 4.000 Condizione del campione estruso: Buone Classe di qualità (AGI): Q5

PROVE DI CONSISTENZA SPEDITIVE

Pocket Penetrometer Test (MPa): > 0.600 Pocket Vane Test (MPa): > 0.200

CARATTERISTICHE VISIVE

DESCRIZIONE DEL CAMPIONE

Materiale fine, ben addensato, coesivo e compatto. Presenza di piccoli clasti carbonatici arrotondati e fustoli carboniosi

COLORE (Tavola di Munsell)

marrone chiaro-giallastro

Foto campione

LO SPERIMENTATORE
Geom. Alfonso Casapulla

IL DIRETTORE DEL LABORATORIO

Accettazione n: TER261/2010 Data ricevimento: 19/11/10 Data esecuzione prova: 19/11/10

Committente: Sig. De Rosa Sergio Cantiere: Via Ferrari Bellizzi Salerno

Sondaggio: Campione: C1 Profondità di prelievo (m): 3.30-3.70

CARATTERISTICHE FISICHE DEL TERRENO

(CNR-UNI 10008-64 BS 1377/75 ASTM D854-83)

CONDIZIONI NATURALI

Peso specifico del terreno γ_s (KN/m³) 25.82

Peso dell'unità di volume (fustellamento) γ (KN/m³) 16.73

Peso dell'unità di volume (pesata idrostatica) γ (KN/m³)

Contenuto d'acqua W (%) 29.06

Peso secco dell'unità di volume γ_d (KN/m³) 12.96

Indice di porosità e (-) 0.99

Porosità n (-) 0.50

Grado di saturazione S (-) 0.77

CONDIZIONI DI SATURAZIONE

Peso dellunità di volume immerso in acqua γ' (KN/m³) 8.04

Peso dell'unità di volume saturo d'acqua γ_{sat} (KN/m³) 17.84

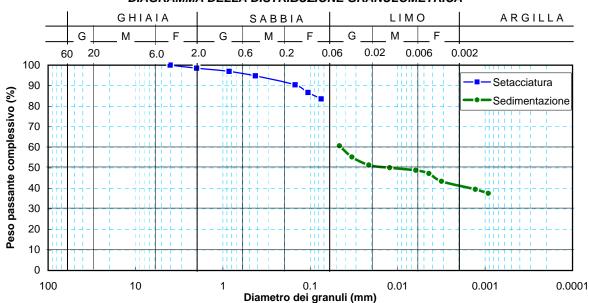
Contenuto d'acqua W_{sat} (%) 37.69

LO SPERIMENTATORE Geom. Alfonso Casapulla

IL DIRETTORE DEL LABORATORIO

Accettazione n: TER261/2010 Data ricevimento: 19/11/10 Data esecuzione prova: 19/11/10

Committente: Sig. De Rosa Sergio Cantiere: Via Ferrari Bellizzi Salerno


Sondaggio: Campione: C1 Profondità di prelievo (m): 3.30-3.70

ANALISI GRANULOMETRICA

(ASTM D421-D422-D2217)

		1			- /							
	VALORI	DETERN	IINATI M	EDIANTE	SETACC	IATURA						
Vaglio ASTM (No)			5	100	20	40	100	140	200			
Diametro granuli (mm)			4.000	2.000	0.850	0.425	0.149	0.106	0.075			
Peso passante compl. (%)			100.00	98.53	96.97	94.78	90.41	86.66	83.53			
VALORI DETERMINATI MEDIANTE SEDIMENTAZIONE												
Diametro granuli (mm)	0.046	0.033	0.021	0.012	0.006	0.004	0.003	0.0013	0.0009			
Peso passante compl. (%)	60.69	55.23	51.36	50.06	48.77	47.23	43.38	39.53	37.61			
FR	AZIONI G	RANULO	OMETRIC	HE E PAF	RAMETRI	CORREL	ATI					
Frazione argillosa < 0.002 m	ım (%)	4	1.00	Diametro	efficace	D ₁₀	(mm)					
Frazione limosa < 0.06 mm	(%)	3	80.52	Diametro	medio D	30	(mm)					
Frazione < 0.074 mm	(%)	8	3.53	Diametro	medio D	50	(mm)	0.012	068			
Frazione sabbiosa < 2 mm	(%)	2	8.48	Diametro	medio D	60	(mm)	0.044	823			
Frazione ghiaiosa < 60 mm	0.00	Coefficiente di uniformità C			u (-)							
Frazione ciottolosa ≥ 60 r	Frazione ciottolosa ≥ 60 mm (%) 0.00						(-)					
Class. A.G.I. (1990): Argilla	con lim	o con sa	abbia									

DIAGRAMMA DELLA DISTRIBUZIONE GRANULOMETRICA

LO SPERIMENTATOF Geom. Alfonso Casapi

IL DIRETTORE DEL LABORATORIO

Accettazione n: TER261/2010 Data ricevimento: 19/11/10 Data esecuzione prova: 19/11/10

Committente: Sig. De Rosa Sergio Cantiere: Via Ferrari Bellizzi Salerno

Sondaggio: Campione: C1 Profondità di prelievo (m): 3.30-3.70

TAGLIO DIRETTO

(ASTM D 3080-98)

	DIMENS	SIONI DEI F	PROVINI	VALORI A INIZIO	CONSOLIDAZ.	PARAMETRI DELLA CONSOLIDAZIONE				
Prov.	Lungh. lato	Altezza iniziale h	Area di base A _b	Peso di volume γ _i	Contenuto d'acqua w _i	Durata consol. δt	Pressione di consolidazione σ _n	Cedim. finale δh	Tempo	
(n)	(cm)	(cm)	(cm²)	(KN/m³)	(%)	(ore)	(MPa)	(mm)	(min)	
1 =	6.00	2.50	36.00	16.73	26.74	24.00	0.049	0.588	5.36	
2 🔷	6.00	2.50	36.00	16.77	26.65	24.00	0.098	0.823	6.28	
3 •	6.00	2.50	36.00	16.81	26.56	24.00	0.196	0.980	6.82	

	CONSOL	IDAZIO	NE DEI F	PROVINI	·		VALORI A FINE	CONSOLIDAZ.	
Provin	o n.1 =	Province	o n.2 🔷	Province	o n.3 •	Prov.	Peso di	Contenuto	
Tempo t (min)	Cedim. δh (mm)	Tempo t (min)	Cedim. δh (mm)	Tempo t (min)	Cedim δh (mm)	(n)	volume ^γ f (KN/m³)	d'acqua w _f (%)	
0.1	0.50	0.1	0.68	0.1	0.79	1 💻	18.54	37.16	
0.25	0.51	0.25	0.70	0.25	0.82	2 🔷	18.76	37.03	
0.4	0.52	0.4	0.71	0.4	0.83	3 •	18.93	36.91	
0.5	0.52	0.5	0.71	0.5	0.84				
1	0.53	1	0.72	1	0.85				
2	0.53	2	0.73	2	0.86				
4	0.54	4	0.74	4	0.87				
8	0.55	8	0.75	8	0.88				
15	0.55	15	0.76	15	0.89		CARAT	TERISTICHE DELI	LA PROVA
30	0.56	30	0.77	30	0.90		Condizione	Orientazione	Velocità di
60	0.57	60	0.78	60	0.92		del	strutturale	def. orizz.
120	0.57	120	0.79	120	0.93	Prov.	provino	del provino	V_{i}
240	0.58	240	0.80	240	0.95	(n)		(°)	(mm/min)
480	0.58	480	0.81	480	0.96	1 🔳	Indisturbato	n.d.	0.057
960	0.58	960	0.82	960	0.97	2 🔷	Indisturbato	n.d.	0.057
1440	0.59	1440	0.82	1440	0.98	3 •	Indisturbato	n.d.	0.057

Note: Prova di taglio eseguita con la scatola di Casagrande.

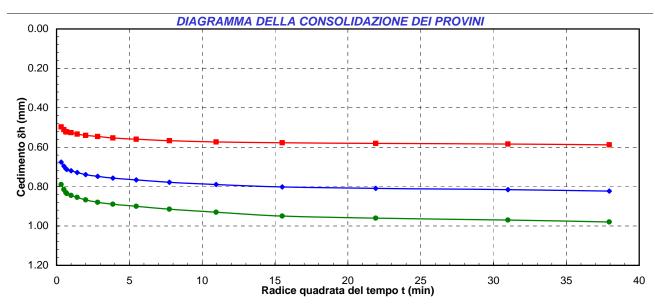
LO SPERIMENTATORE
Geom. Alfonso Casapulla

DIRETTORE DEL LABORATORIO

Castel Morrone (CE), 23/11/2010

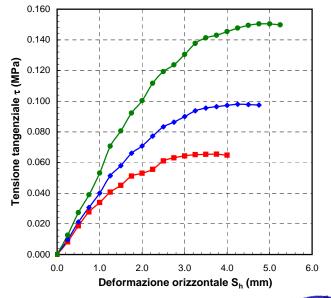
Certificato n.

01616


Accettazione n: TER261/2010 Data ricevimento: 19/11/10 Data esecuzione prova: 19/11/10

Committente: Sig. De Rosa Sergio Cantiere: Via Ferrari Bellizzi Salerno

Sondaggio: Campione: C1 Profondità di prelievo (m): 3.30-3.70


TAGLIO DIRETTO

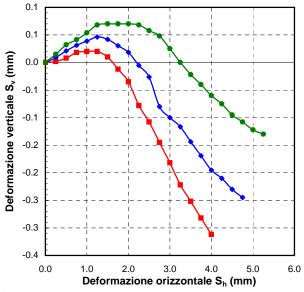

(ASTM D 3080-98)

DIAGRAMMA DEFORMAZIONE-TENSIONE

DIAGRAMMA DELLE DEFORMAZIONI

LO SPERIMENTATORE Geom. Alfonso Casapulla

DIRETTORE DEL LABORATORIO
Dott. Geol. Antonio Petriccione

Accettazione n: TER261/2010 Data ricevimento: 19/11/10 Data esecuzione prova: 19/11/10

Committente: Sig. De Rosa Sergio Cantiere: Via Ferrari Bellizzi Salerno

Sondaggio: Campione: C1 Profondità di prelievo (m): 3.30-3.70

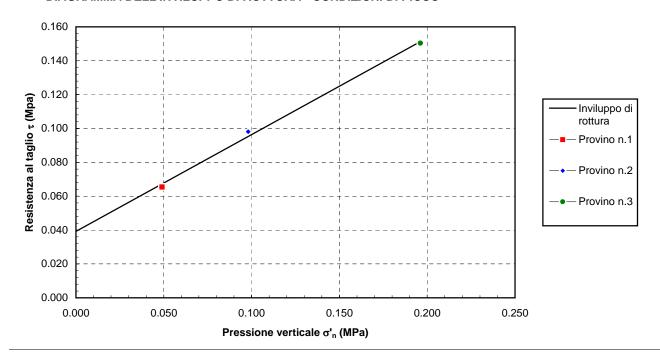
TAGLIO DIRETTO

(ASTM D 3080-98)

VALORI RILEVATI AI COMPARATORI DELLA MACCHINA DI TAGLIO - CONDIZIONI DI PICCO

	Provino n.	1 -	F	Provino n.2	2 🔷	F	Provino n.:	3 ●
Def. orizz. S _h	Def. vert. S _v	Tensione tangenziale τ	Def. orizz. S _h	Def. vert. S _v	Tensione tangenziale τ	Def. orizz. S _h	Def. vert. S _v	Tensione tangenziale τ
(mm)	(mm)	(MPa)	(mm)	(mm)	(MPa)	(mm)	(mm)	(MPa)
0.00	0.00	0.000	0.00	0.00	0.000	0.00	0.00	0.000
0.25	0.00	0.008	0.25	0.01	0.010	0.25	0.02	0.013
0.50	0.01	0.019	0.50	0.02	0.021	0.50	0.03	0.027
0.75	0.02	0.028	0.75	0.03	0.031	0.75	0.04	0.039
1.00	0.02	0.034	1.00	0.04	0.040	1.00	0.05	0.053
1.25	0.02	0.041	1.25	0.05	0.051	1.25	0.07	0.071
1.50	0.01	0.045	1.50	0.04	0.058	1.50	0.07	0.081
1.75	-0.01	0.051	1.75	0.03	0.066	1.75	0.07	0.092
2.00	-0.04	0.053	2.00	0.02	0.071	2.00	0.07	0.100
2.25	-0.08	0.056	2.25	-0.01	0.077	2.25	0.07	0.112
2.50	-0.11	0.061	2.50	-0.03	0.083	2.50	0.06	0.119
2.75	-0.15	0.063	2.75	-0.08	0.086	2.75	0.05	0.124
3.00	-0.18	0.064	3.00	-0.10	0.090	3.00	0.03	0.130
3.25	-0.22	0.065	3.25	-0.12	0.094	3.25	0.00	0.138
3.50	-0.25	0.065	3.50	-0.14	0.096	3.50	-0.02	0.141
3.75	-0.28	0.065	3.75	-0.17	0.096	3.75	-0.04	0.143
4.00	-0.31	0.065	4.00	-0.20	0.097	4.00	-0.06	0.145
			4.25	-0.21	0.098	4.25	-0.08	0.148
			4.50	-0.23	0.098	4.50	-0.10	0.149
			4.75	-0.25	0.098	4.75	-0.11	0.150
						5.00	-0.12	0.150
						5.25	-0.13	0.150

LO SPERIMENTATORE Geom. Alfonso Casapulla IL DIRETTORE DEL LABORATORIO



Sondaggio: Campione: C1 Profondità di prelievo (m): 3.30-3.70

TAGLIO DIRETTO

	CONDIZIONI DI PICCO												
Provino	Pressione verticale σ' _n	Deformazione orizzontale $S_{\rm hf}$	Deformazione verticale S _{vf}	Resistenza al taglio τ _f									
(n)	(MPa)	(mm)	(mm)	(MPa)									
1 ■	0.049	3.75	-0.28	0.065									
2 🔷	0.098	#NOME?	-0.21	0.098									
3 ●	0.196	4.75	-0.11	0.150									

DIAGRAMMA DELL'INVILUPPO DI ROTTURA - CONDIZIONI DI PICCO

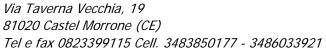
PARAMETRI D Coeff. di	Errore stand.	Angolo di attrito	Coesione intercetta
determinaz.	sulla stima di c	ф	С
r² (-)	s _v (-)	(gradi)	(Mpa)
9.97E-01	3.55E-02	29.73	0.039

Committente:Dott.ssa Geol. Bassi Maria TeresaProtocollo n.:108/10Cantiere:Bellizzi - Via Cuomo n. 21Data esecuzione prova:03/02/2010Prova (n):Dpsh 1Profondità della falda (m)n.d.

	S	TRATI	GRAF	IA INT	ERPRI	ETATI	VA			
			DAT	I GENI	ERALI					
Strato (n)	1	2	3	4	5	6	7			
Profondità iniziale (m)	0.00	2.10	6.60	7.50	9.00	11.70	13.50			
Profondità finale (m)	2.10	6.60	7.50	9.00	11.70	13.50	15.00			
Potenza dello strato (m)	2.10	4.50	0.90	1.50	2.70	1.80	1.50			
Peso di volume attribuito (g/cm³)	1.50	1.70	1.60	1.50	1.60	1.75	1.80			
Pressione vert efficace (Kg/cm²)	0.32	1.12	1.20	1.35	1.87	2.36	2.70			
Media numero colpi (N)	4	14	10	4	10	21	42			
Media resist. alla Punta (Kg/cm²) 13.00 45.00 30.00 15.00 25.00 49.00 92.00										
PARAMETI	RI GEO	TECNI	CI TEI	RRENI	DI NA	TURA	GRAN			
Angolo di attrito (°)	29	34	32	29	32	36	>38			
Densità relativa (%)	35	66	56	35	55	80	100			
Mod. di deformazione (Kg/cm²)	39	135	90	45	75	147	276			
Mod. taglio dinamico (Kg/cm²)	72	299	301	307	470	667	804			
Stato di addensamento	S	Μ	М	S	М	М	D			
PARAME	TRI GE	EOTEC	NICI T	ERRE	NI DI N	IATUR	A COE			
Coesione non dren. (Kg/cm²)	0.63	2.19	1.44	0.68	1.16	2.33	4.47			
Modulo edometrico (Kg/cm²)	28.00	99.00	66.00	33.00	55.00	107.00	202.00			
Grado di sovracons. OCR (-)	1.03	7.23	5.75	4.09	2.17	1.46	1.14			
Mod. di taglio dinam. (t/m²)	4'128	10'968	8'436	4'128	8'436	15'047	25'838			
Stato di consistenza	Med	С	С	Med	С	МC	D			

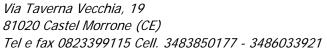
LEGENDA

Terreni di natura granulare - Stato di addensamento


M S=Molto sciolto, S=Sciolto, M=Medio, D=Denso, M D=Molto Denso

Terreni di natura coesiva - Stato di consistenza

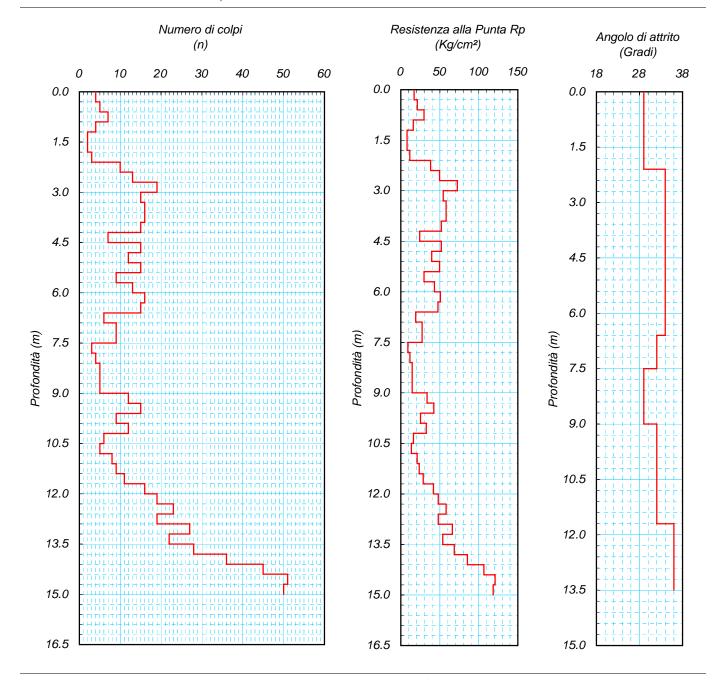
M=Molle, T=Tenero, Med=Medio, C=Compatto, M C=Molto Compatto, D=Duro

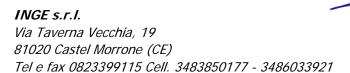


Committente:Dott.ssa Geol. Bassi Maria TeresaProtocollo n.:108/10Cantiere:Bellizzi - Via Cuomo n. 21Data esecuzione prova:03/02/2010Prova (n):Dpsh 1Profondità della falda (m)n.d.

Prof.	Colpi	Rp	Prof.	Colpi	Rp	Prof.	Colpi	Rp	Prof.	Colpi	Rp	Prof.	Colpi	Rp
(m)	(N)	(Kg/cm²)	(m)	(N)	(Kg/cm²)	(m)	(N)	(Kg/cm²)	(m)	(N)	(Kg/cm²)	(m)	(N)	(Kg/cm²)
0.30	4	16.98	9.30	12	33.75	. ,	. ,	,	, ,	. ,	,		. ,	,
0.60	5	21.23	9.60	15	42.19									
0.90	7	29.72	9.90	9	25.31									
1.20	4	16.07	10.20	12	32.53									
1.50	2	8.04	10.50	6	16.27									
1.80	2	8.04	10.80	5	13.55									
2.10	3	11.44	11.10	8	20.93									
2.40	10	38.14	11.40	9	23.55									
2.70	13	49.58	11.70	11	28.78									
3.00	19	72.46	12.00	16	41.86									
3.30	15	54.44	12.30	19	48.03									
3.60	16	58.06	12.60	23	58.15									
3.90	16	58.06	12.90	19	48.03									
4.20	15	51.92	13.20	27	66.03									
4.50	7	24.23	13.50	22	53.80									
4.80	15	51.92	13.80	28	68.48									
5.10	12	39.71	14.10	36	85.26									
5.40	15	49.63	14.40	45	106.58									
5.70	9	29.78	14.70	51	120.79									
6.00	13	43.01	15.00	50	118.42									
6.30	16	50.70												
6.60	15	47.54												
6.90	6	19.01												
7.20	9	27.36												
7.50	9	27.36												
7.80	3	9.12												
8.10	4	11.69												
8.40	5	14.61												
8.70	5	14.61												
9.00	5	14.61												

Committente: Dott.ssa Geol. Bassi Maria Teresa Protocollo n.: 108/10


Cantiere: Bellizzi - Via Cuomo n. 21


Prova (n): Dpsh 1

Data esecuzione prova: 03/02/2010

Profondità della falda (m) n.d.

GRAFICI NUMERO DI COLPI, RESIST. ALLA PUNTA E ANGOLO DI ATTRITO IN FUNZ. DELLA PROFONDITA'

SG-019

Castel Morrone (CE), 24/06/2011

Accettazione n: TER077/2011 Data ricevimento: 16/06/11 Data esecuzione prova: 17/06/11

Committente: Dott.ssa Geol. Bassi Maria Teresa p/c D'Onofrio Elisena

Cantiere: Loc. Rapaciceri - Bellizzi (SA)

Sondaggio: Campione: C1 Profondità di prelievo (m): 2.90 - 3.40

IDENTIFICAZIONE DEL TERRENO

(ASTM D2488-00)

CARATTERI IDENTIFICATIVI

Contenitore: Fustella pareti grosse in acciaio inox Diametro (cm): 8.10 Lungh. (cm): 28.50

Massa (Kg 2.614 Condizione del campione estruso: Buone Classe di qualità (AGI): Q5

PROVE DI CONSISTENZA SPEDITIVE

Pocket Penetrometer Test (MPa): 0.245 Pocket Vane Test (MPa): 0.177

CARATTERISTICHE VISIVE

DESCRIZIONE DEL CAMPIONE

Materiale a granulometria limoso - argillosa debolmente sabbiosa, contenente noduli organici e microcristalli chiari.

Materiale mediamente consistente.

COLORE (Tavola di Munsell)

10YR Marrone giallo scuro 3/4

Foto campione

LO SPERIMENTATORE
Geom. Alfonso Casapulla

IL DIRETTORE DEL LABORATORIO

Accettazione n: TER077/2011 Data ricevimento: 16/06/11 Data esecuzione prova: 17/06/11

Committente: Dott.ssa Geol. Bassi Maria Teresa p/c D'Onofrio Elisena

Cantiere: Loc. Rapaciceri - Bellizzi (SA)

Sondaggio: Campione: C1 Profondità di prelievo (m): 2.90 - 3.40

CARATTERISTICHE FISICHE DEL TERRENO

(CNR-UNI 10008-64 BS 1377/75 ASTM D854-83)

CONDIZIONI NATURALI

Peso specifico del terreno γ_s (KN/m³) 27.57

Peso dell'unità di volume (fustellamento) γ (KN/m³) 16.84

Peso dell'unità di volume (pesata idrostatica) γ (KN/m³)

Contenuto d'acqua W (%) 44.62

Peso secco dell'unità di volume γ_d (KN/m³) 11.65

Indice di porosità e (-) 1.37

Porosità n (-) 0.58

Grado di saturazione S (-) 0.92

CONDIZIONI DI SATURAZIONE

Peso dellunità di volume immerso in acqua γ' (KN/m³) 7.50

Peso dell'unità di volume saturo d'acqua γ_{sat} (KN/m³) 17.31

Contenuto d'acqua W_{sat} (%) 48.63

LO SPERIMENTATORE Geom. Alfonso Casapulla IL DIRETTORE DEL LABORATORIO
Dott. Geol. Antonio Petriccione

Castel Morrone (CE), 24/06/2011

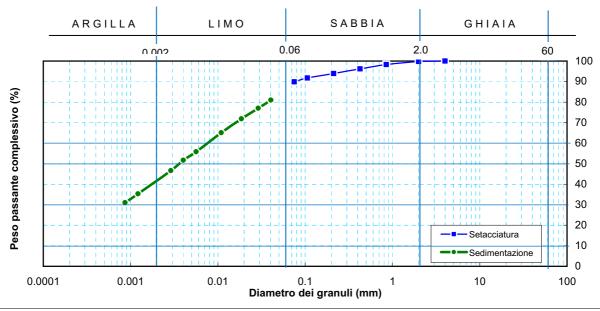
Certificato n.

00504

Accettazione n: TER077/2011 Data ricevimento: 16/06/11 Data esecuzione prova: 20/06/11

Committente: Dott.ssa Geol. Bassi Maria Teresa p/c D'Onofrio Elisena

Cantiere: Loc. Rapaciceri - Bellizzi (SA)


Sondaggio: Campione: C1 Profondità di prelievo (m): 2.90 - 3.40

ANALISI GRANULOMETRICA

(ASTM D421-D422-D2217)

					,				
	VALORI	DETERN	MINATI M	EDIANTE	SETACC	IATURA			
Vaglio ASTM (No)			5	10	20	40	70	140	200
Diametro granuli (mm)			4.000	2.000	0.850	0.425	0.212	0.106	0.075
Peso passante compl. (%)			100.00	99.73	98.32	96.20	93.92	91.72	89.85
1	VALORI I	DETERM	INATI ME	DIANTES	SEDIMEN	TAZIONE			
Diametro granuli (mm)	0.040	0.029	0.019	0.011	0.006	0.004	0.003	0.0012	0.0009
Peso passante compl. (%)	81.02	76.99	71.88	65.10	55.78	51.66	46.59	35.30	31.02
FR	AZIONI G	RANULO	OMETRIC	HE E PAR	RAMETRI	CORREL	ATI		
Frazione argillosa < 0.002 m	m (%)	4	0.56	Diametro	efficace	D ₁₀	(mm)		
Frazione limosa < 0.06 mm	(%)	4	5.46	Diametro	medio D)30	(mm)		
Frazione < 0.074 mm	(%)	8	9.85	Diametro	medio D) ₅₀	(mm)	0.003	658
Frazione sabbiosa < 2 mm	(%)	1	3.98	Diametro	medio D) ₆₀	(mm)	0.008	039
Frazione ghiaiosa < 60 mm	(%)	(0.00	Coefficie	nte di un	iformità (C _u (-)		
Frazione ciottolosa ≥ 60 r	mm (%)	(0.00	Coefficie	nte di cu	rvatura C	c (-)		
Class. A.G.I. (1990): Limo c	on argil	la debol	lmente s	abbiosa					

DIAGRAMMA DELLA DISTRIBUZIONE GRANULOMETRICA

LO SPERIMENTATORE Geom. Alfonso Casapulla IL DIRETTORE DEL LABORATORIO

Castel Morrone (CE), 24/06/2011

Certificato n.

00505

Accettazione n: TER077/2011 Data ricevimento: 16/06/11 Data esecuzione prova: 17/06/11

Committente: Dott.ssa Geol. Bassi Maria Teresa p/c D'Onofrio Elisena

Cantiere: Loc. Rapaciceri - Bellizzi (SA)

Sondaggio: Campione: C1 Profondità di prelievo (m): 2.90 - 3.40

TAGLIO DIRETTO

(ASTM D 3080-98)

	DIMENS	SIONI DEI I	PROVINI	VALORI A INIZIO	CONSOLIDAZ.	PARAI	ARAMETRI DELLA CONSOLIDAZIONE			
Prov.	Lungh. lato I	Altezza iniziale h	Area di base A _h	Peso di volume γ _i	Contenuto d'acqua w _i	Durata consol. δt	Pressione di consolidazionε σ _n	Cedim. finale δh	Tempo	
(n)	(cm)	(cm)	(cm²)	(KN/m³)	(%)	(ore)	(MPa)	(mm)	(min)	
1 🔳	6.00	2.50	36.00	16.75	43.98	24.00	0.049	0.538	8.03	
2 🔷	6.00	2.50	36.00	16.82	43.94	24.00	0.098	1.238	5.54	
3 •	6.00	2.50	36.00	16.89	43.90	24.00	0.196	1.820	4.78	

CONSOLIDAZIONE DEI PROVINI						VALORI A FINE CONSOLIDAZ.			
Provino n.1 ■		Provino n.2 🔷		Provino n.3		Prov.	Peso di	Contenuto	
Tempo t (min)	Cedim. δh (mm)	Tempo t (min)	Cedim. δh (mm)	Tempo t (min)	Cedim δh (mm)	(n)	volume γ _f (KN/m³)	d'acqua w _f (%)	
0.1	0.37	0.1	0.95	0.1	1.45	1 💻	17.59	47.94	
0.25	0.38	0.25	0.99	0.25	1.50	2 🔷	18.00	46.43	
0.4	0.40	0.4	1.02	0.4	1.54	3 •	18.34	44.93	
0.5	0.40	0.5	1.03	0.5	1.56				
1	0.41	1	1.04	1	1.58				
2	0.42	2	1.07	2	1.62				
4	0.44	4	1.10	4	1.65				
8	0.46	8	1.12	8	1.67				
15	0.48	15	1.14	15	1.70		CARATTERISTICHE DELLA PROVA		
30	0.50	30	1.16	30	1.72		Condizione	Orientazione	Velocità di
60	0.50	60	1.18	60	1.74		del	strutturale	def. orizz.
120	0.51	120	1.19	120	1.76	Prov.	provino	del provino	V_{i}
240	0.52	240	1.21	240	1.78	(n)		(°)	(mm/min)
480	0.53	480	1.22	480	1.80	1 🔳	Indisturbato	n.d.	0.049
960	0.54	960	1.23	960	1.81	2 🔷	Indisturbato	n.d.	0.049
1440	0.54	1440	1.24	1440	1.82	3 ●	Indisturbato	n.d.	0.049

Note: Prova di taglio eseguita con la scatola di Casagrande.

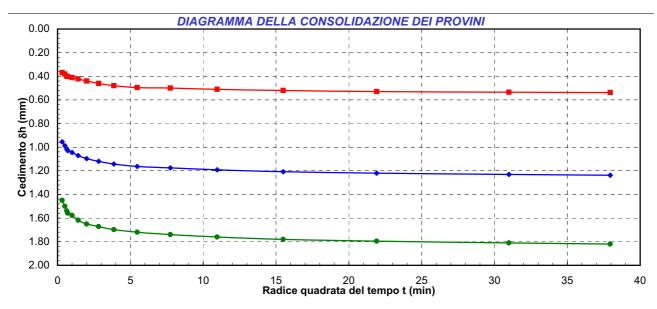
LO SPERIMENTATORE
Geom. Alfonso Casapulla

IL DIRETTORE DEL LABORATORIO

Certificato n.

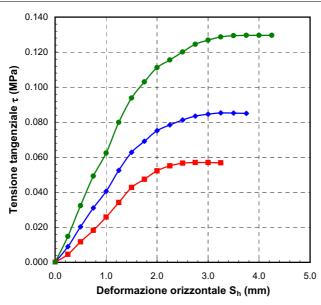
00505

Accettazione n: TER077/2011 Data ricevimento: 16/06/11 Data esecuzione prova: 17/06/11


Committente: Dott.ssa Geol. Bassi Maria Teresa p/c D'Onofrio Elisena

Cantiere: Loc. Rapaciceri - Bellizzi (SA)

Sondaggio: Campione: C1 Profondità di prelievo (m): 2.90 - 3.40


TAGLIO DIRETTO

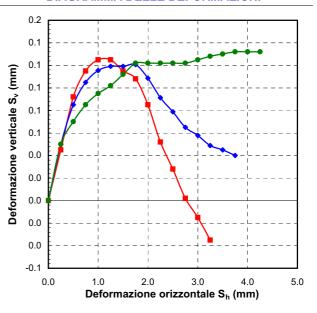

(ASTM D 3080-98)

DIAGRAMMA DEFORMAZIONE-TENSIONE

DIAGRAMMA DELLE DEFORMAZIONI

LO SPERIMENTATORE Geom. Alfonso Casapulla IL DIRETTORE DEL LABORATORIO
Dott. Geol. Antonio Petriccione

Certificato n.

00505

Accettazione n: TER077/2011 Data ricevimento: 16/06/11 Data esecuzione prova: 17/06/11

Committente: Dott.ssa Geol. Bassi Maria Teresa p/c D'Onofrio Elisena

Cantiere: Loc. Rapaciceri - Bellizzi (SA)

Sondaggio: Campione: C1 Profondità di prelievo (m): 2.90 - 3.40

TAGLIO DIRETTO

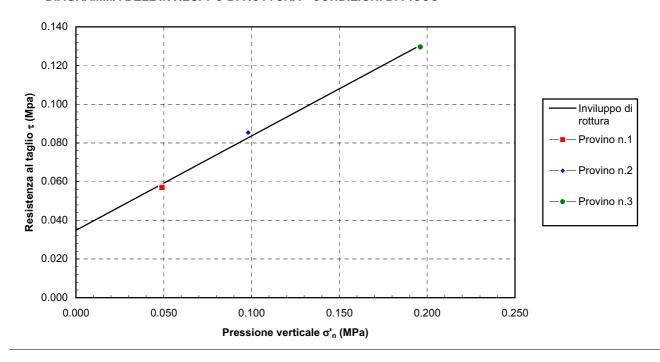
(ASTM D 3080-98)

VALORI RILEVATI AI COMPARATORI DELLA MACCHINA DI TAGLIO - CONDIZIONI DI PICCO

	Provino n.	1 =	F	Provino n.:	2 🔷	F	Provino n.:	3 ●
Def. orizz. S _h	Def. vert. S _v	Tensione tangenziale τ	Def. orizz. S _h	Def. vert. S _v	Tensione tangenziale τ	Def. orizz. S _h	Def. vert. S _v	Tensione tangenziale τ
(mm)	(mm)	(MPa)	(mm)	(mm)	(MPa)	(mm)	(mm)	(MPa)
0.00	0.00	0.000	0.00	0.00	0.000	0.00	0.00	0.000
0.25	0.05	0.005	0.25	0.05	0.009	0.25	0.05	0.015
0.50	0.09	0.012	0.50	0.09	0.020	0.50	0.07	0.032
0.75	0.12	0.018	0.75	0.11	0.031	0.75	0.09	0.049
1.00	0.13	0.026	1.00	0.12	0.041	1.00	0.10	0.062
1.25	0.13	0.034	1.25	0.12	0.052	1.25	0.10	0.080
1.50	0.12	0.043	1.50	0.12	0.063	1.50	0.11	0.094
1.75	0.11	0.047	1.75	0.12	0.069	1.75	0.12	0.103
2.00	0.09	0.052	2.00	0.11	0.075	2.00	0.12	0.111
2.25	0.05	0.055	2.25	0.09	0.078	2.25	0.12	0.116
2.50	0.03	0.057	2.50	0.08	0.081	2.50	0.12	0.120
2.75	0.00	0.057	2.75	0.07	0.083	2.75	0.12	0.125
3.00	-0.02	0.057	3.00	0.06	0.085	3.00	0.13	0.127
3.25	-0.04	0.057	3.25	0.05	0.085	3.25	0.13	0.129
			3.50	0.05	0.085	3.50	0.13	0.129
			3.75	0.04	0.085	3.75	0.13	0.130
						4.00	0.13	0.130
						4.25	0.13	0.130

LO SPERIMENTATORE
Geom. Alfonso Casapulla

IL DIRETTORE DEL LABORATORIO
Dott. Geol. Antonio Petriccione



Sondaggio: Campione: C1 Profondità di prelievo (m): 2.90 - 3.40

TAGLIO DIRETTO

		CONDIZIONI D	OI PICCO	
Provino	Pressione verticale σ' _n	Deformazione orizzontale S _{hf}	Deformazione verticale S _{vf}	Resistenza al taglio τ _f
(n)	(MPa)	(mm)	(mm)	(MPa)
1 ■	0.049	2.75	0.00	0.057
2 🔷	0.098	3.25	0.05	0.085
3 ●	0.196	3.75	0.13	0.130

DIAGRAMMA DELL'INVILUPPO DI ROTTURA - CONDIZIONI DI PICCO

PARAMETRI D Coeff. di	DELL'INVILUPPO Errore stand.	Angolo di attrito	Coesione intercetta
determinaz.	sulla stima di c	ф	С
r ² (-)	s _v (-)	(gradi)	(Mpa)
9.96E-01	3.40E-02	26.00	0.035

SG-020

Accettazione n: TER077/2011 Data ricevimento: 16/06/11 Data esecuzione prova: 17/06/11

Committente: Dott.ssa Geol. Bassi Maria Teresa p/c D'Onofrio Pasquale

Cantiere: Loc. Rapaciceri - Bellizzi (SA)

Sondaggio: Campione: C1 Profondità di prelievo (m): 3.00 - 3.50

IDENTIFICAZIONE DEL TERRENO

(ASTM D2488-00)

CARATTERI IDENTIFICATIVI

Contenitore: Fustella pareti grosse in acciaio inox Diametro (cm): 8.20 Lungh. (cm): 23.50

Massa (Kg 2.389 Condizione del campione estruso: Buone Classe di qualità (AGI): Q5

PROVE DI CONSISTENZA SPEDITIVE

Pocket Penetrometer Test (MPa): > 0.600 Pocket Vane Test (MPa): > 0.200

CARATTERISTICHE VISIVE

DESCRIZIONE DEL CAMPIONE

Materiale a granulometria limoso - argillosa debolmente sabbiosa, contenente frammenti calcarei millimetrici. Materiale consistente, con tratti scagliosi.

COLORE (Tavola di Munsell)

2.5Y Marrone oliva chiaro 5/3

Foto campione

LO SPERIMENTATORE
Geom. Alfonso Casapulla

IL DIRETTORE DEL LABORATORIO

Castel Morrone (CE), **24/06/2011** Certificato n. **00500**

Accettazione n: TER077/2011 Data ricevimento: 16/06/11 Data esecuzione prova: 17/06/11

Committente: Dott.ssa Geol. Bassi Maria Teresa p/c D'Onofrio Pasquale

Cantiere: Loc. Rapaciceri - Bellizzi (SA)

Sondaggio: Campione: C1 Profondità di prelievo (m): 3.00 - 3.50

CARATTERISTICHE FISICHE DEL TERRENO

(CNR-UNI 10008-64 BS 1377/75 ASTM D854-83)

CONDIZIONI NATURALI

Peso specifico del terreno γ_s (KN/m³) 27.38

Peso dell'unità di volume (fustellamento) γ (KN/m³) 18.69

Peso dell'unità di volume (pesata idrostatica) γ (KN/m³)

Contenuto d'acqua W (%) 23.92

Peso secco dell'unità di volume γ_d (KN/m³) 15.08

Indice di porosità e (-) 0.82

Grado di saturazione S (-) 0.82

0.45

CONDIZIONI DI SATURAZIONE

Porosità n (-)

Peso dellunità di volume immerso in acqua γ' (KN/m³) 9.68

Peso dell'unità di volume saturo d'acqua γ_{sat} (KN/m³) 19.49

Contenuto d'acqua W_{sat} (%) 29.21

LO SPERIMENTATORE Geom. Alfonso Casapulla IL DIRETTORE DEL LABORATORIO

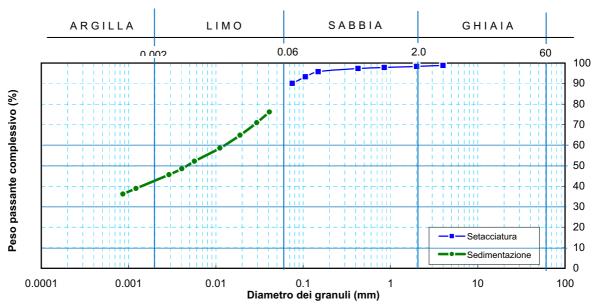
Certificato n.

00501

Accettazione n: TER077/2011 Data ricevimento: 16/06/11 Data esecuzione prova: 20/06/11

Committente: Dott.ssa Geol. Bassi Maria Teresa p/c D'Onofrio Pasquale

Cantiere: Loc. Rapaciceri - Bellizzi (SA)


Sondaggio: Campione: C1 Profondità di prelievo (m): 3.00 - 3.50

ANALISI GRANULOMETRICA

(ASTM D421-D422-D2217)

			•		•				
	VALORI	DETERN	IINATI M	EDIANTE	SETACC	IATURA			
Vaglio ASTM (No)			5	100	20	40	100	140	200
Diametro granuli (mm)			4.000	2.000	0.850	0.425	0.149	0.106	0.075
Peso passante compl. (%)			98.79	98.39	97.83	97.31	95.77	93.31	90.07
V	'ALORI I	DETERM	INATI ME	DIANTE S	SEDIMEN	TAZIONE			
Diametro granuli (mm)	0.041	0.029	0.019	0.011	0.006	0.004	0.003	0.0012	0.0009
Peso passante compl. (%)	76.12	70.94	64.88	58.54	52.12	48.49	45.61	38.91	36.17
FRA	ZIONI G	RANULO	OMETRIC	CHE E PAR	RAMETRI	CORREL	ATI		
Frazione argillosa < 0.002 mi	m (%)	4	2.01	Diametro	efficace	D ₁₀	(mm)		
Frazione limosa < 0.06 mm	(%)	4	1.90	Diametro	medio D) ₃₀	(mm)		
Frazione < 0.074 mm	(%)	9	0.07	Diametro	medio D) ₅₀	(mm)	0.004	753
Frazione sabbiosa < 2 mm	(%)	1	4.88	Diametro	medio D) ₆₀	(mm)	0.012	937
Frazione ghiaiosa < 60 mm	(%)	,	1.21	Coefficie	ente di un	iformità C	Ç _u (-)		
Frazione ciottolosa ≥ 60 m	nm (%)	(0.00	Coefficie	ente di cu	rvatura C	c (-)		
Class. A.G.I. (1990): Argilla	con lim	o debol	mente s	abbiosa					

DIAGRAMMA DELLA DISTRIBUZIONE GRANULOMETRICA

LO SPERIMENTATORE Geom. Alfonso Casapulla IL DIRETTORE DEL LABORATORIO

Certificato n.

00502

Accettazione n: TER077/2011 Data ricevimento: 16/06/11 Data esecuzione prova: 17/06/11

Committente: Dott.ssa Geol. Bassi Maria Teresa p/c D'Onofrio Pasquale

Cantiere: Loc. Rapaciceri - Bellizzi (SA)

Sondaggio: Campione: C1 Profondità di prelievo (m): 3.00 - 3.50

TAGLIO DIRETTO

(ASTM D 3080-98)

	DIMENS	SIONI DEI F	PROVINI	VALORI A INIZIO	CONSOLIDAZ.	PARAI	METRI DELLA COI	VSOLIDAZ	ZIONE
Prov.	Lungh. lato I	Altezza iniziale h	Area di base A _h	Peso di volume γ _i	Contenuto d'acqua w _i	Durata consol. δt	Pressione di consolidazione σ _n	Cedim. finale δh	Tempo T ₁₀₀
(n)	(cm)	(cm)	(cm²)	(KN/m³)	(%)	(ore)	(MPa)	(mm)	(min)
1 🔳	6.00	2.50	36.00	18.74	24.05	24.00	0.049	0.462	4.48
2 🔷	6.00	2.50	36.00	18.70	23.83	24.00	0.098	0.930	7.27
3 •	6.00	2.50	36.00	18.66	23.61	24.00	0.196	1.310	8.05

	CONSOL	IDAZIOI	NE DEI F	PROVINI			VALORI A FINE	CONSOLIDAZ.	
Provin	o n.1 =	Province	o n.2 🔷	Province	n.3 •	Prov.	Peso di	Contenuto	
Tempo t (min)	Cedim. δh (mm)	Tempo t (min)	Cedim. δh (mm)	Tempo t (min)	Cedim δh (mm)	(n)	volume γ _f (KN/m³)	d'acqua w _f (%)	
0.1	0.40	0.1	0.71	0.1	0.96	1 💻	19.96	29.69	
0.25	0.41	0.25	0.74	0.25	1.00	2 🔷	20.15	28.45	
0.4	0.42	0.4	0.76	0.4	1.02	3 •	20.27	27.21	
0.5	0.42	0.5	0.76	0.5	1.04				
1	0.42	1	0.77	1	1.05				
2	0.43	2	0.80	2	1.09				
4	0.44	4	0.82	4	1.13				
8	0.44	8	0.84	8	1.16				
15	0.45	15	0.86	15	1.19		CARAT	TERISTICHE DEL	LA PROVA
30	0.45	30	0.87	30	1.22		Condizione	Orientazione	Velocità di
60	0.45	60	0.88	60	1.24		del	strutturale	def. orizz.
120	0.45	120	0.90	120	1.26	Prov.	provino	del provino	V_{i}
240	0.46	240	0.91	240	1.27	(n)		(°)	(mm/min)
480	0.46	480	0.92	480	1.29	1 🔳	Indisturbato	n.d.	0.048
960	0.46	960	0.92	960	1.30	2 🔷	Indisturbato	n.d.	0.048
1440	0.46	1440	0.93	1440	1.31	3 •	Indisturbato	n.d.	0.048

Note: Prova di taglio eseguita con la scatola di Casagrande.

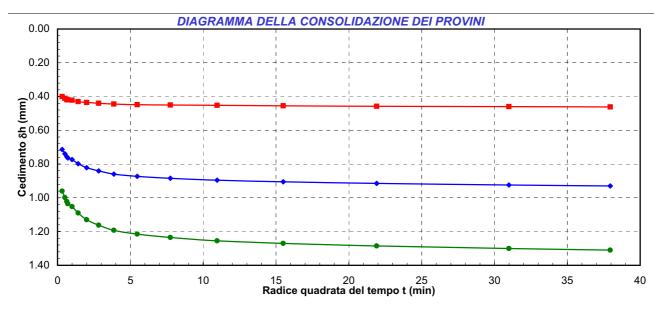
LO SPERIMENTATORE
Geom. Alfonso Casapulla

IL DIRETTORE DEL LABORATORIO

Certificato n.

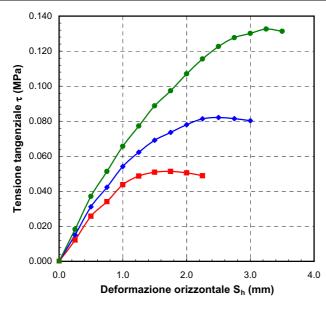
00502

Accettazione n: TER077/2011 Data ricevimento: 16/06/11 Data esecuzione prova: 17/06/11


Committente: Dott.ssa Geol. Bassi Maria Teresa p/c D'Onofrio Pasquale

Cantiere: Loc. Rapaciceri - Bellizzi (SA)

Sondaggio: Campione: C1 Profondità di prelievo (m): 3.00 - 3.50


TAGLIO DIRETTO

(ASTM D 3080-98)

DIAGRAMMA DEFORMAZIONE-TENSIONE

DIAGRAMMA DELLE DEFORMAZIONI

0.2 0.1 Deformazione verticale S_v (mm) 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 1.0 20 3.0 4.0 Deformazione orizzontale S_h (mm)

LO SPERIMENTATORE Geom. Alfonso Casapulla

IL DIRETTORE DEL LABORATORIO

Dott. Geol. Antonio Petriccione

Certificato n.

00502

Accettazione n: TER077/2011 Data ricevimento: 16/06/11 Data esecuzione prova: 17/06/11

Committente: Dott.ssa Geol. Bassi Maria Teresa p/c D'Onofrio Pasquale

Cantiere: Loc. Rapaciceri - Bellizzi (SA)

Sondaggio: Campione: C1 Profondità di prelievo (m): 3.00 - 3.50

TAGLIO DIRETTO

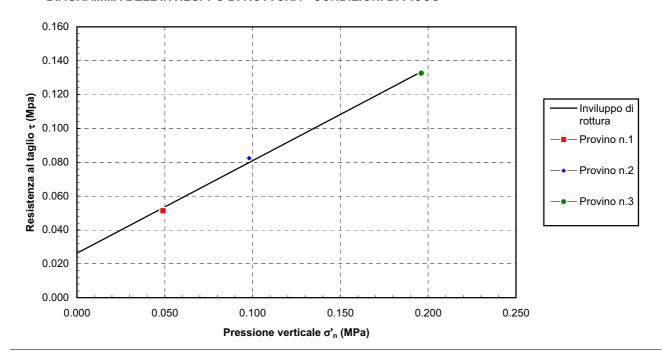
(ASTM D 3080-98)

VALORI RILEVATI AI COMPARATORI DELLA MACCHINA DI TAGLIO - CONDIZIONI DI PICCO

	Provino n.	1 =	F	Provino n.2	2 🔷	ı	Provino n.:	3 ●
Def. orizz. S _h	Def. vert. S _v	Tensione tangenziale τ	Def. orizz. S _h	Def. vert. S _v	Tensione tangenziale τ	Def. orizz. S _h	Def. vert. S _v	Tensione tangenziale τ
(mm)	(mm)	(MPa)	(mm)	(mm)	(MPa)	(mm)	(mm)	(MPa)
0.00	0.00	0.000	0.00	0.00	0.000	0.00	0.00	0.000
0.25	0.02	0.012	0.25	0.02	0.015	0.25	0.01	0.018
0.50	0.05	0.026	0.50	0.04	0.031	0.50	0.04	0.037
0.75	0.06	0.034	0.75	0.06	0.042	0.75	0.06	0.051
1.00	0.07	0.044	1.00	0.08	0.054	1.00	0.08	0.066
1.25	0.08	0.049	1.25	0.09	0.062	1.25	0.09	0.077
1.50	0.08	0.051	1.50	0.09	0.069	1.50	0.10	0.089
1.75	0.08	0.051	1.75	0.10	0.074	1.75	0.11	0.097
2.00	0.07	0.050	2.00	0.10	0.078	2.00	0.12	0.107
2.25	0.06	0.049	2.25	0.10	0.081	2.25	0.13	0.116
			2.50	0.10	0.082	2.50	0.13	0.123
			2.75	0.09	0.081	2.75	0.14	0.128
			3.00	0.09	0.080	3.00	0.14	0.130
						3.25	0.14	0.133
						3.50	0.14	0.131

LO SPERIMENTATORE
Geom. Alfonso Casapulla

IL DIRETTORE DEL LABORATORIO
Dott. Geol. Antonio Petriccione



Sondaggio: Campione: C1 Profondità di prelievo (m): 3.00 - 3.50

TAGLIO DIRETTO

		CONDIZIONI D	OI PICCO	
Provino	Pressione verticale σ' _n	Deformazione orizzontale S _{hf}	Deformazione verticale S _{vf}	Resistenza al taglio τ _f
(n)	(MPa)	(mm)	(mm)	(MPa)
1 ■	0.049	1.75	0.08	0.051
2 🔷	0.098	2.50	0.10	0.082
3 ●	0.196	3.25	0.14	0.133

DIAGRAMMA DELL'INVILUPPO DI ROTTURA - CONDIZIONI DI PICCO

PARAMETRI D Coeff. di	DELL'INVILUPPO Errore stand.	Angolo di attrito	Coesione intercetta	
determinaz.	sulla stima di c	ф	С	
r ² (-)	s _v (-)	(gradi)	(Mpa)	
9.97E-01	3.24E-02	28.66	0.026	

SG-021

PROVA PENETROMETRICA DINAMICA PESANTE (D.P.S.H.)

Standard utilizzato: Emilia (30) [peso maglio Kg 63.5, volata cm 75, area punta cmq 20, angolo di apertura della punta 60°]

Committente: Dott.ssa Bassi Mariateresa Id Int. 263 / 11

Cantiere: D'Aiutolo - Via campo Eminente, Bellizzi (SA)

Coordinate lat. e long.: N40.61604 / E14.93804 Data esecuz. prova: 16/06/2011

Prova (n): DPSH 01 Certificato n° PSA139/263/269 del 20/06/2011 Accett. n.: A139 / 11

Prof.	Colpi	Prof.	Colpi	Prof.	Colpi	Prof.	Colpi	Prof.	Colpi
(m)	(N)	(m)	(N)	(m)	(N)	(m)	(N)	(m)	(N)
0.30	15	9.30	18						
0.60	16	9.60	17						
0.90	5	9.90	15						
1.20	4	10.20	18						
1.50	4	10.50	19						
1.80	6	10.80	21						
2.10	7	11.10	25						
2.40	6	11.40	27						
2.70	4	11.70	18						
3.00	6	12.00	19						
3.30	10	12.30	22						
3.60	12	12.60	23						
3.90	11	12.90	27						
4.20	10	13.20	43						
4.50	9	13.50	60						
4.80	9								
5.10	9								
5.40	11								
5.70	11								
6.00	8								
6.30	9								
6.60	10								
6.90	12								
7.20	18								
7.50	15								
7.80	15								
8.10	10								
8.40	12								
8.70	16								
9.00	14								

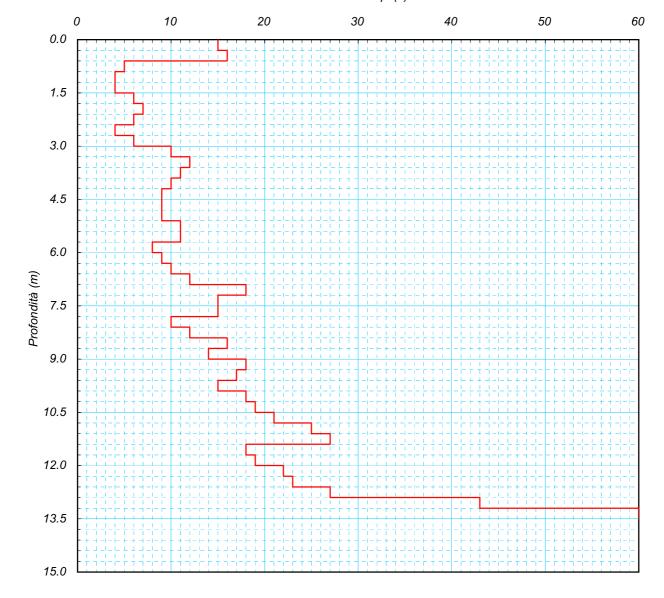
IL RESPONSABILE DI SITO

IL DIRETTORE DEL LABORATORIO Dott. Geol. Giuseppe Riello

PROVA PENETROMETRICA DINAMICA PESANTE (D.P.S.H.)

Standard utilizzato: Emilia (30) [peso maglio Kg 63.5, volata cm 75, area punta cmq 20, angolo di apertura della punta 60°]

Committente: Dott.ssa Bassi Mariateresa Id Int. 263 / 11


Cantiere: D'Aiutolo - Via campo Eminente, Bellizzi (SA)

Coordinate lat. e long.: N40.61604 / E14.93804 Data esecuz. prova: 16/06/2011

Prova (n): DPSH 01 Certificato n° PSA139/263/269 del 20/06/2011 Accett. n.: A139 / 11

GRAFICO NUMERO DI COLPI

Numero di colpi (n)

IL RESPONSABILE DI SITO

IL DIRETTORE DEL LABORATORIO Dott. Geol. Giuseppe Riello

Standard utilizzato: Emilia (30) [peso maglio Kg 63.5, volata cm 75, area punta cmq 20, angolo di apertura della punta 60°]

Committente: Dott.ssa Bassi Mariateresa

Cantiere: D'Aiutolo - Via campo Eminente, Bellizzi (SA)

Coordinate lat. e long.: N40.61604 / E14.93804 Data esecuz. prova: 16/06/2011

Prova (n): DPSH 01

	S	TRATI	GRAF	IA INT	ERPRI	ETATI	/A
			DAT	I GENI	ERALI		
Strato (n)	1	2	3	4	5	6	
Profondità iniziale (m)	0.00	3.00	6.60	7.80	10.50	12.90	
Profondità finale (m)	3.00	6.60	7.80	10.50	12.90	13.50	
Potenza dello strato (m)	3.00	3.60	1.20	2.70	2.40	0.60	
Peso di volume attribuito (g/cm³)	1.40	1.40	1.45	1.45	1.50	1.60	
Pressione vert efficace (Kg/cm²)	0.42	0.92	1.13	1.52	1.94	2.16	
Media numero colpi (N)	7	10	14	15	23	52	
Media resist. alla Punta (Kg/cm²)	26.00	32.00	43.00	43.00	58.00	106.00	
PARAMETI	RI GEO	TECN	ICI TEI	RRENI	DI NA	TURA	GRANULARE
Angolo di attrito (°)	31	32	34	34	36	>38	
Densità relativa (%)	47	56	66	68	84	100	
Mod. di deformazione (Kg/cm²)	78	96	129	129	174	318	
Mod. taglio dinamico (Kg/cm²)	102	232	301	406	546	644	
Stato di addensamento	S	М	М	М	М	M D	
PARAME	TRI GE	EOTEC	NICI T	ERRE	NI DI N	IATUR	A COESIVA
Coesione non dren. (Kg/cm²)	1.28	1.55	2.09	2.07	2.80	5.19	
Modulo edometrico (Kg/cm²)	57.00	70.00	94.00	94.00	127.00	233.00	
Grado di sovracons. OCR (-)	1.02	8.79	5.81	3.02	1.88	1.60	
Mod. di taglio dinam. (t/m²)	6'387	8'436	10'968	11'574	16'154	30'522	
Stato di consistenza	Med	С	С	МC	МC	D	

LEGENDA

Terreni di natura granulare - Stato di addensamento

M S=Molto sciolto, S=Sciolto, M=Medio, D=Denso, M D=Molto Denso

Terreni di natura coesiva - Stato di consistenza

M=Molle, T=Tenero, Med=Medio, C=Compatto, M C=Molto Compatto, D=Duro

Accettazione n: TER078/2011 Data ricevimento: 17/06/11 Data esecuzione prova: 20/06/11

Committente: Dott.ssa Geol. Bassi Maria Teresa

Cantiere: D'Aiutolo - Via Campo Eminente, Bellizzi (SA)

Sondaggio: DP1 Campione: C1 Profondità di prelievo (m): 2.50 - 3.00

IDENTIFICAZIONE DEL TERRENO

(ASTM D2488-00)

CARATTERI IDENTIFICATIVI

Contenitore: Fustella pareti grosse in acciaio inox Diametro (cm): 8.50 Lungh. (cm): 44.50

Massa (Kg 4.454 Condizione del campione estruso: Buone Classe di qualità (AGI): Q5

PROVE DI CONSISTENZA SPEDITIVE

Pocket Penetrometer Test (MPa): 0.451 Pocket Vane Test (MPa): > 0.200

CARATTERISTICHE VISIVE

DESCRIZIONE DEL CAMPIONE

Materiale a granulometria limoso - argillosa debolmente sabbiosa. Materiale mediamente consistente.

COLORE (Tavola di Munsell)

DA 10YR Marrone molto scuro 2/2 A 2.5Y Marrone oliva chiaro 5/3

Foto campione

LO SPERIMENTATORE
Geom. Alfonso Casapulla

IL DIRETTORE DEL LABORATORIO

Castel Morrone (CE), **24/06/2011** Certificato n. **00512**

Accettazione n: TER078/2011 Data ricevimento: 17/06/11 Data esecuzione prova: 22/06/11

Committente: Dott.ssa Geol. Bassi Maria Teresa

Cantiere: D'Aiutolo - Via Campo Eminente, Bellizzi (SA)

Sondaggio: DP1 Campione: C1 Profondità di prelievo (m): 2.50 - 3.00

CARATTERISTICHE FISICHE DEL TERRENO

(CNR-UNI 10008-64 BS 1377/75 ASTM D854-83)

CONDIZIONI NATURALI

Peso specifico del terreno γ_s (KN/m³) 27.00

Peso dell'unità di volume (fustellamento) γ (KN/m³) 17.71

Peso dell'unità di volume (pesata idrostatica) γ (KN/m³)

Contenuto d'acqua W (%) 29.44

Peso secco dell'unità di volume γ_d (KN/m³) 13.68

Indice di porosità e (-) 0.97

Porosità n (-) 0.49

Grado di saturazione S (-) 0.83

CONDIZIONI DI SATURAZIONE

Peso dellunità di volume immerso in acqua γ' (KN/m³) 8.71

Peso dell'unità di volume saturo d'acqua γ_{sat} (KN/m³) 18.52

Contenuto d'acqua W_{sat} (%) 35.38

LO SPERIMENTATORE Geom. Alfonso Casapulla IL DIRETTORE DEL LABORATORIO

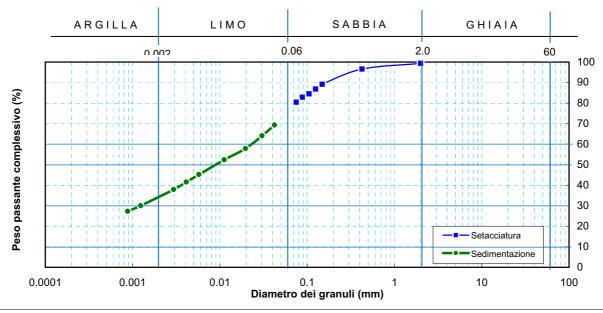
Certificato n.

00513

Accettazione n: TER078/2011 Data ricevimento: 17/06/11 Data esecuzione prova: 21/06/11

Committente: Dott.ssa Geol. Bassi Maria Teresa

Cantiere: D'Aiutolo - Via Campo Eminente, Bellizzi (SA)


Sondaggio: DP1 Campione: C1 Profondità di prelievo (m): 2.50 - 3.00

ANALISI GRANULOMETRICA

(ASTM D421-D422-D2217)

		1	(• /				
VA	ALORI	DETERN	MINATI M	IEDIANTE	SETACC	IATURA			
Vaglio ASTM (No)			10	40	100	100	140	170	200
Diametro granuli (mm)			2.000	0.425	0.149	0.125	0.105	0.088	0.075
Peso passante compl. (%)			99.40	96.55	89.17	86.86	84.51	82.85	80.43
VAI	LORI I	DETERM	INATI ME	DIANTE S	SEDIMEN	TAZIONE			
Diametro granuli (mm) 0.	042	0.030	0.020	0.011	0.006	0.004	0.003	0.0012	0.0009
Peso passante compl. (%) 69	9.26	64.07	57.85	52.41	45.18	41.57	37.87	30.03	27.26
FRAZ	IONI G	RANULO	OMETRIC	CHE E PAR	RAMETRI	CORRELA	4 <i>TI</i>		
Frazione argillosa < 0.002 mm	(%)	3	3.52	Diametro	efficace	D ₁₀	(mm)		
Frazione limosa < 0.06 mm	(%)	4	1.79	Diametro medio D ₃₀ (0.001	232
Frazione < 0.074 mm	(%)	8	80.43	Diametro	medio D) ₅₀	(mm)	0.009	413
Frazione sabbiosa < 2 mm	(%)	2	24.10	Diametro	medio D) ₆₀	(mm)	0.023	393
Frazione ghiaiosa < 60 mm	(%)	(0.60	Coefficie	ente di un	iformità C	u (-)		
Frazione ciottolosa ≥ 60 mm	(%)	(0.00	Coefficie	ente di cu	rvatura C	(-)		
Class. A.G.I. (1990): Limo con	argil	la sabbi	oso						

DIAGRAMMA DELLA DISTRIBUZIONE GRANULOMETRICA

LO SPERIMENTATORE Geom. Alfonso Casapulla IL DIRETTORE DEL LABORATORIO

Certificato n.

00514

Accettazione n: TER078/2011 Data ricevimento: 17/06/11 Data esecuzione prova: 20/06/11

Committente: Dott.ssa Geol. Bassi Maria Teresa

Cantiere: D'Aiutolo - Via Campo Eminente, Bellizzi (SA)

Sondaggio: DP1 Campione: C1 Profondità di prelievo (m): 2.50 - 3.00

TAGLIO DIRETTO

(ASTM D 3080-98)

	DIMENS	SIONI DEI I	PROVINI	VALORI A INIZIO	CONSOLIDAZ.	PARAI	METRI DELLA COI	NSOLIDAZ	ZIONE
Prov.	Lungh. lato I	Altezza iniziale h	Area di base A _h	Peso di volume γ _i	Contenuto d'acqua w _i	Durata consol. δt	Pressione di consolidazionε σ _n	Cedim. finale δh	Tempo T ₁₀₀
(n)	(cm)	(cm)	(cm²)	(KN/m³)	(%)	(ore)	(MPa)	(mm)	(min)
1 📕	6.00	2.50	36.00	18.06	30.62	24.00	0.049	0.340	3.79
2 🔷	6.00	2.50	36.00	17.79	31.58	24.00	0.098	0.717	2.68
3 •	6.00	2.50	36.00	17.53	32.59	24.00	0.196	1.025	2.44

	CONSOL	IDAZIO	NE DEI F	PROVINI	,		VALORI A FINE	CONSOLIDAZ.	
Provin	o n.1 =		o n.2 🔷	Province		Prov.	Peso di	Contenuto	
Tempo t (min)	δh (mm)	t (min)	Cedim. δh (mm)	t (min)	Cedim δh (mm)	(n)	volume γ _f (KN/m³)	d'acqua w _f (%)	
0.1	0.26	0.1	0.54	0.1	0.77	1 -	18.70	33.39	
0.25	0.28	0.25	0.59	0.25	0.85	2 🔷	18.73	34.50	
0.4	0.29	0.4	0.61	0.4	0.88	3 •	18.70	35.66	
0.5	0.29	0.5	0.62	0.5	0.89				
1	0.29	1	0.63	1	0.90				
2	0.30	2	0.64	2	0.92				
4	0.31	4	0.65	4	0.93				
8	0.31	8	0.66	8	0.94				
15	0.31	15	0.66	15	0.95		CARAT	TERISTICHE DELI	A PROVA
30	0.32	30	0.67	30	0.97		Condizione	Orientazione	Velocità di
60	0.32	60	0.68	60	0.98		del	strutturale	def. orizz.
120	0.33	120	0.69	120	0.99	Prov.	provino	del provino	V_{i}
240	0.33	240	0.70	240	1.00	(n)		(°)	(mm/min)
480	0.34	480	0.70	480	1.01	1 =	Indisturbato	n.d.	0.103
960	0.34	960	0.71	960	1.02	2 🔷	Indisturbato	n.d.	0.103
1440	0.34	1440	0.72	1440	1.03	3 •	Indisturbato	n.d.	0.103

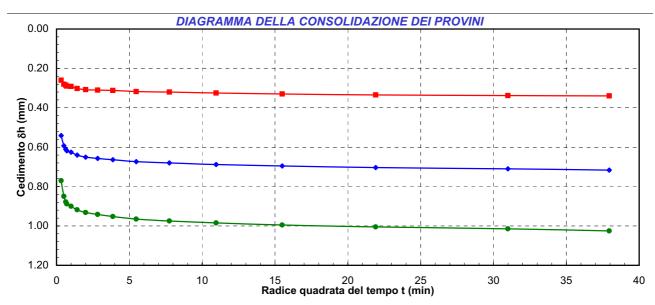
Note: Prova di taglio eseguita con la scatola di Casagrande.

LO SPERIMENTATORE
Geom. Alfonso Casapulla

IL DIRETTORE DEL LABORATORIO

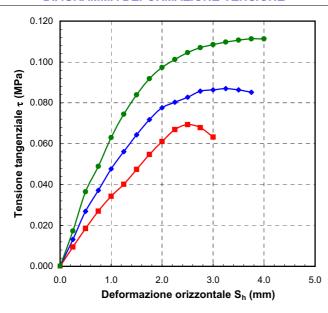
Certificato n.

00514


Accettazione n: TER078/2011 Data ricevimento: 17/06/11 Data esecuzione prova: 20/06/11

Committente: Dott.ssa Geol. Bassi Maria Teresa Cantiere: D'Aiutolo - Via Campo Eminente, Bellizzi (SA)

Sondaggio: DP1 Campione: C1 Profondità di prelievo (m): 2.50 - 3.00


TAGLIO DIRETTO

(ASTM D 3080-98)

DIAGRAMMA DEFORMAZIONE-TENSIONE

DIAGRAMMA DELLE DEFORMAZIONI

0.3 0.3 (mm) 0.2 Deformazione verticale S_v 0.2 0.1 0.1 0.0 -0.1 -0.1 -0.2 0.0 1.0 20 3.0 5.0 Deformazione orizzontale S_h (mm)

LO SPERIMENTATORE Geom. Alfonso Casapulla IL DIRETTORE DEL LABORATORIO
Dott. Geol. Antonio Petriccione

Certificato n. **00514**

Accettazione n: TER078/2011 Data ricevimento: 17/06/11 Data esecuzione prova: 20/06/11

Committente: Dott.ssa Geol. Bassi Maria Teresa

Cantiere: D'Aiutolo - Via Campo Eminente, Bellizzi (SA)

Sondaggio: DP1 Campione: C1 Profondità di prelievo (m): 2.50 - 3.00

TAGLIO DIRETTO

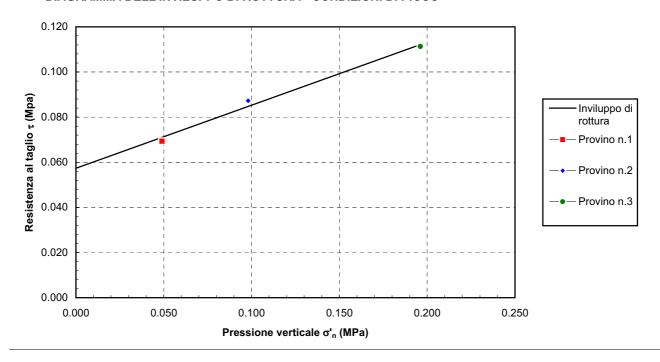
(ASTM D 3080-98)

VALORI RILEVATI AI COMPARATORI DELLA MACCHINA DI TAGLIO - CONDIZIONI DI PICCO

	Provino n.1	1 -	F	Provino n.2	2 🔷	F	Provino n.	3 ●
Def. orizz. S _h	Def. vert. S _v	Tensione tangenziale τ	Def. orizz. S _h	Def. vert. S _v	Tensione tangenziale τ	Def. orizz. S _h	Def. vert. S _v	Tensione tangenziale τ
(mm)	(mm)	(MPa)	(mm)	(mm)	(MPa)	(mm)	(mm)	(MPa)
0.00	0.00	0.000	0.00	0.00	0.000	0.00	0.00	0.000
0.25	0.01	0.009	0.25	0.02	0.013	0.25	0.02	0.017
0.50	0.03	0.018	0.50	0.04	0.027	0.50	0.06	0.036
0.75	0.03	0.027	0.75	0.06	0.037	0.75	0.09	0.049
1.00	0.04	0.034	1.00	0.08	0.048	1.00	0.11	0.063
1.25	0.04	0.040	1.25	0.09	0.056	1.25	0.13	0.074
1.50	0.04	0.047	1.50	0.10	0.064	1.50	0.15	0.084
1.75	0.04	0.055	1.75	0.11	0.072	1.75	0.17	0.092
2.00	0.03	0.061	2.00	0.11	0.078	2.00	0.18	0.097
2.25	0.01	0.067	2.25	0.11	0.080	2.25	0.20	0.101
2.50	-0.02	0.069	2.50	0.10	0.083	2.50	0.21	0.105
2.75	-0.06	0.068	2.75	0.09	0.086	2.75	0.23	0.107
3.00	-0.09	0.063	3.00	0.08	0.086	3.00	0.24	0.108
			3.25	0.07	0.087	3.25	0.25	0.110
			3.50	0.06	0.086	3.50	0.26	0.111
			3.75		0.085	3.75	0.28	0.111
						4.00	0.28	0.111

LO SPERIMENTATORE
Geom. Alfonso Casapulla

IL DIRETTORE DEL LABORATORIO
Dott. Geol. Antonio Petriccione



Sondaggio: *DP1* Campione: *C1* Profondità di prelievo (m): 2.50 - 3.00

TAGLIO DIRETTO

		CONDIZIONI D	OI PICCO	
Provino	Pressione verticale σ' _n	Deformazione orizzontale S _{hf}	Deformazione verticale S _{vf}	Resistenza al taglio τ _f
(n)	(MPa)	(mm)	(mm)	(MPa)
1 ■	0.049	2.50	-0.02	0.069
2 🔷	0.098	3.25	0.07	0.087
3 ●	0.196	3.75	0.28	0.111

DIAGRAMMA DELL'INVILUPPO DI ROTTURA - CONDIZIONI DI PICCO

PARAMETRI D Coeff. di	Errore stand.	Angolo di attrito	Coesione intercetta
determinaz.	sulla stima di c	ф	С
r ² (-)	s _v (-)	(gradi)	(Mpa)
9.89E-01	3.24E-02	15.62	0.057

SG-022

SONDAGGIO GEOGNOSTICO

S01

DATA: 29/09/09

1/2

COMMITTENTE: EMMEFLEX

LOCALITA':

. CIVIIVIEFEEX

LAVORO: Variante urbanistica al PRG vigente per la realizzazione di un opificio industriale

Le Caterine - Bellizzi (SA)

	Profondità (m)	Spessore (m)	Stratigrafia	Descrizione litologica	% di carotaggio 20 40 60 80	Prof. falda (m)	Campioni indisturbati	SPT	Metodo di perforazione	Diametro di perforazione	Rivestimento
2.00	0.50	2.50		Materiale di riporto frammisto a terreno vegetale						Ø=127 mm	
_	2.50 4.00	1.50		Limo argilloso di colore grigio-beige, mediamente consistente				3.00			-
6.00	4.00	2.50		Limo-sabbioso di colore beige-giallastro poco addensato e debolmente coesivo			5.00 C1 5.50	5.00 2 2 4			
_	7.50	1.00		Sabbia fine di colore marrone-beige con rari inclusi carbonatici di dimensioni millimetriche				4			zione in acciaio
8.00	9.00	1.50		Sabbia grossolana di colore giallastro, praticamente sciolta contenente ghiaia e ciottoli carbonatici arrotondati					0		Tubazione in acciaio
	9.50	0.50		Ghiaia e ciottoli carbonatici in matrice sabbiosa sciolta		nute			taggi		F
10.00	10.00	2.00		Argilla di colore marrone-giallastro molto consistente Ghiaia e ciottoli arrotondati, eterometrici e di natura prevalentemente carbonatica in più o meno abbondate matrice argilloso-limosa		Falda assente fino alle massime profondità raggiunte			Perforazione a rotazione e carotaggio continuo con carotiere semplice	Ø=101 mm	
12.00	12.00	4.20		Argilla limosa di colore marrone, molto consistente e fortemente coesiva, contenente inclusi lapidei eterometrici e di natura prevalentemente carbonatica		ma		13.00 3 5 13	Perforazi contin		
16.00	16.20			Sabbia ghiaiosa poco addensata di natura prevalentemente carbonatica			15.00 C2 15.50	17.00			
18.00		3.80						11 15 17			

SONDAGGIO GEOGNOSTICO

S01

DATA: 29/09/09

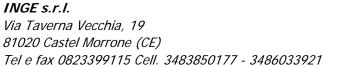
2/2

COMMITTENTE: EMMEFLEX

LOCALITA': Le Caterine - Bellizzi (SA)

LAVORO: Variante urbanistica al PRG vigente per la realizzazione di un opificio industriale

ONDA	١:		Soil Tek	QUOTA BOCCAFORO: m	s.l.m.						
	Profondità (m)	Spessore (m)	Stratigrafia	Descrizione litologica	% di carotaggio 20 40 60 80	Prof. falda (m)	Campioni indisturbati	SPT	Metodo di perforazione	Diametro di perforazione	Rivestimento
	20.40	0.40		Come 16.20÷20.00							
22.00	22.80	2.40		Argilla limosa di colore marrone, molto consistente e fortemente coesiva, contenente inclusi lapidei eterometrici e di natura prevalentemente carbonatica		ınte		21.50 12 18 16	otaggio plice	Ø=101 mm	
	22.00	0.70		Argilla di colore grigio-verdastra molto compatta e		alle			e cal	Ø=1	
	23.50	0.70		fortemente coesiva.		fino tà ra			one (
24.00	04.00	0.70		Ghiaia grossolana sciolta		ente			tazic		
24.00	24.20	1.80		Argilla di colore grigio-verdastra molto compatta e fortemente coesiva.		Falda assente fino alle massime profondità raggiunte		25.00 15 16	Perforazione a rotazione e carotaggio continuo con carotiere semplice		_
2 6.00	26.00							21	Pe	ے	
20.00	27.30	1.30		Ghiaia grossolana sciolta						Ø=95 mm	
	28.00	0.70		Argilla di colore grigio-verdastra molto compatta e fortemente coesiva.							
30.00											
32.00											
34.00											
36.00											
38.00											
40.00											



Standard utilizzato: Emilia (30) [peso maglio Kg 63.5, volata cm 75, area punta cmq 20, angolo di apertura della punta 60°]

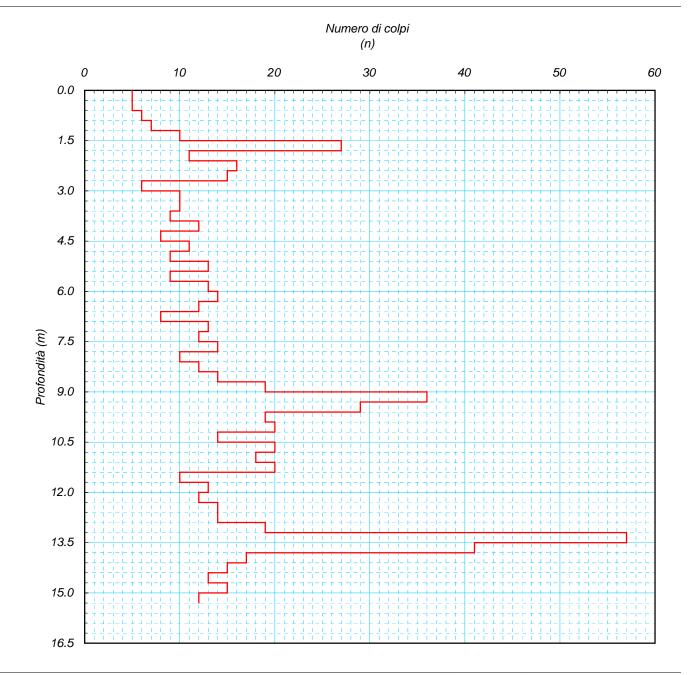
Committente:Sig. LeoProtocollo n.:168/10Cantiere:Via De Amicis - Bellizzi (SA)Data esecuzione prova:25/02/2010Prova (n):DPSH n. 1Profondità della falda (m)n.d.

V	ALORI MI	SURATI	N SITU (CON PEN	IETROM	ETRO DI	NAMICO	PESAN	ΤΕ
Prof.	Colpi	Prof.	Colpi	Prof.	Colpi	Prof.	Colpi	Prof.	Colpi
(m)	(N)	(m)	(N)	(m)	(N)	(m)	(N)	(m)	(N)
0.60	5	9.60	29						
0.90	6	9.90	19						
1.20	7	10.20	20						
1.50	10	10.50	14						
1.80	27	10.80	20						
2.10	11	11.10	18						
2.40	16	11.40	20						
2.70	15	11.70	10						
3.00	6	12.00	13						
3.30	10	12.30	12						
3.60	10	12.60	14						
3.90	9	12.90	14						
4.20	12	13.20	19						
4.50	8	13.50	57						
4.80	11	13.80	41						
5.10	9	14.10	17						
5.40	13	14.40	15						
5.70	9	14.70	13						
6.00	13	15.00	15						
6.30	14	15.30	12						
6.60	12								
6.90	8								
7.20	13								
7.50	12								
7.80	14								
8.10	10								
8.40	12								
8.70	14								
9.00	19								
9.30	36								

IL RESPONSABILE DEL SETTORE Dott. Geol. Giuseppe RIELLO

Standard utilizzato: Emilia (30) [peso maglio Kg 63.5, volata cm 75, area punta cmq 20, angolo di apertura della punta 60°]

Committente: Sig. Leo Protocollo n.: 168/10


Cantiere: Via De Amicis - Bellizzi (SA)

Prova (n): DPSH n. 1

Profondità della falda (m)

n.d.

GRAFICI NUMERO DI COLPI, RESIST. ALLA PUNTA E ANGOLO DI ATTRITO IN FUNZ. DELLA PROFONDITA'

IL RESPONSABILE DEL SETTORE Dott. Geol. Giuseppe RIELLO

INGE s.r.l.
Via Taverna Vecchia, 19
81020 Castel Morrone (CE)
Tel e fax 0823399115 Cell. 3483850177 - 3486033921

Standard utilizzato: Emilia (30) [peso maglio Kg 63.5, volata cm 75, area punta cmq 20, angolo di apertura della punta 60°]

Committente: Sig. Leo Protocollo n.: 168/10

Cantiere: Via De Amicis - Bellizzi (SA)

Prova (n): DPSH n. 1

Profondità della falda (m)

n.d.

	S	TRATI	GRAF	IA INT	ERPRI	ETATI	/A
			DAT	I GENI	ERALI		
Strato (n)	1	2	3	4	5	6	7
Profondità iniziale (m)	0.00	1.50	2.70	8.70	11.40	12.90	13.80
Profondità finale (m)	1.50	2.70	8.70	11.40	12.90	13.80	15.30
Potenza dello strato (m)	1.50	1.20	6.00	2.70	1.50	0.90	1.50
Peso di volume attribuito (g/cm³)	1.50	1.70	1.60	1.70	1.60	1.80	1.60
Pressione vert efficace (Kg/cm²)	0.23	0.46	1.39	1.94	2.06	2.48	2.45
Media numero colpi (N)	6	17	11	22	13	39	14
Media resist. alla Punta (Kg/cm²)	23.00	61.00	36.00	57.00	35.00	80.00	44.00
PARAMETI	RI GEO	TECNI	CI TEI	RRENI	DI NA	TURA	GRAN
Angolo di attrito (°)	31	35	33	36	33	>38	34
Densità relativa (%)	43	73	58	82	63	100	65
Mod. di deformazione (Kg/cm²)	69	183	108	171	105	240	132
Mod. taglio dinamico (Kg/cm²)	55	126	360	547	534	740	653
Stato di addensamento	S	М	М	М	М	D	М
PARAME	TRI GI	EOTEC	NICI T	ERREN	NI DI N	IATUR	A COE
Coesione non dren. (Kg/cm²)	1.14	3.03	1.73	2.75	1.65	3.88	2.08
Modulo edometrico (Kg/cm²)	50.00	134.00	79.00	125.00	77.00	176.00	96.00
Grado di sovracons. OCR (-)	4.05	2.49	4.13	2.16	1.76	1.36	1.23
Mod. di taglio dinam. (t/m²)	5'664	12'761	9'087	15'603	10'352	24'387	10'968
Stato di consistenza	Med	МC	С	МC	С	D	С

LEGENDA

Terreni di natura granulare - Stato di addensamento

M S=Molto sciolto, S=Sciolto, M=Medio, D=Denso, M D=Molto Denso

Terreni di natura coesiva - Stato di consistenza

M=Molle, T=Tenero, Med=Medio, C=Compatto, M C=Molto Compatto, D=Duro

IL RESPONSABILE DEL SETTORE Dott. Geol. Giuseppe RIELLO

SG-024

PROVA PENETROMETRICA DINAMICA PESANTE (D.P.S.H.)

Standard utilizzato: Emilia (30) [peso maglio Kg 63.5, volata cm 75, area punta cmq 20, angolo di apertura della punta 60°]

Committente: Dott.ssa Bassi Maria Teresa Id Int. 136 / 12

Cantiere: Mucciolo Rosa Via Genova Bellizzi (SA)

Coordinate lat. e long.: N40.62041 / E14.95216 Data esecuz. prova: 19/03/2012

Prova (n): DPSH 01 Certificato n° PSA089/136/1030 del 21/03/2012 Accett. n.: A089 / 12

Prof.	Colpi	Prof.	Colpi	Prof.	Colpi	Prof.	Colpi	Prof.	Colpi
(m)	(N)	(m)	(N)	(m)	(N)	(m)	(N)	(m)	(N)
0.30	30	9.30	9						
0.60	6	9.60	12						
0.90	3	9.90	14						
1.20	3	10.20	12						
1.50	4	10.50	18						
1.80	3	10.80	17						
2.10	5	11.10	29						
2.40	7	11.40	23						
2.70	6	11.70	18						
3.00	4	12.00	11						
3.30	6	12.30	17						
3.60	4	12.60	20						
3.90	5	12.90	22						
4.20	6	13.20	26						
4.50	8	13.50	33						
4.80	7	13.80	37						
5.10	7	14.10	39						
5.40	8	14.40	43						
5.70	7								
6.00	9								
6.30	6								
6.60	4								
6.90	4								
7.20	5								
7.50	5								
7.80	13								
8.10	16								
8.40	9								
8.70	5								
9.00	7								

IL RESPONSABILE DI SITO

IL DIRETTORE DEL LABORATORIO Dott. Geol. Giuseppe Riello

INGE s.r.l. Via Taverna Vecchia, 19 81020 Castel Morrone (CE) Tel e fax 0823-399115-399961

PROVA PENETROMETRICA DINAMICA PESANTE (D.P.S.H.)

Standard utilizzato: Emilia (30) [peso maglio Kg 63.5, volata cm 75, area punta cmq 20, angolo di apertura della punta 60°]

Committente: Dott.ssa Bassi Maria Teresa Id Int. 0136 / 12

Cantiere: Mucciolo Rosa Via Genova Bellizzi (SA)

Coordinate lat. e long.: N40.62041 / E14.95216 Data esecuz. prova: 19/03/2012

Prova (n): DPSH 01 Certificato n° PSA089/136/1030 del 21/03/2012 Accett. n.: A089 / 12

GRAFICO NUMERO DI COLPI

Numero di colpi (n) 10 20 30 40 50 60 0.0 1.5 3.0 4.5 6.0 Profondità (m) 7.5 9.0 10.5 12.0 13.5 15.0 16.5

IL RESPONSABILE DI SITO

IL DIRETTORE DEL LABORATORIO Dott. Geol. Giuseppe Riello

PRELIEVO CAMPIONE INDISTURBATO

Standard utilizzato: AGI (1977) [Fustella a pareti sottili in acciaio inox L=60 cm; D=85 mm]

Committente: Dott.ssa Bassi Maria Teresa Id Int. 0136 / 12

Cantiere: Mucciolo Rosa Via Genova Bellizzi (SA)

Coordinate lat. e long.: 40.62041 - 14.95216 Data esecuz. prova: 19/03/2012

Sigla Campione **DP1-C1** Profondità di prelievo (m): **2.00-2.50**

Prova (n): DPSH 01 Certificato n° PSA089/136/1030 del 21/03/2012 Accett. n.: A089 / 12

CAMPIONE PRELEVATO CON CAMPIONATORE INFISSO DAL PENETROMETRO STATICO

Campionatore nella posizione di infissione a pressione

Particolare punta Campionatore nella posizione di infissione a pressione

Particolare fustella Campionatore nella posizione di prelievo a pressione

IL RESPONSABILE DI SITO

IL DIRETTORE DEL LABORATORIO Dott. Geol. Giuseppe Riello

INGE s.r.l. Via Taverna Vecchia, 19 81020 Castel Morrone (CE) Tel e fax 0823-399115-399961

Standard utilizzato: Emilia (30) [peso maglio Kg 63.5, volata cm 75, area punta cmq 20, angolo di apertura della punta 60°]

Committente: Dott.ssa Bassi Maria Teresa

Cantiere: Mucciolo Rosa Via Genova Bellizzi (SA)

Coordinate lat. e long.: N40.62041 / E14.95216 Data esecuz. prova: 19/03/2012

Prova (n): DPSH 01

	S	TRATI	GRAF	IA INT	ERPRI	ETATI	/A	
			DAT	I GENI	ERALI			
Strato (n)	1	2	3	4	5	6	7	8
Profondità iniziale (m)	0.00	6.30	7.50	8.40	9.30	10.20	12.00	13.20
Profondità finale (m)	6.30	7.50	8.40	9.30	10.20	12.00	13.20	14.40
Potenza dello strato (m)	6.30	1.20	0.90	0.90	0.90	1.80	1.20	1.20
Peso di volume attribuito (g/cm³)	1.35	1.30	1.40	1.35	1.40	1.45	1.50	1.55
Pressione vert efficace (Kg/cm²)	0.85	0.98	1.18	1.26	1.43	1.74	1.98	2.23
Media numero colpi (N)	7	5	13	7	13	19	21	38
Media resist. alla Punta (Kg/cm²)	24.00	14.00	31.00	21.00	32.00	48.00	48.00	85.00
PARAMETI	RI GEO	TECNI	CI TER	RRENI	DI NA	ΓURA	GRAN	ULARE
Angolo di attrito (°)	31	30	33	31	33	35	36	>38
Densità relativa (%)	47	39	63	47	63	76	80	100
Mod. di deformazione (Kg/cm²)	72	42	93	63	96	144	144	255
Mod. taglio dinamico (Kg/cm²)	207	229	304	305	369	477	559	665
Stato di addensamento	S	S	Μ	S	Μ	Μ	Μ	D
PARAME	TRI GE	EOTEC:	NICI T	ERREN	NI DI N	ATUR	A COE	SIVA
Coesione non dren. (Kg/cm²)	1.16	0.65	1.49	0.99	1.53	2.31	2.30	4.14
Modulo edometrico (Kg/cm²)	52.00	30.00	68.00	46.00	70.00	105.00	105.00	187.00
Grado di sovracons. OCR (-)	10.14	7.08	5.10	4.23	3.33	2.27	1.79	1.44
Mod. di taglio dinam. (t/m²)	6'387	4'913	10'352	6'387	10'352	13'917	15'047	23'898
Stato di consistenza	Med	Med	С	Med	С	МC	МC	D

LEGENDA

Terreni di natura granulare - Stato di addensamento

M S=Molto sciolto, S=Sciolto, M=Medio, D=Denso, M D=Molto Denso

Terreni di natura coesiva - Stato di consistenza

M=Molle, T=Tenero, Med=Medio, C=Compatto, M C=Molto Compatto, D=Duro

Accettazione n: TER 048/12 Data ricevimento: 20/03/12 Data esecuzione prova: 20/03/12

Committente: Bassi Maria Teresa

Cantiere: Mucciolo Rosa Via Genova Bellizzi (SA)

Sondaggio: DP1 Campione: C1 Profondità di prelievo (m): 2.00-2.50

IDENTIFICAZIONE DEL TERRENO

(ASTM D2488-00)

CARATTERI IDENTIFICATIVI

Contenitore: Fustella Diametro (cm): 8.50 Lungh. (cm): 26.00

Massa (Kg 3.051 Condizione del campione estruso: Buone Classe di qualità (AGI): Q5

PROVE DI CONSISTENZA SPEDITIVE

Pocket Penetrometer Test (MPa): 0.441 Pocket Vane Test (MPa): > 0.200

CARATTERISTICHE VISIVE

DESCRIZIONE DEL CAMPIONE

Materiale a granulometria argilloso con presenza di venature rossastre e nerastre Materiale molto consistente

COLORE (Tavola di Munsell)

10 YR marrone tendente al giallo 5/4

Foto campione

LO SPERIMENTATORE

Geom. Alfonso Casapulla

IL DIRETTORE DEL LABORATORIO

Castel Morrone (CE), **27/03/2012** Certificato n. **00178**

Accettazione n: TER 048/12 Data ricevimento: 20/03/12 Data esecuzione prova: 23/03/12

Committente: Bassi Maria Teresa

Cantiere: Mucciolo Rosa Via Genova Bellizzi (SA)

Sondaggio: DP1 Campione: C1 Profondità di prelievo (m): 2.00-2.50

CARATTERISTICHE FISICHE DEL TERRENO

(CNR-UNI 10008-64 BS 1377/75 ASTM D854-83)

CONDIZIONI NATURALI

Peso specifico del terreno γ_s (KN/m³) 27.19

Peso dell'unità di volume (fustellamento) γ (KN/m³) 19.08

Peso dell'unità di volume (pesata idrostatica) γ (KN/m³)

Contenuto d'acqua W (%) 24.73

Peso secco dell'unità di volume γ_d (KN/m³) 15.30

Indice di porosità e (-) 0.78

Porosità n (-) 0.44

Grado di saturazione S (-) 0.88

CONDIZIONI DI SATURAZIONE

Peso dellunità di volume immerso in acqua γ' (KN/m³) 9.78

Peso dell'unità di volume saturo d'acqua γ_{sat} (KN/m³) 19.59

Contenuto d'acqua W_{sat} (%) 28.04

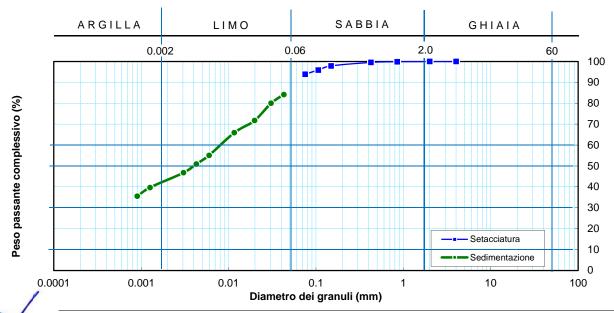
* DIRETTORFOEL * Dott Ged.
A. Petriccione

LO SPERIMENTATORE Geom. Alfonso Casapulla IL DIRETTORE DEL LABORATORIO

Accettazione n: TER 048/12 Data ricevimento: 20/03/12 Data esecuzione prova: 21/03/12

Committente: Bassi Maria Teresa

Cantiere: Mucciolo Rosa Via Genova Bellizzi (SA)


Sondaggio: DP1 Campione: C1 Profondità di prelievo (m): 2.00-2.50

ANALISI GRANULOMETRICA

(ASTM D421-D422-D2217)

		'	(· · · · · · · · · · · · · · · · · · ·	. 5422 5221	• /						
	VALORI	DETERN	IINATI M	EDIANTE	SETACC	IATURA					
Vaglio ASTM (No)			5	100	20	40	100	140	200		
Diametro granuli (mm)			4.000	2.000	0.850	0.425	0.149	0.106	0.075		
Peso passante compl. (%)			100.00	100.00	99.88	99.54	97.89	95.91	93.91		
VALORI DETERMINATI MEDIANTE SEDIMENTAZIONE											
Diametro granuli (mm) 0.043 0.031 0.020 0.012 0.006 0.004 0.003 0.0013 0.0009											
Peso passante compl. (%)	84.20	80.04	71.72	65.90	55.09	50.93	46.77	39.70	35.55		
FR	AZIONI G	RANULO	OMETRIC	HE E PAR	RAMETRI	CORREL	ATI				
Frazione argillosa < 0.002 m	m (%)	4	2.62	Diametro	efficace	D ₁₀	(mm)				
Frazione limosa < 0.06 mm	(%)	4	6.76	Diametro	medio D)30	(mm)				
Frazione < 0.074 mm	(%)	9	3.91	Diametro	medio D) ₅₀	(mm)	0.003	993		
Frazione sabbiosa < 2 mm	(%)	1	0.62	Diametro	medio D) ₆₀	(mm)	0.008	539		
Frazione ghiaiosa < 60 mm	(%)	(0.00	Coefficie	nte di un	iformità C	Ç _u (-)				
Frazione ciottolosa ≥ 60 i	mm (%)	(0.00	Coefficie	nte di cu	rvatura C	c (-)				
Class. A.G.I. (1990): Limo c	on argil	la debol	lmente li	imoso							

DIAGRAMMA DELLA DISTRIBUZIONE GRANULOMETRICA

LO SPERIMENTATORE
Geom. Alfonso Casapulla

IL DIRETTORE DEL LABORATORIO

Accettazione n: TER 048/12 Data ricevimento: 20/03/12 Data esecuzione prova: 21/03/12

Committente: Bassi Maria Teresa

Cantiere: Mucciolo Rosa Via Genova Bellizzi (SA)

Sondaggio: DP1 Campione: C1 Profondità di prelievo (m): 2.00-2.50

TAGLIO DIRETTO

(ASTM D 3080-98)

	DIMENS	SIONI DEI I	PROVINI	VALORI A INIZIO	CONSOLIDAZ.	PARAMETRI DELLA CONSOLIDAZIONE			
Prov.	Lungh. lato	Altezza iniziale h	Area di base	Peso di volume	Contenuto d'acqua	Durata consol. δt	Pressione di consolidazione	Cedim. finale δh	Tempo T
(n)	(cm)	(cm)	A _b (cm²)	γ _i (KN/m³)	w _i (%)	(ore)	თ _ი (MPa)	(mm)	T ₁₀₀ (min)
1 -	6.00	2.50	36.00	19.08	25.39	24.00	0.049	0.267	2.49
2 🔷	6.00	2.50	36.00	19.08	24.81	24.00	0.098	0.747	4.29
3 •	6.00	2.50	36.00	19.09	24.23	24.00	0.196	1.155	5.42

	CONSOL	IDAZIO	NE DEI F	PROVINI			VALORI A FINE	CONSOLIDAZ.	
Provin	o n.1 📕	Province	o n.2 🔷	Provinc	n.3 •	Prov.	Peso di	Contenuto	
Tempo t (min)	Cedim. δh (mm)	Tempo t (min)	Cedim. δh (mm)	Tempo t (min)	Cedim δh (mm)	(n)	volume ^γ f (KN/m³)	d'acqua w _f (%)	
0.1	0.19	0.1	0.58	0.1	0.91	1 💻	20.00	30.06	
0.25	0.20	0.25	0.60	0.25	0.95	2 🔷	20.40	29.44	
0.4	0.22	0.4	0.62	0.4	0.97	3 •	20.75	28.83	
0.5	0.22	0.5	0.63	0.5	0.98			_	
1	0.23	1	0.64	1	0.99				
2	0.24	2	0.65	2	1.00				
4	0.24	4	0.66	4	1.02				
8	0.25	8	0.68	8	1.04				
15	0.25	15	0.69	15	1.06		CARAT	TERISTICHE DELL	A PROVA
30	0.26	30	0.70	30	1.08		Condizione	Orientazione	Velocità di
60	0.26	60	0.71	60	1.10		del	strutturale	def. orizz.
120	0.26	120	0.72	120	1.12	Prov.	provino	del provino	V_{i}
240	0.26	240	0.73	240	1.13	(n)		(°)	(mm/min)
480	0.27	480	0.74	480	1.14	1 -	Indisturbato	n.d.	0.072
960	0.27	960	0.74	960	1.15	2 🔷	Indisturbato	n.d.	0.072
1440	0.27	1440	0.75	1440	1.16	3 •	Indisturbato	n.d.	0.072

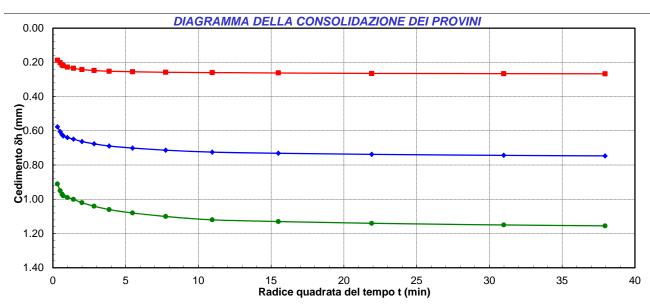
Note: Prova di taglio eseguita con la scatola di Casagrande.

LO SPERIMENTATORE
Geom. Alfonso Casapulla

IL DIRETTORE DEL LABORATORIO
Dott. Geol. Antonio Petriccione

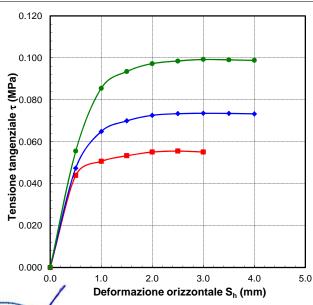
Certificato n. *00180*

Accettazione n: TER 048/12 Data ricevimento: 20/03/12 Data esecuzione prova: 21/03/12


Committente: Bassi Maria Teresa

Cantiere: Mucciolo Rosa Via Genova Bellizzi (SA)

Sondaggio: DP1 Campione: C1 Profondità di prelievo (m): 2.00-2.50


TAGLIO DIRETTO

(ASTM D 3080-98)

DIAGRAMMA DEFORMAZIONE-TENSIONE

DIAGRAMMA DELLE DEFORMAZIONI

0.1 0.0 0.0 (mm) 0.0 formazione verticale S_v 0.0 0.0 -0.1 -0.1 -0.1 -0.1 -0.1 -0.2 0.0 2.0 3.0 5.0 Deformazione orizzontale S_h (mm)

LO SPERIMENTATORE Geom. Alfonso Casapulla

IL DIRETTORE DEL LABORATORIO

Accettazione n: TER 048/12 Data ricevimento: 20/03/12 Data esecuzione prova: 21/03/12

Committente: Bassi Maria Teresa

Cantiere: Mucciolo Rosa Via Genova Bellizzi (SA)

Sondaggio: DP1 Campione: C1 Profondità di prelievo (m): 2.00-2.50

TAGLIO DIRETTO

(ASTM D 3080-98)

VALORI RILEVATI AI COMPARATORI DELLA MACCHINA DI TAGLIO - CONDIZIONI DI PICCO

	Provino n.	1 📕	F	Provino n.:	2 🔷	I	Provino n.:	3 ●
Def. orizz. S _h	Def. vert. S _v	Tensione tangenziale τ	Def. orizz. S _h	Def. vert. S _v	Tensione tangenziale τ	Def. orizz. S _h	Def. vert. S _v	Tensione tangenziale τ
(mm)	(mm)	(MPa)	(mm)	(mm)	(MPa)	(mm)	(mm)	(MPa)
0.00	0.00	0.000	0.00	0.00	0.000	0.00	0.00	0.000
0.50	0.00	0.044	0.50	0.01	0.047	0.50	0.01	0.056
1.00	0.01	0.051	1.00	0.01	0.065	1.00	0.01	0.085
1.50	0.01	0.053	1.50	0.01	0.070	1.50	0.02	0.093
2.00	-0.03	0.055	2.00	-0.01	0.073	2.00	0.02	0.097
2.50	-0.10	0.056	2.50	-0.04	0.073	2.50	0.02	0.098
3.00	-0.14	0.055	3.00	-0.06	0.074	3.00	0.03	0.099
			3.50	-0.07	0.073	3.50	0.04	0.099
			4.00	-0.09	0.073	4.00	0.04	0.099

LO SPERIMENTATORE Geom. Alfonso Casapulla IL DIRETTORE DEL LABORATORIO
Dott. Geol. Antonio Petriccione

Sondaggio: DP1 Campione: C1 Profondità di prelievo (m): 2.00-2.50

TAGLIO DIRETTO

		CONDIZIONI D	OI PICCO	
Provino	Pressione verticale σ'n	Deformazione orizzontale $S_{\rm hf}$	Deformazione verticale S _{vf}	Resistenza al taglio τ _f
(n)	(MPa)	(mm)	(mm)	(MPa)
1 ■	0.049	2.50	-0.10	0.056
2 🔷	0.098	3.00	-0.06	0.074
3 ●	0.196	3.00	0.03	0.099

DIAGRAMMA DELL'INVILUPPO DI ROTTURA - CONDIZIONI DI PICCO

PARAMETRI D Coeff. di	DELL'INVILUPPO Errore stand.	Angolo di attrito	Coesione intercetta	
determinaz.	sulla stima di c	ф	С	
r² (-)	s _v (-)	(gradi)	(Mpa)	
9.92E-01	2.84E-02	16.29	0.043	

SG-025

32

COMUNE DI: MONTECORVINO ROVELLA BELLIZZI - CASA COMUNALE -LOCALITA: P. D. R.: BONDAGBIO: ROTAZIONE & 300 mm SISTEMA PERFORAZIONE : proprieta indici CCESIONE NON DRENATA CAMPIONE + peso unita, nolnwe 9 a contenuto in H₂O bato s.Lm. o simite liquidita' (kg/cm^2) O limite plasticite 36 (mt.) 0.2 0.4. .0.6 0.8 1.0 10 20 30 40 50 60 70 80 90 120 descrizione + 60 litologia X 1.5 1.8 2,0 2.2 [1/m] TERRENO VEGETALE + 59 1.0 2 80 2.8 LIMO SABBIOSO CON SABBIA GHIAIOSA 3 +56.2 LIMO DEBOLMENTE SABBIO-SO DI COLORE MARRONE DI CONSISTENZA MEDIO-BASSA 5 2.0 C3 C4 +54.2 5.86 LIMO ARGILLOSO +53-0 7-07 LIMO DEB. SABBIOSO MAR-RONE CHIARO CON DETRITO C6 2.0 -51.0 9.09 10 2.0 LIMO MARRONE CHIARO ME-10 **C7** DIAMENTE COMPATTO, 1111 +49.0 ARGILLA LIMOSA COMPATTA 12 2.0 +47.0 1313 [4] ALTERNANZA DI LIMI SAB-BIOSI GIALLASTRI CON LIMI ARGILLOSI DA MEDIA MENTE CONSISTENTI A CON SISTENTI. 15 16 17 +42.0 1818 18 FINE SONDAGGIO 19 20 20 40 60 21 N_{SPT} 22 23 24 25 26 27 28 29 30 31

SG-026

52

SCNDAGGIO:

BELLIZZI - CASA COMUNALE -

P. O. A.: SISTEMA PERFORAZIONE : ROTAZIONE \$ 300 mm proprietar indici CAMPIONE profondits' COESICHE NON CREMATA + peso unita' volume strate adisturbato Jistürbato a contenuto in HaO (mt.) o timite liquidita' (kg/cm^2) O limite plasticita' 96 10 20 30 40 50 50 70 80 90 100 † 60.0 0.2 - 0.4 0.6 0.8 1.0 descrizione litologia X 1.6 1.8 2.0 2.2 (1/mJ) ما الم TERRENO VEGETALE LIMO SABBIOSO GIALLASTRO 2] CON MINUTO DETRITO. ME-DIAMENTE CONSISTENTE. 2.0 CI 8 +57 0 SABBIA LIMO-GHIAIOSA CON INCLUSIONI DI DETRITO. 4/2.0 C2 +55.0 LIMO GIALLASTRO PLASTICO d .5 C3 6.51 ARGILLA LIMOSA MARRONE CHIARO. COMPATTA. 2.50 8 C4 +51 10 10 C5 3.0 11 ARGILLA VERDOGNOLA CON LENTI DI LIMI SABBIOSI. +48.01210 13 LIMO ARGILLOSO MEDIAMENTE CONSISTENTE. 13 14 +45_015**/**6 16 LIMO SABBIOSO CON RARE INCLUSIONI GHIAIOSE. 3.0 17 17 +42.018 [8] 18 FINE SONDAGGIO 19 20 21 80 100 calpi 20 40 60 I_{Nspt} 22 24 25 26 27 28 29 30 31 32

SG-027

Accettazione n: TER129/11 Data ricevimento: 23/09/11 Data esecuzione prova: 23/09/11

Committente: Dott.ssa Bassi M. Teresa

Cantiere: Telese Giuseppe Via Colombo Bellizzi (SA)

Sondaggio: PZ1 Campione: C1 Profondità di prelievo (m): 0.90-1.40

IDENTIFICAZIONE DEL TERRENO

(ASTM D2488-00)

CARATTERI IDENTIFICATIVI

Contenitore: Fustella pareti grosse in ferro Diametro (cm): 8.10 Lungh. (cm): 29.50

Massa (Kg 2.741 Condizione del campione estruso: Buone Classe di qualità (AGI): Q5

PROVE DI CONSISTENZA SPEDITIVE

Pocket Penetrometer Test (MPa): 0.294 Pocket Vane Test (MPa): 0.078

CARATTERISTICHE VISIVE

DESCRIZIONE DEL CAMPIONE

Materiale a granulometria argilloso - limosa, contenente litici calcarei di dimensioni fino al centimetro poco consistente.

COLORE (Tavola di Munsell)

5YR Grigio scuro 4/1

Foto campione

LO SPERIMENTATORE Geom. Alfonso Casapulla IL DIRETTORE DEL LABORATORIO

Accettazione n: TER129/11 Data ricevimento: 23/09/11 Data esecuzione prova: 24/09/11

Committente: Dott.ssa Bassi M. Teresa

Cantiere: Telese Giuseppe Via Colombo Bellizzi (SA)

Sondaggio: PZ1 Campione: C1 Profondità di prelievo (m): 0.90-1.40

CARATTERISTICHE FISICHE DEL TERRENO

(CNR-UNI 10008-64 BS 1377/75 ASTM D854-83)

CONDIZIONI NATURALI

Peso specifico del terreno γ_s (KN/m³) 26.84

Peso dell'unità di volume (fustellamento) γ (KN/m³) 17.56

Peso dell'unità di volume (pesata idrostatica) γ (KN/m³)

Contenuto d'acqua W (%) 29.47

Peso secco dell'unità di volume γ_d (KN/m³) 13.56

Indice di porosità e (-) 0.98

Porosità n (-) 0.49

Grado di saturazione S (-) 0.82

CONDIZIONI DI SATURAZIONE

Peso dellunità di volume immerso in acqua γ' (KN/m³) 8.61

Peso dell'unità di volume saturo d'acqua γ_{sat} (KN/m³) 18.41

Contenuto d'acqua W_{sat} (%) 35.80

LO SPERIMENTATORE Geom. Alfonso Casapulla IL DIRETTORE DEL LABORATORIO

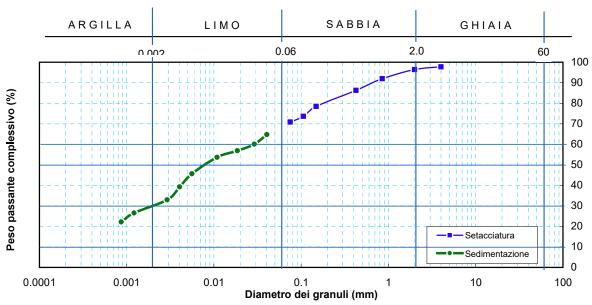
Certificato n.

01074

Accettazione n: TER129/11 Data ricevimento: 23/09/11 Data esecuzione prova: 26/09/11

Committente: Dott.ssa Bassi M. Teresa

Cantiere: Telese Giuseppe Via Colombo Bellizzi (SA)


Sondaggio: PZ1 Campione: C1 Profondità di prelievo (m): 0.90-1.40

ANALISI GRANULOMETRICA

(ASTM D421-D422-D2217)

		1	(7101M D42		• /				
VA	LORI	DETERN	IINATI M	IEDIANTE	SETACC	IATURA			
Vaglio ASTM (No)			5	100	20	40	100	140	200
Diametro granuli (mm)			4.000	2.000	0.850	0.425	0.149	0.106	0.075
Peso passante compl. (%)			97.72	96.44	92.00	86.29	78.46	73.69	70.83
VAI	ORI L	DETERM	INATI ME	EDIANTE S	SEDIMEN	TAZIONE			
Diametro granuli (mm) 0.	041	0.029	0.019	0.011	0.006	0.004	0.003	0.0012	0.0009
Peso passante compl. (%) 64	1.79	60.06	56.91	53.69	45.66	39.29	32.99	26.54	22.24
FRAZI	ONI G	RANULO	OMETRIC	CHE E PAR	RAMETRI	CORREL	ATI		
Frazione argillosa < 0.002 mm	(%)	2	9.50	Diametro	efficace	D ₁₀	(mm)		
Frazione limosa < 0.06 mm	(%)	3	8.70	Diametro	medio D) ₃₀	(mm)	0.002	131
Frazione < 0.074 mm	(%)	7	0.83	Diametro	medio D) ₅₀	(mm)	0.008	470
Frazione sabbiosa < 2 mm	(%)	2	9.52	Diametro	medio D) ₆₀	(mm)	0.028	974
Frazione ghiaiosa < 60 mm	(%)	2	2.28	Coefficie	nte di un	iformità C	Ç _u (-)		
Frazione ciottolosa ≥ 60 mm	(%)	(0.00	Coefficie	nte di cu	rvatura C	c (-)		
Class. A.G.I. (1990): Limo con	argil	la con s	abbia						

DIAGRAMMA DELLA DISTRIBUZIONE GRANULOMETRICA

LO SPERIMENTATORE Geom. Alfonso Casapulla IL DIRETTORE DEL LABORATORIO

Certificato n.

01075

Accettazione n: TER129/11 Data ricevimento: 23/09/11 Data esecuzione prova: 27/09/11

Committente: Dott.ssa Bassi M. Teresa

Cantiere: Telese Giuseppe Via Colombo Bellizzi (SA)

Sondaggio: PZ1 Campione: C1 Profondità di prelievo (m): 0.90-1.40

TAGLIO DIRETTO

(ASTM D 3080-98)

	DIMENS	SIONI DEI I	PROVINI	VALORI A INIZIO	CONSOLIDAZ.	PARAI	METRI DELLA COI	NSOLIDA	ZIONE
Prov.	Lungh. lato I	Altezza iniziale h	Area di base A _h	Peso di volume γ _i	Contenuto d'acqua w _i	Durata consol. δt	Pressione di consolidazione σ _n	Cedim. finale δh	Tempo
(n)	(cm)	(cm)	(cm²)	(KN/m³)	(%)	(ore)	(MPa)	(mm)	(min)
1 📕	6.00	2.50	36.00	17.70	13.87	24.00	0.049	0.480	5.13
2 🔷	6.00	2.50	36.00	17.48	11.18	24.00	0.098	1.160	4.27
3 •	6.00	2.50	36.00	17.27	8.55	24.00	0.196	1.730	4.05

	CONSOL	IDAZIOI	NE DEI F	PROVINI			VALORI A FINE	CONSOLIDAZ.	
	no n.1 =	Provin		Provinc		Prov.	Peso di	Contenuto	
Tempo t (min)	Cedim. δh (mm)	Tempo t (min)	Cedim. δh (mm)	Tempo t (min)	Cedim δh (mm)	(n)	volume γ _f (KN/m³)	d'acqua w _f (%)	
0.1	0.34	0.1	0.85	0.1	1.28	1 🔳	18.49	16.71	
0.25	0.36	0.25	0.90	0.25	1.36	2 🔷	18.78	13.85	
0.4	0.38	0.4	0.93	0.4	1.40	3 •	18.98	11.07	
0.5	0.38	0.5	0.94	0.5	1.42				
1	0.39	1	0.97	1	1.46				
2	0.41	2	1.00	2	1.49				
4	0.42	4	1.03	4	1.54				
8	0.43	8	1.06	8	1.59				
15	0.44	15	1.09	15	1.64		CARAT	TERISTICHE DELL	.A PROVA
30	0.45	30	1.12	30	1.68		Condizione	Orientazione	Velocità di
60	0.46	60	1.14	60	1.70		del	strutturale	def. orizz.
120	0.47	120	1.14	120	1.71	Prov.	provino	del provino	V_{i}
240	0.47	240	1.15	240	1.72	(n)		(°)	(mm/min)
480	0.48	480	1.15	480	1.72	1 🔳	Indisturbato	n.d.	0.076
960	0.48	960	1.16	960	1.73	2 🔷	Indisturbato	n.d.	0.076
1440	0.48	1440	1.16	1440	1.73	3 •	Indisturbato	n.d.	0.076

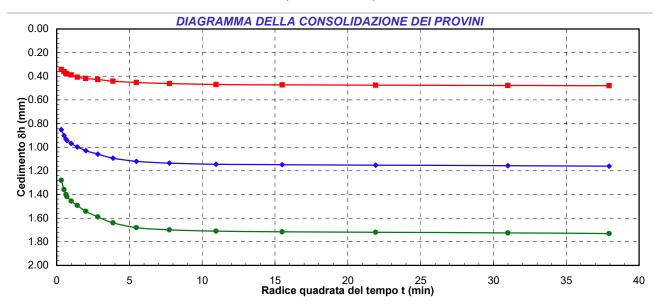
Note: Prova di taglio eseguita con la scatola di Casagrande.

LO SPERIMENTATORE Geom. Alfonso Casapulla IL DIRETTORE DEL LABORATORIO

Certificato n.

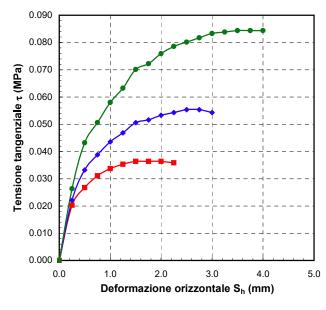
01075

Accettazione n: TER129/11 Data ricevimento: 23/09/11 Data esecuzione prova: 27/09/11


Committente: Dott.ssa Bassi M. Teresa

Cantiere: Telese Giuseppe Via Colombo Bellizzi (SA)

Sondaggio: PZ1 Campione: C1 Profondità di prelievo (m): 0.90-1.40


TAGLIO DIRETTO

(ASTM D 3080-98)

DIAGRAMMA DEFORMAZIONE-TENSIONE

DIAGRAMMA DELLE DEFORMAZIONI

0.4 0.4 Deformazione verticale S_v (mm) 0.3 0.3 0.2 0.2 0.1 0.1 0.0 0.0 10 2.0 3.0 5.0 Deformazione orizzontale S_h (mm)

LO SPERIMENTATORE Geom. Alfonso Casapulla IL DIRETTORE DEL LABORATORIO
Dott. Geol. Antonio Petriccione

Certificato n.

01075

Accettazione n: TER129/11 Data ricevimento: 23/09/11 Data esecuzione prova: 27/09/11

Committente: Dott.ssa Bassi M. Teresa

Cantiere: Telese Giuseppe Via Colombo Bellizzi (SA)

Sondaggio: PZ1 Campione: C1 Profondità di prelievo (m): 0.90-1.40

TAGLIO DIRETTO

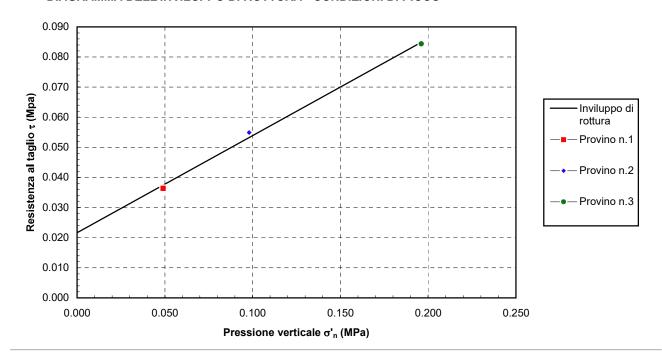
(ASTM D 3080-98)

VALORI RILEVATI AI COMPARATORI DELLA MACCHINA DI TAGLIO - CONDIZIONI DI PICCO

	Provino n.	1 💻	F	Provino n.2	2 🔷	ı	Provino n.:	3 •
Def. orizz. S _h	Def. vert. S _v	Tensione tangenziale τ	Def. orizz. S _h	Def. vert. S _v	Tensione tangenziale τ	Def. orizz. S _h	Def. vert. S _v	Tensione tangenziale τ
(mm)	(mm)	(MPa)	(mm)	(mm)	(MPa)	(mm)	(mm)	(MPa)
0.00	0.00	0.000	0.00	0.00	0.000	0.00	0.00	0.000
0.25	0.01	0.020	0.25	0.03	0.022	0.25	0.04	0.026
0.50	0.02	0.027	0.50	0.05	0.033	0.50	0.08	0.043
0.75	0.02	0.031	0.75	0.06	0.039	0.75	0.10	0.051
1.00	0.03	0.034	1.00	0.09	0.044	1.00	0.15	0.058
1.25	0.03	0.035	1.25	0.12	0.047	1.25	0.19	0.063
1.50	0.04	0.036	1.50	0.14	0.051	1.50	0.23	0.070
1.75	0.04	0.036	1.75	0.15	0.052	1.75	0.25	0.072
2.00	0.04	0.036	2.00	0.17	0.053	2.00	0.28	0.076
2.25	0.03	0.036	2.25	0.17	0.054	2.25	0.30	0.079
			2.50	0.18	0.055	2.50	0.31	0.080
			2.75	0.19	0.055	2.75	0.32	0.082
			3.00	0.19	0.054	3.00	0.33	0.083
						3.25	0.33	0.084
						3.50	0.34	0.084
						3.75	0.34	0.084
						4.00	0.34	0.084

LO SPERIMENTATORE
Geom. Alfonso Casapulla

IL DIRETTORE DEL LABORATORIO



Sondaggio: PZ1 Campione: C1 Profondità di prelievo (m): 0.90-1.40

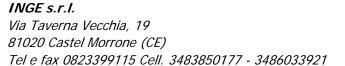
TAGLIO DIRETTO

		CONDIZIONI D	OI PICCO	
Provino	Pressione verticale σ' _n	Deformazione orizzontale S _{hf}	Deformazione verticale S _{vf}	Resistenza al taglio τ _f
(n)	(MPa)	(mm)	(mm)	(MPa)
1 ■	0.049	1.50	0.04	0.036
2 🔷	0.098	2.50	0.18	0.055
3 ●	0.196	3.50	0.34	0.084

DIAGRAMMA DELL'INVILUPPO DI ROTTURA - CONDIZIONI DI PICCO

PARAMETRI D Coeff. di	DELL'INVILUPPO Errore stand.	Angolo di attrito	Coesione intercetta	
determinaz.	sulla stima di c	ф	С	
r² (-)	s _v (-)	(gradi)	(Mpa)	
9.96E-01	2.09E-02	17.87	0.022	

SG-028


Standard utilizzato: Emilia (30) [peso maglio Kg 63.5, volata cm 75, area punta cmq 20, angolo di apertura della punta 60°]

Committente:Nicaros s.r.l.Protocollo n.:168/10Cantiere:Via Trento - Bellizzi (SA)Data esecuzione prova:25/02/2010Prova (n):DPSH n. 1Profondità della falda (m)n.d.

Prof.	Colpi	Prof.	Colpi	Prof.	Colpi	Prof.	Colpi	Prof.	Colpi
(m)	(N)	(m)	(N)	(m)	(N)	(m)	(N)	(m)	(N)
0.30	2	9.30	12						
0.60	2	9.60	19						
0.90	3	9.90	14						
1.20	4	10.20	20						
1.50	4	10.50	16						
1.80	8	10.80	19						
2.10	6	11.10	14						
2.40	6	11.40	19						
2.70	4	11.70	29						
3.00	7	12.00	24						
3.30	5	12.30	17						
3.60	6	12.60	26						
3.90	5	12.90	23						
4.20	8	13.20	27						
4.50	7	13.50	32						
4.80	16	13.80	60						
5.10	8	14.10	100						
5.40	7								
5.70	8								
6.00	10								
6.30	8								
6.60	10								
6.90	8								
7.20	13								
7.50	10								
7.80	11								
8.10	14								
8.40	14								
8.70	14								
9.00	17								

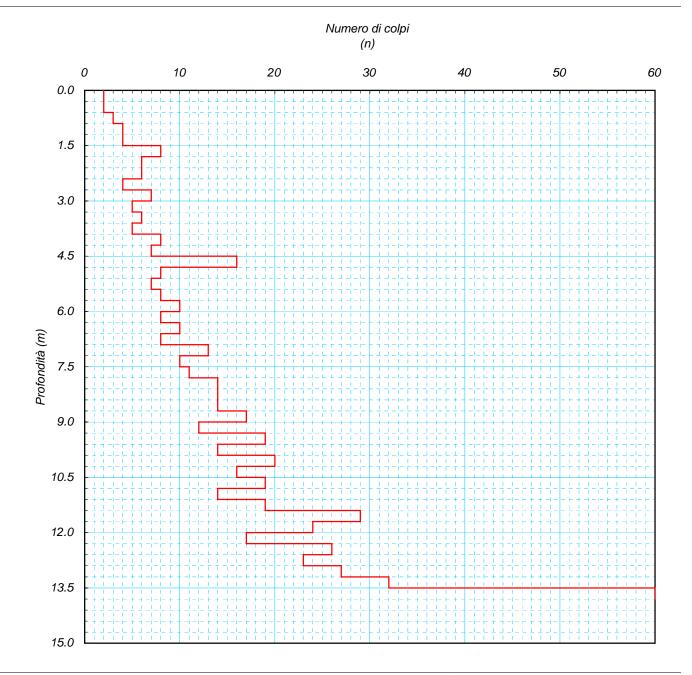
IL RESPONSABILE DEL SETTORE Dott. Geol. Giuseppe RIELLO

Standard utilizzato: Emilia (30) [peso maglio Kg 63.5, volata cm 75, area punta cmq 20, angolo di apertura della punta 60°]

Committente: Nicaros s.r.l.

Cantiere: Via Trento - Bellizzi (SA)

Prova (n): DPSH n. 1


Profondità della falda (m)

168/10

Data esecuzione prova: 25/02/2010

Prova (n): n.d.

GRAFICI NUMERO DI COLPI, RESIST. ALLA PUNTA E ANGOLO DI ATTRITO IN FUNZ. DELLA PROFONDITA'

IL RESPONSABILE DEL SETTORE Dott. Geol. Giuseppe RIELLO

INGE s.r.l. Via Taverna Vecchia, 19 81020 Castel Morrone (CE) Tel e fax 0823399115 Cell. 3483850177 - 3486033921

Standard utilizzato: Emilia (30) [peso maglio Kg 63.5, volata cm 75, area punta cmq 20, angolo di apertura della punta 60°]

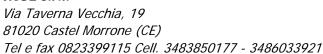
Committente:Nicaros s.r.l.Protocollo n.:168/10Cantiere:Via Trento - Bellizzi (SA)Data esecuzione prova:25/02/2010Prova (n):DPSH n. 1Profondità della falda (m)n.d.

	S	TRATI	GRAF	IA INT	ERPRI	ETATI	VA
			DAT	I GENI	ERALI		
Strato (n)	1	2	3	4	5	6	7
Profondità iniziale (m)	0.00	1.50	4.50	7.80	9.30	11.40	13.20
Profondità finale (m)	1.50	4.50	7.80	9.30	11.40	13.20	14.10
Potenza dello strato (m)	1.50	3.00	3.30	1.50	2.10	1.80	0.90
Peso di volume attribuito (g/cm³)	1.40	1.50	1.60	1.65	1.70	1.75	1.80
Pressione vert efficace (Kg/cm²)	0.21	0.68	1.25	1.53	1.94	2.31	2.54
Media numero colpi (N)	3	6	10	14	17	24	64
Media resist. alla Punta (Kg/cm²)	10.00	22.00	31.00	39.00	45.00	60.00	131.00
PARAMETI	RI GEO	TECNI	CI TEI	RRENI	DI NA	TURA	GRAN
Angolo di attrito (°)	29	31	32	34	35	37	>38
Densità relativa (%)	31	43	56	66	72	86	100
Mod. di deformazione (Kg/cm²)	30	66	93	117	135	180	393
Mod. taglio dinamico (Kg/cm²)	48	164	313	409	532	670	756
Stato di addensamento	MS	S	М	М	М	М	MD
PARAME	TRI GI	EOTEC	NICI T	ERREN	NI DI N	ATUR	A COE
Coesione non dren. (Kg/cm²)	0.49	1.07	1.49	1.87	2.15	2.88	6.42
Modulo edometrico (Kg/cm²)	22.00	48.00	68.00	85.00	99.00	132.00	288.00
Grado di sovracons. OCR (-)	1.86	20.44	5.27	3.46	2.16	1.53	1.29
Mod. di taglio dinam. (t/m²)	3'298	5'664	8'436	10'968	12'761	16'699	35'888
Stato di consistenza	T	Med	С	С	MC	МC	D

LEGENDA

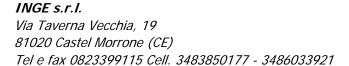
Terreni di natura granulare - Stato di addensamento

M S=Molto sciolto, S=Sciolto, M=Medio, D=Denso, M D=Molto Denso


Terreni di natura coesiva - Stato di consistenza

M=Molle, T=Tenero, Med=Medio, C=Compatto, M C=Molto Compatto, D=Duro

IL RESPONSABILE DEL SETTORE Dott. Geol. Giuseppe RIELLO

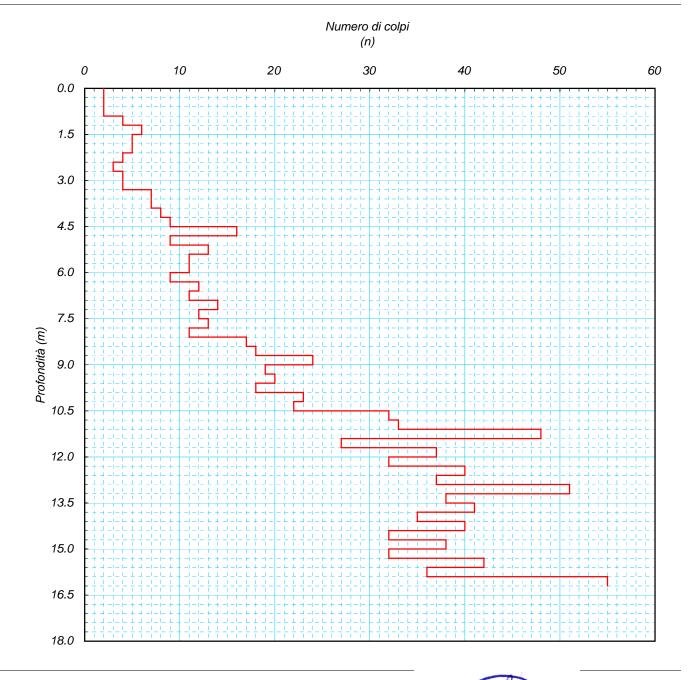


Standard utilizzato: Emilia (30) [peso maglio Kg 63.5, volata cm 75, area punta cmq 20, angolo di apertura della punta 60°]

Nicaros s.r.l. 168/10 **Committente:** Protocollo n.: Via Trento - Bellizzi (SA) **Cantiere:** Data esecuzione prova: 25/02/2010 Prova (n): DPSH n. 2 Profondità della falda (m) n.d.

Prof.	Colpi	Prof.	Colpi	Prof.	Colpi	Prof.	Colpi	Prof.	Colpi
(m)	(N)	(m)	(N)	(m)	(N)	(m)	(N)	(m)	(N)
0.30	2	9.30	19						
0.60	2	9.60	20						
0.90	2	9.90	18						
1.20	4	10.20	23						
1.50	6	10.50	22						
1.80	5	10.80	32						
2.10	5	11.10	33						
2.40	4	11.40	48						
2.70	3	11.70	27						
3.00	4	12.00	37						
3.30	4	12.30	32						
3.60	7	12.60	40						
3.90	7	12.90	37						
4.20	8	13.20	51						
4.50	9	13.50	38						
4.80	16	13.80	41						
5.10	9	14.10	35						
5.40	13	14.40	40						
5.70	11	14.70	32						
6.00	11	15.00	38						
6.30	9	15.30	32						
6.60	12	15.60	42						
6.90	11	15.90	36						
7.20	14	16.20	55						
7.50	12								
7.80	13								
8.10	11								
8.40	17								
8.70	18								
9.00	24								

IL RESPONSABILE DEL SETTORE Dott. Geol. Giuseppe RIELLO


Standard utilizzato: Emilia (30) [peso maglio Kg 63.5, volata cm 75, area punta cmq 20, angolo di apertura della punta 60°]

Committente: Nicaros s.r.l. Protocollo n.: 168/10

Cantiere: Via Trento - Bellizzi (SA) Data esecuzione prova: 25/02/2010

Prova (n): DPSH n. 2 Profondità della falda (m) n.d.

GRAFICI NUMERO DI COLPI, RESIST. ALLA PUNTA E ANGOLO DI ATTRITO IN FUNZ. DELLA PROFONDITA'

IL RESPONSABILE DEL SETTORE Dott. Geol. Giuseppe RIELLO

INGE s.r.l. Via Taverna Vecchia, 19 81020 Castel Morrone (CE) Tel e fax 0823399115 Cell. 3483850177 - 3486033921

Standard utilizzato: Emilia (30) [peso maglio Kg 63.5, volata cm 75, area punta cmq 20, angolo di apertura della punta 60°]

Nicaros s.r.l. **Committente:** Protocollo n.: 168/10 **Cantiere:** Via Trento - Bellizzi (SA) 25/02/2010 Data esecuzione prova: Prova (n): DPSH n. 2 Profondità della falda (m) n.d.

	S	TRATI	GRAF	IA INT	ERPRI	ETATI		
			DAT	I GENI	ERALI			
Strato (n)	1	2	3	4	5	6		
Profondità iniziale (m)	0.00	3.30	6.30	8.10	10.50	12.30		
Profondità finale (m)	3.30	6.30	8.10	10.50	12.30	16.20		
Potenza dello strato (m)	3.30	3.00	1.80	2.40	1.80	3.90		
Peso di volume attribuito (g/cm³)	1.40	1.60	1.60	1.70	1.80			
Pressione vert efficace (Kg/cm²)	0.46	1.01	1.30	1.79	2.21			
Media numero colpi (N)	Media numero colpi (N) 4 9 12 20 35 40							
Media resist. alla Punta (Kg/cm²) 13.00 32.00 36.00 54.00 86.00 93.00								
PARAMETI	RI GEO	TECNI	CI TEI	RRENI	DI NA	TURA		
Angolo di attrito (°)	29	32	33	35	>38			
Densità relativa (%)	35	53	61	78	100			
Mod. di deformazione (Kg/cm²)	39	96	108	162	258	279		
Mod. taglio dinamico (Kg/cm²)	105	253	335	490	660			
Stato di addensamento	S	S	Μ	М	D	D		
PARAME	TRI GE	EOTEC	NICI T	ERRE	NI DI N	IATUR.		
Coesione non dren. (Kg/cm²)	0.63	1.55	1.74	2.61	4.19			
Modulo edometrico (Kg/cm²)	28.00	70.00	79.00	118.00	189.00	204.00		
Grado di sovracons. OCR (-)	0.41	8.56	4.84	2.58	1.73			
Mod. di taglio dinam. (t/m²)	4'128	7'770	9'725	14'485	22'413	24'873		
Stato di consistenza	Med	С	С	MC	D	D		

LEGENDA

Terreni di natura granulare - Stato di addensamento

M S=Molto sciolto, S=Sciolto, M=Medio, D=Denso, M D=Molto Denso

Terreni di natura coesiva - Stato di consistenza

M=Molle, T=Tenero, Med=Medio, C=Compatto, M C=Molto Compatto, D=Duro

IL RESPONSABILE DEL SETTORE Dott. Geol. Giuseppe RIELLO

SG-029

Aut. Min. n. 154 del 19/04/11 esecuzione e certificazione di indagini geognostiche, prel. di campioni e prove in sito di cui all'art. 59 DPR. 380/01 (Sondaggi, prelievo campioni, prove SPT, prove di permeabilità; prove penetrometriche: DPSH, CPT, CPTE, CPTU; prove di carico su piastra; misura del peso di volume; CBR; perforazioni inclinate e orizzontali; monitoraggio e controlli)

PROVA PENETROMETRICA DINAMICA PESANTE (D.P.S.H.)

Standard utilizzato: Emilia (30) [peso maglio Kg 63.5, volata cm 75, area punta cmq 20, angolo di apertura della punta 60°]

Committente: Dott.ssa Bassi Maria Teresa Id Int. 135 / 12

Cantiere: Via Isonzo Bellizzi (SA)

Coordinate lat. e long.: N40.61872 / E14.94642 Data esecuz. prova: 19/03/2012

Prova (n): DPSH 01 Certificato n° PSA088/135/1029 del 21/03/2012 Accett. n.: A088 / 12

V	ALORI MI	SURATI I	N SITU (CON PEN	NETROM	ETRO D	INAMICO	PESAN	TE
Prof.	Colpi	Prof.	Colpi	Prof.	Colpi	Prof.	Colpi	Prof.	Colpi
(m)	(N)	(m)	(N)	(m)	(N)	(m)	(N)	(m)	(N)
0.30	1	9.30	16						
0.60	1	9.60	18						
0.90	1	9.90	16						
1.20	2	10.20	19						
1.50	2	10.50	20						
1.80	2	10.80	21						
2.10	6	11.10	30						
2.40	3	11.40	33						
2.70	4	11.70	42						
3.00	3	12.00	35						
3.30	5	12.30	55						
3.60	4								
3.90	3								
4.20	3								
4.50	4								
4.80	4								
5.10	4								
5.40	4								
5.70	3								
6.00	5								
6.30	7								
6.60	8								
6.90	14								
7.20	16								
7.50	13								
7.80	7								
8.10	9								
8.40	11								
8.70	14								
9.00	16								

IL RESPONSABILE DI SITO

IL DIRETTORE DEL LABORATORIO Dott. Geol. Giuseppe Riello

INGE s.r.l. Via Taverna Vecchia, 19 81020 Castel Morrone (CE) Tel e fax 0823-399115-399961

Aut. Min. n. 154 del 19/04/11 esecuzione e certificazione di indagini geognostiche, prel. di campioni e prove in sito di cui all'art. 59 DPR. 380/01 (Sondaggi, prelievo campioni, prove SPT, prove di permeabilità; prove penetrometriche: DPSH, CPT, CPTE, CPTU; prove di carico su piastra; misura del peso di volume; CBR; perforazioni inclinate e orizzontali; monitoraggio e controlli)

PROVA PENETROMETRICA DINAMICA PESANTE (D.P.S.H.)

Standard utilizzato: Emilia (30) [peso maglio Kg 63.5, volata cm 75, area punta cmq 20, angolo di apertura della punta 60°]

Committente: Dott.ssa Bassi Maria Teresa Id Int. 0135 / 12

Cantiere: Via Isonzo Bellizzi (SA)

Coordinate lat. e long.: N40.61872 / E14.94642 Data esecuz. prova: 19/03/2012

Prova (n): DPSH 01 Certificato n° PSA088/135/1029 del 21/03/2012 Accett. n.: A088 / 12

GRAFICO NUMERO DI COLPI

Numero di colpi (n) 10 20 30 40 50 60 0.0 1.5 3.0 4.5 Profondità (m) 9.0 10.5 12.0 13.5

IL RESPONSABILE DI SITO

IL DIRETTORE DEL LABORATORIO Dott. Geol. Giuseppe Riello

INGE s.r.l. Via Taverna Vecchia, 19 81020 Castel Morrone (CE) Tel e fax 0823-399115-399961

Aut. Min. n. 154 del 19/04/11 esecuzione e certificazione di indagini geognostiche, prel. di campioni e prove in sito di cui all'art. 59 DPR. 380/01 (Sondaggi, prelievo campioni, prove SPT, prove di permeabilità; prove penetrometriche: DPSH, CPT, CPTE, CPTU; prove di carico su piastra; misura del peso di volume; CBR; perforazioni inclinate e orizzontali; monitoraggio e controlli)

PRELIEVO CAMPIONE INDISTURBATO

Standard utilizzato: AGI (1977) [Fustella a pareti sottili in acciaio inox L=60 cm; D=85 mm]

Committente: Dott.ssa Bassi Maria Teresa Id Int. 0135 / 12

Cantiere: Via Isonzo Bellizzi (SA)

Coordinate lat. e long.: 40.61872 - 14.94642 Data esecuz. prova: 19/03/2012

Sigla Campione **DP1-C1** Profondità di prelievo (m): **1.80-2.30**

Prova (n): DPSH 01 Certificato n° PSA088/135/1029 del 21/03/2012 Accett. n.: A088 / 12

CAMPIONE PRELEVATO CON CAMPIONATORE INFISSO DAL PENETROMETRO STATICO

Campionatore nella posizione di infissione a pressione

Particolare punta Campionatore nella posizione di infissione a pressione

Particolare fustella Campionatore nella posizione di prelievo a pressione

IL RESPONSABILE DI SITO

IL DIRETTORE DEL LABORATORIO Dott. Geol. Giuseppe Riello

INGE s.r.l. Via Taverna Vecchia, 19 81020 Castel Morrone (CE) Tel e fax 0823-399115-399961

Standard utilizzato: Emilia (30) [peso maglio Kg 63.5, volata cm 75, area punta cmq 20, angolo di apertura della punta 60°]

Committente: Dott.ssa Bassi Maria Teresa

Cantiere: Via Isonzo Bellizzi (SA)

Coordinate lat. e long.: N40.61872 / E14.94642 Data esecuz. prova: 19/03/2012

Prova (n): DPSH 01

	C	TDATI	CDAE	IA INIT	EDDD	ETATI\	//
	3	INAII				LIAIN	/A
			DAT	I GENI	ERALI		
Strato (n)	1	2	3	4	5	6	
Profondità iniziale (m)	0.00	1.80	5.70	8.10	10.80	12.00	
Profondità finale (m)	1.80	5.70	8.10	10.80	12.00	12.30	
Potenza dello strato (m)	1.80	3.90	2.40	2.70	1.20	0.30	
Peso di volume attribuito (g/cm³)	1.30	1.35	1.40	1.45	1.50	1.55	
Pressione vert efficace (Kg/cm²)	0.23	0.77	1.13	1.57	1.80	1.91	
Media numero colpi (N)	2	4	10	17	35	55	
Media resist. alla Punta (Kg/cm²) 5.00 13.00 28.00 44.00 84.00 115.00							
PARAMETE	RI GEO	TECNI	CI TEI	RRENI	DI NA'	TURA (GR/
Angolo di attrito (°)	28	29	32	35	>38	>38	
Densità relativa (%)	25	35	56	72	100	100	
Mod. di deformazione (Kg/cm²)	15	39	84	132	252	345	
Mod. taglio dinamico (Kg/cm²)	51	175	284	430	536	568	
Stato di addensamento	MS	S	М	М	D	MD	
PARAME	TRI GE	EOTEC	NICI T	ERREN	NI DI N	ATURA	4 (
Coesione non dren. (Kg/cm²)	0.24	0.61	1.34	2.12	4.11	5.65	
Modulo edometrico (Kg/cm²)	11.00	28.00	61.00	96.00	184.00	253.00	
Grado di sovracons. OCR (-)	0.64	12.81	5.53	2.84	2.19	2.01	
Mod. di taglio dinam. (t/m²)	2'404	4'128	8'436	12'761	22'413	31'887	
Stato di consistenza	T	Med	С	MC	D	D	

LEGENDA

Terreni di natura granulare - Stato di addensamento

M S=Molto sciolto, S=Sciolto, M=Medio, D=Denso, M D=Molto Denso

Terreni di natura coesiva - Stato di consistenza

M=Molle, T=Tenero, Med=Medio, C=Compatto, M C=Molto Compatto, D=Duro

Accettazione n: TER 048/12 Data ricevimento: 20/03/12 Data esecuzione prova: 20/03/12

Committente: Bassi Maria Teresa Cantiere: Via Isonzo Bellizzi (SA)

Sondaggio: DP1 Campione: C1 Profondità di prelievo (m): 1.80-2.30

IDENTIFICAZIONE DEL TERRENO

(ASTM D2488-00)

CARATTERI IDENTIFICATIVI

Contenitore: Fustella Diametro (cm): 8.50 Lungh. (cm): 29.00

Massa (Kg 3.388 Condizione del campione estruso: Buone Classe di qualità (AGI): Q5

PROVE DI CONSISTENZA SPEDITIVE

Pocket Penetrometer Test (MPa): 0.157 Pocket Vane Test (MPa): 0.137

CARATTERISTICHE VISIVE

DESCRIZIONE DEL CAMPIONE

Materiale a granulometria sabbioso limosa ricco di elementi litici calcarei ed arenacei subarrotondati di dimensioni fino a 2 centimetri addensato

COLORE (Tavola di Munsell)

2.5 Y Marrone oliva chiaro 5/4

Foto campione

LO SPERIMENTATORE

Geom. Alfonso Casapulla

IL DIRETTORE DEL LABORATORIO

Accettazione n: TER 048/12 Data ricevimento: 20/03/12 Data esecuzione prova: 23/03/12

Committente: Bassi Maria Teresa Cantiere: Via Isonzo Bellizzi (SA)

Sondaggio: DP1 Campione: C1 Profondità di prelievo (m): 1.80-2.30

CARATTERISTICHE FISICHE DEL TERRENO

(CNR-UNI 10008-64 BS 1377/75 ASTM D854-83)

CONDIZIONI NATURALI

Peso specifico del terreno γ_s (KN/m³) 26.80

Peso dell'unità di volume (fustellamento) γ (KN/m³) 18.58

Peso dell'unità di volume (pesata idrostatica) γ (KN/m³)

Contenuto d'acqua W (%) 15.97

Peso secco dell'unità di volume γ_d (KN/m³) 16.02

Indice di porosità e (-) 0.67

Porosità n (-) 0.40

Grado di saturazione S (-) 0.65

CONDIZIONI DI SATURAZIONE

Peso dellunità di volume immerso in acqua γ' (KN/m³) 10.15

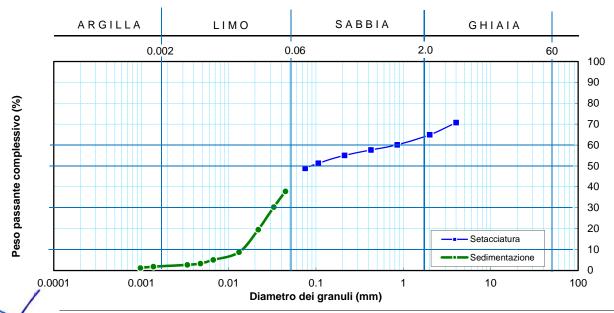
Peso dell'unità di volume saturo d'acqua γ_{sat} (KN/m³) 19.96

Contenuto d'acqua W_{sat} (%) 24.62

LO SPERIMENTATORE Geom. Alfonso Casapulla IL DIRETTORE DEL LABORATORIO

Accettazione n: TER 048/12 Data ricevimento: 20/03/12 Data esecuzione prova: 21/03/12

Committente: Bassi Maria Teresa Cantiere: Via Isonzo Bellizzi (SA)


Sondaggio: DP1 Campione: C1 Profondità di prelievo (m): 1.80-2.30

ANALISI GRANULOMETRICA

(ASTM D421-D422-D2217)

		'			- /				
	VALORI	DETERN	MINATI M	IEDIANTE	SETACC	IATURA			
Vaglio ASTM (No)			5	10	20	40	70	140	200
Diametro granuli (mm)			4.000	2.000	0.850	0.425	0.212	0.106	0.075
Peso passante compl. (%)			70.73	64.91	60.13	57.65	55.08	51.29	48.90
	VALORI	DETERM	INATI ME	EDIANTE S	SEDIMEN	TAZIONE			
Diametro granuli (mm)	0.045	0.033	0.022	0.013	0.007	0.005	0.003	0.0014	0.0010
Peso passante compl. (%)	37.84	30.30	19.51	8.73	5.06	3.34	2.69	1.83	1.18
FR	AZIONI G	RANULO	OMETRIC	CHE E PAI	RAMETRI	CORREL	A <i>TI</i>		
Frazione argillosa < 0.002 m	nm (%)	2	2.10	Diametro	efficace	D ₁₀	(mm)	0.014	188
Frazione limosa < 0.06 mm	(%)	4	11.33	Diametro	medio D) ₃₀	(mm)	0.032	518
Frazione < 0.074 mm	(%)	4	18.90	Diametro	medio D) ₅₀	(mm)	0.089	244
Frazione sabbiosa < 2 mm	(%)	2	7.30	Diametro	medio D) ₆₀	(mm)	0.827	454
Frazione ghiaiosa < 60 mm	(%)	2	9.27	Coefficie	ente di un	iformità C	u (-)	58.3	32
Frazione ciottolosa ≥ 60 i	mm (%)	(0.00	Coefficie	ente di cu	rvatura C	(-)	0.0	9
Class. A.G.I. (1990): Limo C	on ghia	ia con s	abbia						

DIAGRAMMA DELLA DISTRIBUZIONE GRANULOMETRICA

LO SPERIMENTATORE
Geom. Alfonso Casapulla

IL DIRETTORE DEL LABORATORIO

Accettazione n: TER 048/12 Data ricevimento: 20/03/12 Data esecuzione prova: 21/03/12

Committente: Bassi Maria Teresa Cantiere: Via Isonzo Bellizzi (SA)

Sondaggio: DP1 Campione: C1 Profondità di prelievo (m): 1.80-2.30

TAGLIO DIRETTO

(ASTM D 3080-98)

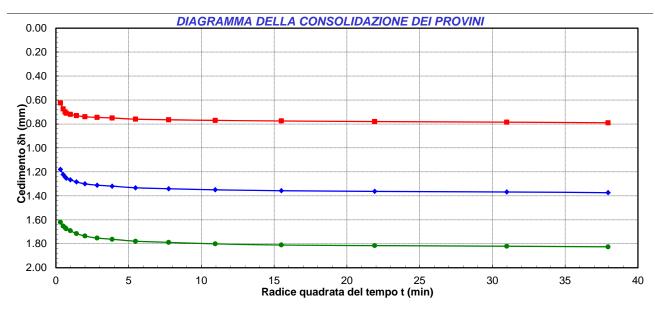
	DIMENS	SIONI DEI I	PROVINI	VALORI A INIZIO	CONSOLIDAZ.	PARAI	METRI DELLA COI	VSOLIDA	ZIONE
Prov.	Lungh. lato I	Altezza iniziale h	Area di base A _b	Peso di volume γ _i	Contenuto d'acqua w _i	Durata consol. δt	Pressione di consolidazione σ _n	Cedim. finale δh	Tempo
(n)	(cm)	(cm)	(cm²)	(KN/m³)	(%)	(ore)	(MPa)	(mm)	(min)
1 🔳	6.00	2.50	36.00	18.40	18.87	24.00	0.049	0.790	1.95
2 🔷	6.00	2.50	36.00	18.66	18.32	24.00	0.098	1.373	3.13
3 •	6.00	2.50	36.00	18.92	17.80	24.00	0.196	1.825	5.17

	CONSOL	IDAZIO	NE DEI F	PROVINI			VALORI A FINE	CONSOLIDAZ.	
Provin	o n.1 =	Province		Provinc	-	Prov.	Peso di	Contenuto	
Tempo t (min)	Cedim. δh (mm)	Tempo t (min)	Cedim. δh (mm)	Tempo t (min)	Cedim δh (mm)	(n)	volume γ _f (KN/m³)	d'acqua w _f (%)	
0.1	0.63	0.1	1.18	0.1	1.62	1 💻	20.06	25.49	
0.25	0.68	0.25	1.22	0.25	1.65	2 🔷	20.79	24.59	
0.4	0.70	0.4	1.24	0.4	1.67	3 •	21.44	23.73	
0.5	0.71	0.5	1.25	0.5	1.68				
1	0.72	1	1.27	1	1.69				
2	0.73	2	1.28	2	1.72				
4	0.74	4	1.30	4	1.74				
8	0.75	8	1.31	8	1.75				
15	0.75	15	1.32	15	1.76		CARAT	TERISTICHE DELL	.A PROVA
30	0.76	30	1.33	30	1.78		Condizione	Orientazione	Velocità di
60	0.77	60	1.34	60	1.79		del	strutturale	def. orizz.
120	0.77	120	1.35	120	1.80	Prov.	provino	del provino	V_{i}
240	0.78	240	1.36	240	1.81	(n)		(°)	(mm/min)
480	0.78	480	1.36	480	1.82	1 =	Indisturbato	n.d.	0.076
960	0.79	960	1.37	960	1.82	2 🔷	Indisturbato	n.d.	0.076
1440	0.79	1440	1.37	1440	1.83	3 •	Indisturbato	n.d.	0.076

Note: Prova di taglio eseguita con la scatola di Casagrande.

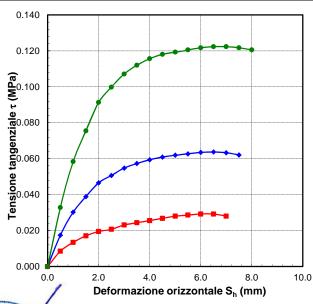
LO SPERIMENTATORE
Geom. Alfonso Casapulla

IL DIRETTORE DEL LABORATORIO
Dott. Geol. Antonio Petriccione


Accettazione n: TER 048/12 Data ricevimento: 20/03/12 Data esecuzione prova: 21/03/12

Committente: Bassi Maria Teresa Cantiere: Via Isonzo Bellizzi (SA)

Sondaggio: DP1 Campione: C1 Profondità di prelievo (m): 1.80-2.30


TAGLIO DIRETTO

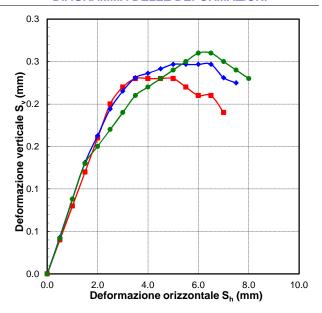

(ASTM D 3080-98)

DIAGRAMMA DEFORMAZIONE-TENSIONE

DIAGRAMMA DELLE DEFORMAZIONI

LO SPERIMENTATORE Geom. Alfonso Casapulla

IL DIRETTORE DEL LABORATORIO

Accettazione n: TER 048/12 Data ricevimento: 20/03/12 Data esecuzione prova: 21/03/12

Committente: Bassi Maria Teresa Cantiere: Via Isonzo Bellizzi (SA)

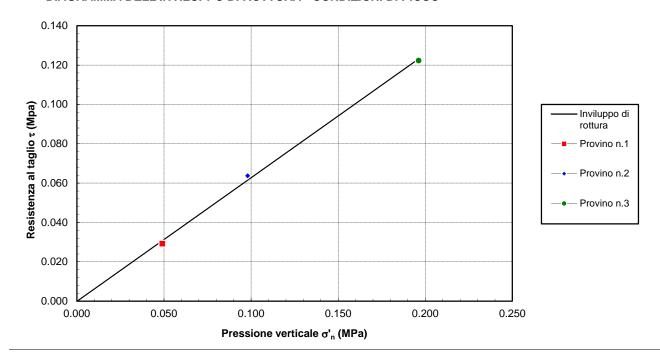
Sondaggio: DP1 Campione: C1 Profondità di prelievo (m): 1.80-2.30

TAGLIO DIRETTO

(ASTM D 3080-98)

VALORI RILEVATI AI COMPARATORI DELLA MACCHINA DI TAGLIO - CONDIZIONI DI PICCO

	Provino n.	1 =	F	Provino n.2	2 🔷	ı	Provino n.:	3 ●
Def. orizz. S _h	Def. vert. S _v	Tensione tangenziale	Def. orizz. S _h	Def. vert. S _v	Tensione tangenziale	Def. orizz. S _h	Def. vert. S _v	Tensione tangenziale
(mm)	(mm)	(MPa)	(mm)	(mm)	(MPa)	(mm)	(mm)	(MPa)
0.00	0.00	0.000	0.00	0.00	0.000	0.00	0.00	0.000
0.50	0.04	0.009	0.50	0.04	0.017	0.50	0.04	0.033
1.00	0.08	0.013	1.00	0.09	0.030	1.00	0.09	0.058
1.50	0.12	0.017	1.50	0.13	0.039	1.50	0.13	0.075
2.00	0.16	0.019	2.00	0.16	0.047	2.00	0.15	0.091
2.50	0.20	0.021	2.50	0.19	0.051	2.50	0.17	0.100
3.00	0.22	0.023	3.00	0.22	0.055	3.00	0.19	0.107
3.50	0.23	0.024	3.50	0.23	0.057	3.50	0.21	0.112
4.00	0.23	0.026	4.00	0.24	0.059	4.00	0.22	0.116
4.50	0.23	0.027	4.50	0.24	0.061	4.50	0.23	0.118
5.00	0.23	0.028	5.00	0.25	0.062	5.00	0.24	0.119
5.50	0.22	0.029	5.50	0.25	0.063	5.50	0.25	0.120
6.00	0.21	0.029	6.00	0.25	0.063	6.00	0.26	0.122
6.50	0.21	0.029	6.50	0.25	0.064	6.50	0.26	0.122
7.00	0.19	0.028	7.00	0.23	0.063	7.00	0.25	0.122
			7.50	0.23	0.062	7.50	0.24	0.122
						8.00	0.23	0.120


LO SPERIMENTATORE Geom. Alfonso Casapulla IL DIRETTORE DEL LABORATORIO

Sondaggio: DP1 Campione: C1 Profondità di prelievo (m): 1.80-2.30

TAGLIO DIRETTO

		CONDIZIONI D	OI PICCO	
Provino	Pressione verticale σ' _n	Deformazione orizzontale S _{hf}	Deformazione verticale S _{vf}	Resistenza al taglio τ _f
(n)	(MPa)	(mm)	(mm)	(MPa)
1 ■	0.049	6.00	0.21	0.029
2 🔷	0.098	6.50	0.25	0.064
3 ●	0.196	6.50	0.26	0.122

DIAGRAMMA DELL'INVILUPPO DI ROTTURA - CONDIZIONI DI PICCO

PARAMETRI D Coeff. di	DELL'INVILUPPO Errore stand.	Angolo di attrito	Coesione intercetta	
determinaz.	sulla stima di c	ф	С	
r² (-)	s _v (-)	(gradi)	(Mpa)	
9.98E-01	2.86E-02	32.12	0.000	

SG-030

Accettazione n: TER071/16 Data ricevimento: 07/12/16 Data esecuzione prova: 12/12/16

Committente: Bassi Maria Teresa p/c di Piscitiello Martungiello

Cantiere: Via Rapaciceri, 5 - Bellizzi (SA)

Sondaggio: PZ01 Campione: C1 Profondità di prelievo (m): 1.70 - 2.00

IDENTIFICAZIONE DEL TERRENO

(ASTM D2488-00)

CARATTERI IDENTIFICATIVI

Contenitore: Fustella pareti grosse in ferro Diametro (cm): 8.25 Lungh. (cm): 22.80

Massa (Kg 2.408 Condizione del campione estruso: Buone Classe di qualità (AGI): Q5

PROVE DI CONSISTENZA SPEDITIVE

Pocket Penetrometer Test (MPa): 0.368 Pocket Vane Test (MPa): > 0.200

CARATTERISTICHE VISIVE

DESCRIZIONE DEL CAMPIONE

Materiale a granulometria limoso sabbiosa mediamente consistente.

COLORE (Tavola di Munsell)

10YR marrone 5/3.

Foto campione

LO SPERIMENTATORE
Dott. Carmencita Ventrone

Ministero delle Infrastrutture e Trasporti Aut. n. 12004 del 01.12.11 Circ. n. 7818/stc- Prove su terre DPR 246/93 Art. 8 - DPR 380/01 Art. 59

Castel Morrone (CE), 14/12/2016 Certificato n. 00644/16

Accettazione n: TER071/16 Data ricevimento: 07/12/16 Data esecuzione prova: 14/12/16

Committente: Bassi Maria Teresa p/c di Piscitiello Martungiello

Cantiere: Via Rapaciceri, 5 - Bellizzi (SA)

Sondaggio: PZ01 Campione: C1 Profondità di prelievo (m): 1.70 - 2.00

CARATTERISTICHE FISICHE DEL TERRENO

(CNR-UNI 10008-64 BS 1377/75 ASTM D854-83)

CONDIZIONI NATURALI

Peso specifico del terreno γ_s (KN/m³) 27.06

Peso dell'unità di volume (fustellamento) γ (KN/m³) 20.55

Peso dell'unità di volume (pesata idrostatica) γ (KN/m³)

Contenuto d'acqua W (%) 25.10

Peso secco dell'unità di volume γ_d (KN/m³) 16.42

Indice di porosità e (-) 0.65

Porosità n (-) 0.39

Grado di saturazione S (-) 1.07

CONDIZIONI DI SATURAZIONE

Peso dellunità di volume immerso in acqua γ' (KN/m³) 10.47

Peso dell'unità di volume saturo d'acqua γ_{sat} (KN/m³) 20.28

Contenuto d'acqua W_{sat} (%) 23.48

LO SPERIMENTATORE

Dott. Carmencita Ventrone

IL DIRETTORE DEL LABORATORIO

Certificato n.

00645/16

Accettazione n: TER071/16 Data ricevimento: 07/12/16 Data esecuzione prova: 12/12/16

Committente: Bassi Maria Teresa p/c di Piscitiello Martungiello

Cantiere: Via Rapaciceri, 5 - Bellizzi (SA)

Sondaggio: PZ01 Campione: C1 Profondità di prelievo (m): 1.70 - 2.00

TAGLIO DIRETTO

(ASTM D 3080-98)

	DIMENS	SIONI DEI I	PROVINI	VALORI A INIZIO	CONSOLIDAZ.	PARAI	PARAMETRI DELLA CONSOLIDAZIONE			
Prov.	Lungh. lato I	Altezza iniziale h	Area di base A _h	Peso di volume γ _i	Contenuto d'acqua w _i	Durata consol. δt	Pressione di consolidazione σ _n	Cedim. finale δh	Tempo	
(n)	(cm)	(cm)	(cm²)	(KN/m³)	(%)	(ore)	(MPa)	(mm)	(min)	
1 📕	6.00	2.50	36.00	20.32	27.07	24.00	0.049	0.265	7.24	
2 🔷	6.00	2.50	36.00	20.57	25.31	24.00	0.098	0.486	4.43	
3 •	6.00	2.50	36.00	20.82	23.63	24.00	0.196	0.660	3.16	

	CONSOL	IDAZIO	NE DEI F	PROVINI			VALORI A FINE	CONSOLIDAZ.	
	o n.1 =		o n.2 🔷	Province		Prov.	Peso di	Contenuto	
Tempo t (min)	Cedim. δh (mm)	Tempo t (min)	Cedim. δh (mm)	Tempo t (min)	Cedim δh (mm)	(n)	volume ^γ f (KN/m³)	d'acqua w _f (%)	
0.1	0.19	0.1	0.40	0.1	0.57	1 💻	21.08	30.40	
0.25	0.20	0.25	0.41	0.25	0.59	2 🔷	21.47	28.27	
0.4	0.20	0.4	0.42	0.4	0.60	3 •	21.83	26.24	
0.5	0.20	0.5	0.42	0.5	0.60				
1	0.21	1	0.43	1	0.61				
2	0.22	2	0.44	2	0.62				
4	0.22	4	0.44	4	0.62				
8	0.23	8	0.45	8	0.63				
15	0.23	15	0.45	15	0.63	'	CARAT	TERISTICHE DEL	LA PROVA
30	0.24	30	0.46	30	0.63		Condizione	Orientazione	Velocità di
60	0.24	60	0.46	60	0.64		del	strutturale	def. orizz.
120	0.25	120	0.46	120	0.64	Prov.	provino	del provino	V_{i}
240	0.25	240	0.47	240	0.65	(n)		(°)	(mm/min)
480	0.26	480	0.48	480	0.65	1 🔳	Indisturbato	n.d.	0.054
960	0.26	960	0.48	960	0.66	2 🔷	Indisturbato	n.d.	0.054
1440	0.27	1440	0.49	1440	0.66	3 •	Indisturbato	n.d.	0.054

Note: Prova di taglio eseguita con la scatola di Casagrande.

LO SPERIMENTATORE

Dott. Carmencita Ventrone

IL DIRETTORE DEL LABORATORIO

Dott Geol Antonio Petriccione

DIRETTORE DEL

LASORATORIO

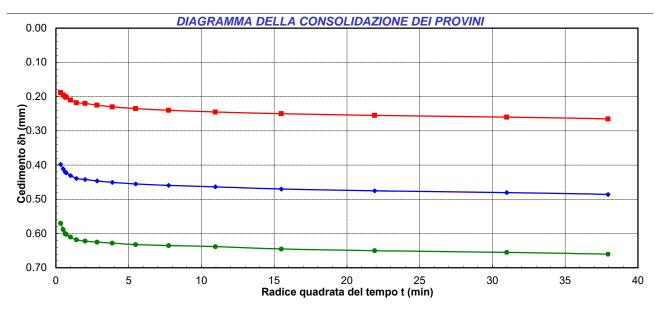
A Petriccione

DOT 12 900

Certificato n.

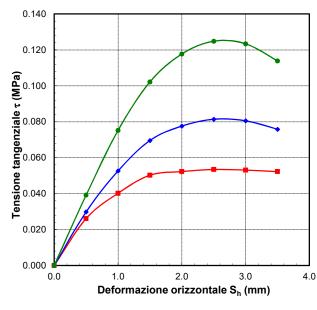
00645/16

Accettazione n: TER071/16 Data ricevimento: 07/12/16 Data esecuzione prova: 12/12/16


Committente: Bassi Maria Teresa p/c di Piscitiello Martungiello

Cantiere: Via Rapaciceri, 5 - Bellizzi (SA)

Sondaggio: PZ01 Campione: C1 Profondità di prelievo (m): 1.70 - 2.00


TAGLIO DIRETTO

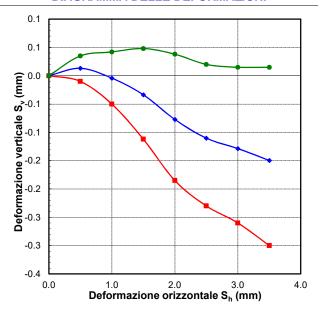

(ASTM D 3080-98)

DIAGRAMMA DEFORMAZIONE-TENSIONE

DIAGRAMMA DELLE DEFORMAZIONI

LO SPERIMENTATORE
Dott. Carmencita Ventrone

IL DIRETTORE DEL LABORATORIO

Certificato n.

00645/16

Accettazione n: TER071/16 Data ricevimento: 07/12/16 Data esecuzione prova: 12/12/16

Committente: Bassi Maria Teresa p/c di Piscitiello Martungiello

Cantiere: Via Rapaciceri, 5 - Bellizzi (SA)

Sondaggio: PZ01 Campione: C1 Profondità di prelievo (m): 1.70 - 2.00

TAGLIO DIRETTO

(ASTM D 3080-98)

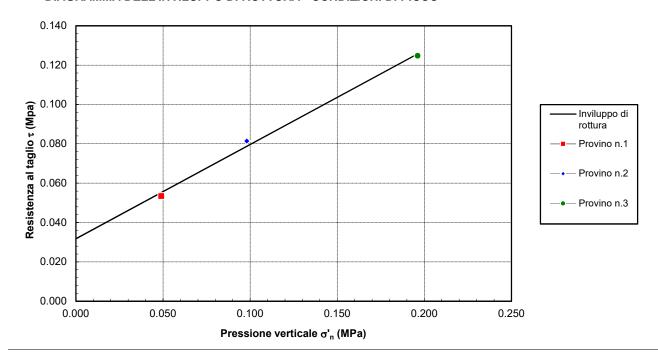
VALORI RILEVATI AI COMPARATORI DELLA MACCHINA DI TAGLIO - CONDIZIONI DI PICCO

	Provino n.	1 =	F	Provino n.2	2 🔷	ı	Provino n.:	3 ●
Def. orizz. S _h	Def. vert. S _v	Tensione tangenziale τ	Def. orizz. S _h	Def. vert. S _v	Tensione tangenziale τ	Def. orizz. S _h	Def. vert. S _v	Tensione tangenziale τ
(mm)	(mm)	(MPa)	(mm)	(mm)	(MPa)	(mm)	(mm)	(MPa)
0.00	0.00	0.000	0.00	0.00	0.000	0.00	0.00	0.000
0.50	-0.01	0.026	0.50	0.01	0.030	0.50	0.04	0.039
1.00	-0.05	0.040	1.00	0.00	0.053	1.00	0.04	0.075
1.50	-0.11	0.050	1.50	-0.03	0.070	1.50	0.05	0.102
2.00	-0.19	0.052	2.00	-0.08	0.078	2.00	0.04	0.118
2.50	-0.23	0.053	2.50	-0.11	0.081	2.50	0.02	0.125
3.00	-0.26	0.053	3.00	-0.13	0.081	3.00	0.02	0.123
3.50	-0.30	0.052	3.50	-0.15	0.076	3.50	0.02	0.114

LO SPERIMENTATORE

Dott. Carmencita Ventrone

IL DIRETTORE DEL LABORATORIO
Dott Geol. Antonio Petriccione


DIRETIORE DEL *
LABORATORIO
Petriccione
R

Sondaggio: PZ01 Campione: C1 Profondità di prelievo (m): 1.70 - 2.00

TAGLIO DIRETTO

	CONDIZIONI DI PICCO										
Provino	Pressione verticale σ' _n	Deformazione orizzontale S _{hf}	Deformazione verticale S _{vf}	Resistenza al taglio τ _f							
(n)	(MPa)	(mm)	(mm)	(MPa)							
1 ■	0.049	2.50	-0.23	0.053							
2 🔷	0.098	2.50	-0.11	0.081							
3 ●	0.196	2.50	0.02	0.125							

DIAGRAMMA DELL'INVILUPPO DI ROTTURA - CONDIZIONI DI PICCO

PARAMETRI D Coeff. di	DELL'INVILUPPO Errore stand.	Angolo di attrito	Coesione intercetta
determinaz.	sulla stima di c	ф	С
r² (-)	s _v (-)	(gradi)	(Mpa)
9.96E-01	3.40E-02	25.60	0.032

Castel Morrone (CE), 02/08/2013

Accettazione n: TER 098/13 Data ricevimento: 30/07/13 Data esecuzione prova: 31/07/13

Committente: Dott. Geol. Poto Aniello

Cantiere: Sig. Piscitiello Loc. Rapaciceri Via Antica Cilento Bellizzi (SA)

Sondaggio: PZ1 Campione: C1 Profondità di prelievo (m): 2.30-2.70

IDENTIFICAZIONE DEL TERRENO

(ASTM D2488-00)

CARATTERI IDENTIFICATIVI

Contenitore: Fustella Diametro (cm): 8.30 Lungh. (cm): 40.00

Massa (Kg 3.940 Condizione del campione estruso: Buone Classe di qualità (AGI): Q5

PROVE DI CONSISTENZA SPEDITIVE

Pocket Penetrometer Test (MPa): 0.343 Pocket Vane Test (MPa): > 0.200

CARATTERISTICHE VISIVE

DESCRIZIONE DEL CAMPIONE

Materiale a granulometria limoso argillosa con presenza dio noduli organici millimetrici mediamente consistente

COLORE (Tavola di Munsell)

2.5 Y Marrone Oliva Chiaro 5/3

Foto campione

LO SPERIMENTATORE

Geom. Alfonso Casapulla

IL DIRETTORE DEL LABORATORIO

Accettazione n: TER 098/13 Data ricevimento: 30/07/13 Data esecuzione prova: 31/07/13

Committente: Dott. Geol. Poto Aniello

Cantiere: Sig. Piscitiello Loc. Rapaciceri Via Antica Cilento Bellizzi (SA)

Sondaggio: PZ1 Campione: C1 Profondità di prelievo (m): 2.30-2.70

CARATTERISTICHE FISICHE DEL TERRENO

(CNR-UNI 10008-64 BS 1377/75 ASTM D854-83)

CONDIZIONI NATURALI

Peso specifico del terreno γ_s (KN/m³) 26.78

Peso dell'unità di volume (fustellamento) γ (KN/m³) 17.76

Peso dell'unità di volume (pesata idrostatica) γ (KN/m³)

Contenuto d'acqua W (%) 32.32

Peso secco dell'unità di volume γ_d (KN/m³) 13.42

Indice di porosità e (-) 1.00

Porosità n (-) 0.50

Grado di saturazione S (-) 0.89

CONDIZIONI DI SATURAZIONE

Peso dellunità di volume immerso in acqua γ' (KN/m³) 8.50 Peso dell'unità di volume saturo d'acqua γ_{sat} (KN/m³) 18.31

Contenuto d'acqua W_{sat} (%) 36.45

LO SPERIMENTATORE Geom. Alfonso Casapulla IL DIRETTORE DEL LABORATORIO

Accettazione n: TER 098/13 Data ricevimento: 30/07/13 Data esecuzione prova: 31/07/13

Committente: Dott. Geol. Poto Aniello

Cantiere: Sig. Piscitiello Loc. Rapaciceri Via Antica Cilento Bellizzi (SA)

Sondaggio: PZ1 Campione: C1 Profondità di prelievo (m): 2.30-2.70

TAGLIO DIRETTO

(ASTM D 3080-98)

	DIMENS	SIONI DEI F	PROVINI	VALORI A INIZIO	CONSOLIDAZ.	PARAMETRI DELLA CONSOLIDAZIONE			
Prov.	Lungh. lato	Altezza iniziale h	Area di base A _b	Peso di volume γ _i	Contenuto d'acqua w _i	Durata consol. δt	Pressione di consolidazione σ _n	Cedim. finale δh	Tempo
(n)	(cm)	(cm)	(cm²)	(KN/m³)	(%)	(ore)	(MPa)	(mm)	(min)
1 =	6.00	2.50	36.00	17.76	32.52	24.00	0.049	0.488	2.91
2 🔷	6.00	2.50	36.00	17.76	32.64	24.00	0.098	0.999	2.67
3 •	6.00	2.50	36.00	17.76	32.76	24.00	0.196	1.415	2.59

CONSOLIDAZIONE DEI PROVINI VALORI A FINE CONSOLIDAZ. Provino n.1 ■ Provino n.2 • Provino n.3 Contenuto Prov. Peso di Tempo Cedim. Tempo Cedim. Tempo Cedim volume d'acqua δh δh δh W_f (min) (min) (KN/m³) (%) (mm) (mm) (min) (mm) (n) 0.1 0.39 0.1 0.82 0.1 1.17 1 🔳 18.78 37.40 0.25 0.25 0.41 0.25 0.85 1.21 2 🔷 19.00 36.21 0.4 0.88 0.4 35.02 0.4 0.42 1.25 3 19.15 0.5 0.43 0.5 0.89 0.5 1.27 1 0.44 1 0.91 1 1.29 2 2 0.92 2 1.31 0.44 4 0.45 4 0.93 4 1.33 8 0.45 8 0.95 8 1.35 CARATTERISTICHE DELLA PROVA 1.37 15 0.46 15 0.96 15 30 0.47 30 0.97 30 1.38 Condizione Orientazione Velocità di 60 0.47 60 0.98 60 1.39 strutturale def. orizz. del ٧i 120 0.48 120 0.98 120 1.40 Prov. provino del provino 240 0.48 240 0.99 240 1.40 (mm/min) (n) (°) 480 0.48 480 0.99 480 0.135 1.41 1 Indisturbato nd960 0.49 960 0.99 960 1.41 2 🔷 Indisturbato n.d. 0.135 1440 0.49 1440 1.00 1440 1.42 Indisturbato 0.135 n.d.

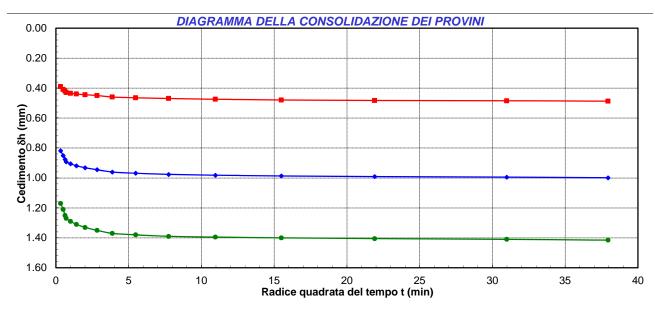
Note: Prova di taglio eseguita con la scatola di Casagrande.

LO SPERIMENTATORE

Geom. Alfonso Casapulla

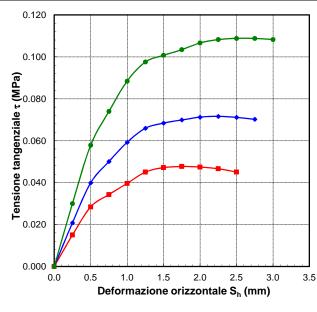
IL DIRETTORE DEL LABORATORIO

Accettazione n: TER 098/13 Data ricevimento: 30/07/13 Data esecuzione prova: 31/07/13


Committente: Dott. Geol. Poto Aniello

Cantiere: Sig. Piscitiello Loc. Rapaciceri Via Antica Cilento Bellizzi (SA)

Sondaggio: PZ1 Campione: C1 Profondità di prelievo (m): 2.30-2.70


TAGLIO DIRETTO


(ASTM D 3080-98)

DIAGRAMMA DEFORMAZIONE-TENSIONE

DIAGRAMMA DELLE DEFORMAZIONI

LO SPERIMENTATORE Geom. Alfonso Casapulla IL DIRETTORE DEL LABORATORIO

Accettazione n: TER 098/13 Data ricevimento: 30/07/13 Data esecuzione prova: 31/07/13

Committente: Dott. Geol. Poto Aniello

Cantiere: Sig. Piscitiello Loc. Rapaciceri Via Antica Cilento Bellizzi (SA)

Sondaggio: PZ1 Campione: C1 Profondità di prelievo (m): 2.30-2.70

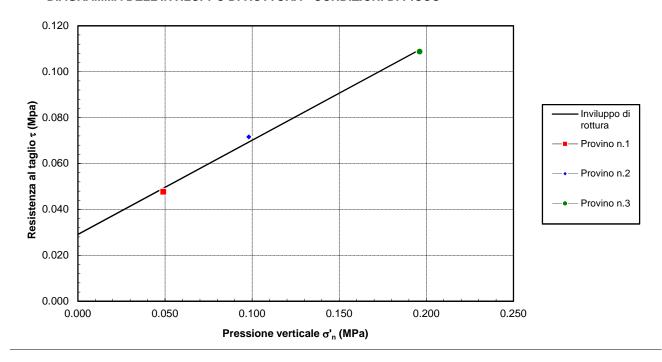
TAGLIO DIRETTO

(ASTM D 3080-98)

VALORI RILEVATI AI COMPARATORI DELLA MACCHINA DI TAGLIO - CONDIZIONI DI PICCO

	Provino n.	1 =	F	Provino n.2	2 🔷	I	Provino n.:	3 ●
Def. orizz. S _h (mm)	Def. vert. S _v (mm)	Tensione tangenziale τ (MPa)	Def. orizz. S _h (mm)	Def. vert. S _v (mm)	Tensione tangenziale τ (MPa)	Def. orizz. S _h (mm)	Def. vert. S _v (mm)	Tensione tangenziale τ (MPa)
0.00	0.00	0.000	0.00	0.00	0.000	0.00	0.00	0.000
0.25	0.00	0.015	0.25	0.02	0.021	0.25	0.04	0.030
0.50	0.01	0.028	0.50	0.04	0.040	0.50	0.06	0.058
0.75	0.02	0.034	0.75	0.05	0.050	0.75	0.08	0.074
1.00	0.02	0.040	1.00	0.06	0.059	1.00	0.10	0.088
1.25	0.02	0.045	1.25	0.07	0.066	1.25	0.12	0.098
1.50	0.01	0.047	1.50	0.08	0.068	1.50	0.15	0.101
1.75	-0.01	0.048	1.75	0.09	0.070	1.75	0.18	0.103
2.00	-0.02	0.047	2.00	0.10	0.071	2.00	0.20	0.107
2.25	-0.04	0.047	2.25	0.10	0.072	2.25	0.23	0.108
2.50	-0.05	0.045	2.50	0.11	0.071	2.50	0.25	0.109
			2.75	0.11	0.070	2.75	0.26	0.109
						3.00	0.27	0.108

LO SPERIMENTATORE
Geom. Alfonso Casapulla


IL DIRETTORE DEL LABORATORIO
Dott. Geol. Antonio Petriccione

Sondaggio: PZ1 Campione: C1 Profondità di prelievo (m): 2.30-2.70

TAGLIO DIRETTO

		CONDIZIONI D	OI PICCO	
Provino	Pressione verticale σ' _n	Deformazione orizzontale \mathbf{S}_{hf}	Deformazione verticale S _{vf}	Resistenza al taglio τ _f
(n)	(MPa)	(mm)	(mm)	(MPa)
1 ■	0.049	1.75	-0.01	0.048
2 🔷	0.098	2.25	0.10	0.072
3 ●	0.196	2.50	0.25	0.109

DIAGRAMMA DELL'INVILUPPO DI ROTTURA - CONDIZIONI DI PICCO

PARAMETRI D Coeff. di	DELL'INVILUPPO Errore stand.	Angolo di attrito	Coesione intercetta
determinaz.	sulla stima di c	ф	С
r² (-)	S _v (-)	(gradi)	(Mpa)
9.96E-01	2.89E-02	22.30	0.029

Castel Morrone (CE), 28/03/2011

Accettazione n: TER034/11 Data ricevimento: 16/03/11 Data esecuzione prova: 18/03/11

Committente: Bassi Maria Teresa

Cantiere: Via Picciola Fabbricaunova, Bellizzi (SA)

Sondaggio: Campione: C1 Profondità di prelievo (m): 2.00-2.40

IDENTIFICAZIONE DEL TERRENO

(ASTM D2488-00)

CARATTERI IDENTIFICATIVI

Contenitore: Fustella pareti sottili in acciaio inox Diametro (cm): 8.50 Lungh. (cm): 38.50

Massa (Kg 3.985 Condizione del campione estruso: Buone Classe di qualità (AGI): Q5

PROVE DI CONSISTENZA SPEDITIVE

Pocket Penetrometer Test (MPa): 0.265 Pocket Vane Test (MPa): > 0.200

CARATTERISTICHE VISIVE

DESCRIZIONE DEL CAMPIONE

Materiale a granulometria limoso- argilloso-sabbioso, con frammenti calcarei alterati. Materiale mediamente consistente.

COLORE (Tavola di Munsell)

2.5 Marrone grigio scuro 4/2

Foto campione

LO SPERIMENTATORE
Geom. Alfonso Casapulla

IL DIRETTORE DEL LABORATORIO

Accettazione n: TER034/11 Data ricevimento: 16/03/11 Data esecuzione prova: 18/03/11

Committente: Bassi Maria Teresa

Cantiere: Via Picciola Fabbricaunova, Bellizzi (SA)

Sondaggio: Campione: C1 Profondità di prelievo (m): 2.00-2.40

CARATTERISTICHE FISICHE DEL TERRENO

(CNR-UNI 10008-64 BS 1377/75 ASTM D854-83)

CONDIZIONI NATURALI

Peso specifico del terreno γ_s (KN/m³) 29.03

Peso dell'unità di volume (fustellamento) γ (KN/m³) 18.49

Peso dell'unità di volume (pesata idrostatica) γ (KN/m³)

Contenuto d'acqua W (%) 27.79

Peso secco dell'unità di volume γ_d (KN/m³) 14.47

Indice di porosità e (-) 1.01

Porosità n (-) 0.50

Grado di saturazione S (-) 0.82

CONDIZIONI DI SATURAZIONE

Peso dellunità di volume immerso in acqua γ' (KN/m³) 9.56

Peso dell'unità di volume saturo d'acqua γ_{sat} (KN/m³) 19.37

Contenuto d'acqua W_{sat} (%) 33.96

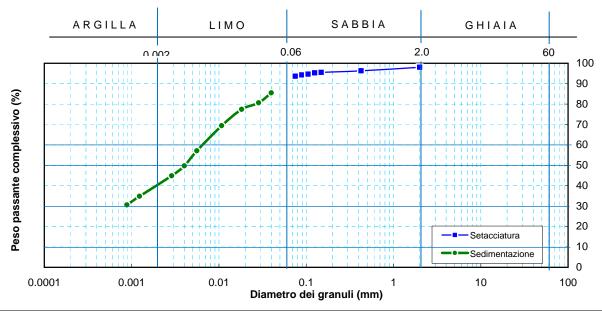
LO SPERIMENTATORE Geom. Alfonso Casapulla

IL DIRETTORE DEL LABORATORIO

Accettazione n: TER034/11 Data esecuzione prova: 21/03/11

Committente: Bassi Maria Teresa

Cantiere: Via Picciola Fabbricaunova, Bellizzi (SA)


Sondaggio: Campione: C1 Profondità di prelievo (m): 2.00-2.40

ANALISI GRANULOMETRICA

(ASTM D421-D422-D2217)

		•		. 5-122 522 .	• /				
	VALORI	DETERM	IINATI M	EDIANTE	SETACC	IATURA			
Vaglio ASTM (No)			10	40	100	100	140	170	200
Diametro granuli (mm)			2.000	0.425	0.149	0.125	0.105	0.088	0.075
Peso passante compl. (%)			98.07	96.32	95.50	95.26	94.65	94.31	93.62
VALORI DETERMINATI MEDIANTE SEDIMENTAZIONE									
Diametro granuli (mm)	0.040	0.029	0.018	0.011	0.006	0.004	0.003	0.0012	0.0009
Peso passante compl. (%)	85.47	80.65	77.43	69.40	57.07	49.75	44.84	34.82	30.62
FRA	AZIONI G	RANULO	OMETRIC	HE E PAR	RAMETRI	CORREL	ATI		
Frazione argillosa < 0.002 m	m (%)	3	9.46	Diametro	efficace	D ₁₀	(mm)		
Frazione limosa < 0.06 mm	(%)	5	0.68	Diametro	medio D	30	(mm)		
Frazione < 0.074 mm	(%)	9	3.62	Diametro	medio D	50	(mm)	0.004	081
Frazione sabbiosa < 2 mm	(%)	7	7.93	Diametro	medio D	60	(mm)	0.006	819
Frazione ghiaiosa < 60 mm	(%)	:	1.93	Coefficie	nte di un	iformità C	C _u (-)		
Frazione ciottolosa ≥ 60 r	nm (%)	(0.00	Coefficie	nte di cu	rvatura C	c (-)		
Class. A.G.I. (1990): limo co	on argill	a debolr	nente s	abbioso					

DIAGRAMMA DELLA DISTRIBUZIONE GRANULOMETRICA

LO SPERIMENTATORE Geom. Alfonso Casapulla IL DIRETTORE DEL LABORATORIO

00249

Castel Morrone (CE), **28/03/2011** Certificato n.

Accettazione n: TER034/11 Data esecuzione prova: 18/03/11

Committente: Bassi Maria Teresa

Cantiere: Via Picciola Fabbricaunova, Bellizzi (SA)

Sondaggio: Campione: C1 Profondità di prelievo (m): 2.00-2.40

TAGLIO DIRETTO

(ASTM D 3080-98)

	DIMENS	SIONI DEI F	PROVINI	VALORI A INIZIO	CONSOLIDAZ.	PARAMETRI DELLA CONSOLIDAZIONE			
Prov.	Lungh. lato	Altezza iniziale h	Area di base A _b	Peso di volume	Contenuto d'acqua w _i	Durata consol. δt	Pressione di consolidazione σ _n	Cedim. finale δh	Tempo
(n)	(cm)	(cm)	(cm²)	γ _i (KN/m³)	(%)	(ore)	(MPa)	(mm)	(min)
1 =	6.00	2.50	36.00	18.65	42.63	24.00	0.049	0.428	2.47
2 🔷	6.00	2.50	36.00	18.48	36.42	24.00	0.098	0.818	4.38
3 •	6.00	2.50	36.00	18.32	30.63	24.00	0.196	1.130	5.78

	CONSOL	IDAZIO	NE DEI F	PROVINI			VALORI A FINE	CONSOLIDAZ.	
	o n.1 =		o n.2 🔷	Provinc		Prov.	Peso di	Contenuto	
Tempo t (min)	Cedim. δh (mm)	Tempo t (min)	Cedim. δh (mm)	Tempo t (min)	Cedim δh (mm)	(n)	volume ^γ f (KN/m³)	d'acqua w _f (%)	
0.1	0.34	0.1	0.65	0.1	0.90	1 💻	18.27	37.39	
0.25	0.36	0.25	0.68	0.25	0.93	2 🔷	18.85	34.59	
0.4	0.37	0.4	0.69	0.4	0.95	3 •	19.39	31.99	
0.5	0.38	0.5	0.70	0.5	0.96				
1	0.39	1	0.71	1	0.97				
2	0.40	2	0.73	2	0.99				
4	0.41	4	0.74	4	1.00				
8	0.41	8	0.75	8	1.02				
15	0.42	15	0.76	15	1.04	'	CARAT	TERISTICHE DELI	LA PROVA
30	0.42	30	0.77	30	1.05		Condizione	Orientazione	Velocità di
60	0.42	60	0.78	60	1.07		del	strutturale	def. orizz.
120	0.43	120	0.80	120	1.09	Prov.	provino	del provino	V_{i}
240	0.43	240	0.80	240	1.10	(n)		(°)	(mm/min)
480	0.43	480	0.81	480	1.11	1 =	Indisturbato	n.d.	0.068
960	0.43	960	0.81	960	1.12	2 🔷	Indisturbato	n.d.	0.068
1440	0.43	1440	0.82	1440	1.13	3 •	Indisturbato	n.d.	0.068

Note: Prova di taglio eseguita con la scatola di Casagrande.

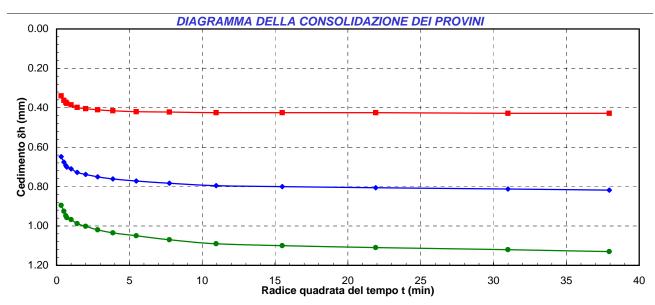
LO SPERIMENTATORE Geom. Alfonso Casapulla IL DIRETTORE DEL LABORATORIO
Dott. Geol. Antonio Petriccione

Castel Morrone (CE), 28/03/2011

Certificato n.

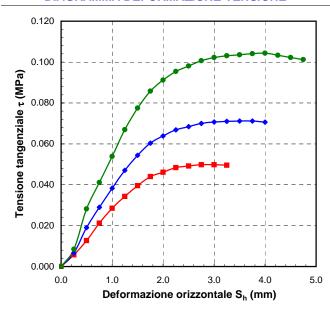
00249

Accettazione n: TER034/11 Data esecuzione prova: 18/03/11


Committente: Bassi Maria Teresa

Cantiere: Via Picciola Fabbricaunova, Bellizzi (SA)

Sondaggio: Campione: C1 Profondità di prelievo (m): 2.00-2.40


TAGLIO DIRETTO

(ASTM D 3080-98)

DIAGRAMMA DEFORMAZIONE-TENSIONE

DIAGRAMMA DELLE DEFORMAZIONI

LO SPERIMENTATORE Geom. Alfonso Casapulla IL DIRETTORE DEL LABORATORIO
Dott. Geol. Antonio Petriccione

Castel Morrone (CE), **28/03/2011**

Certificato n. *00249*

Accettazione n: TER034/11 Data esecuzione prova: 18/03/11 Data esecuzione prova: 18/03/11

Committente: Bassi Maria Teresa

Cantiere: Via Picciola Fabbricaunova, Bellizzi (SA)

Sondaggio: Campione: C1 Profondità di prelievo (m): 2.00-2.40

TAGLIO DIRETTO

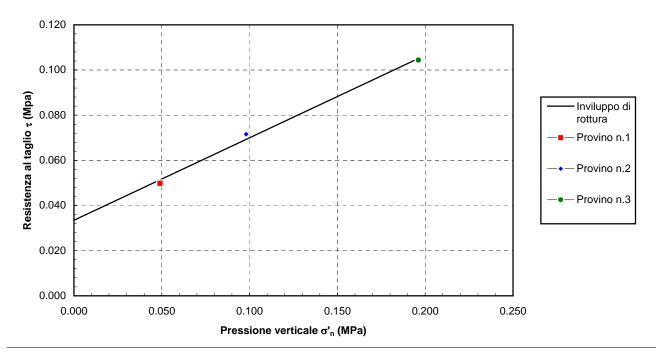
(ASTM D 3080-98)

VALORI RILEVATI AI COMPARATORI DELLA MACCHINA DI TAGLIO - CONDIZIONI DI PICCO

	Provino n.1 ■			Provino n.2	2 🔷	Provino n.3 ●				
Def. orizz. S _h	Def. vert. S _v	Tensione tangenziale τ	Def. orizz. S _h	Def. vert. S _v	Tensione tangenziale τ	Def. orizz. S _h	Def. vert. S _v	Tensione tangenziale τ		
(mm)	(mm)	(MPa)	(mm)	(mm)	(MPa)	(mm)	(mm)	(MPa)		
0.00	0.00	0.000	0.00	0.00	0.000	0.00	0.00	0.000		
0.25	0.00	0.006	0.25	0.01	0.007	0.25	0.02	0.008		
0.50	0.02	0.013	0.50	0.02	0.019	0.50	0.03	0.028		
0.75	0.03	0.021	0.75	0.04	0.029	0.75	0.05	0.041		
1.00	0.03	0.028	1.00	0.05	0.038	1.00	0.06	0.054		
1.25	0.03	0.034	1.25	0.06	0.047	1.25	0.08	0.067		
1.50	0.03	0.040	1.50	0.06	0.054	1.50	0.10	0.077		
1.75	0.02	0.044	1.75	0.07	0.060	1.75	0.11	0.086		
2.00	0.02	0.046	2.00	0.07	0.064	2.00	0.11	0.091		
2.25	0.02	0.048	2.25	0.07	0.067	2.25	0.12	0.095		
2.50	0.01	0.049	2.50	0.07	0.068	2.50	0.13	0.098		
2.75	0.00	0.050	2.75	0.08	0.070	2.75	0.15	0.101		
3.00	0.00	0.050	3.00	0.09	0.071	3.00	0.17	0.102		
3.25	-0.01	0.050	3.25	0.09	0.071	3.25	0.18	0.103		
			3.50	0.10	0.071	3.50	0.20	0.104		
			3.75	0.11	0.071	3.75	0.22	0.104		
			4.00	0.11	0.071	4.00	0.24	0.104		
						4.25	0.25	0.103		
						4.50	0.26	0.102		
						4.75	0.27	0.101		

LO SPERIMENTATORE
Geom. Alfonso Casapulla

IL DIRETTORE DEL LABORATORIO



Sondaggio: Campione: C1 Profondità di prelievo (m): 2.00-2.40

TAGLIO DIRETTO

CONDIZIONI DI PICCO Provino Pressione verticale Deformazione orizzontale Deformazione verticale Resistenza al taglio S_{hf} (mm) S_{vf} (mm) σ'_n (MPa) τ_f (MPa) (n) 0.050 0.049 2.75 0.00 0.098 3.50 0.072 2 🔷 0.10 3 • 0.196 4.00 0.24 0.104

DIAGRAMMA DELL'INVILUPPO DI ROTTURA - CONDIZIONI DI PICCO

PARAMETRI D Coeff. di	Errore stand.	Angolo di attrito	Coesione intercetta
determinaz.	sulla stima di c	ф	С
r ² (-)	s _v (-)	(gradi)	(Mpa)
9.95E-01	2.94E-02	20.08	0.033

Aut. Min. n. 154 del 19/04/11 esecuzione e certificazione di indagini geognostiche, prel. di campioni e prove in sito di cui all'art. 59 DPR. 380/01 (Sondaggi, prelievo campioni, prove SPT, prove di permeabilità; prove penetrometriche: DPSH, CPT, CPTE, CPTU; prove di carico su piastra; misura del peso di volume; CBR; perforazioni inclinate e orizzontali; monitoraggio e controlli)

PROVA PENETROMETRICA DINAMICA PESANTE (D.P.S.H.)

Standard utilizzato: Emilia (30) [peso maglio Kg 63.5, volata cm 75, area punta cmq 20, angolo di apertura della punta 60°]

Committente: Dott. Geol. Bassi Maria Teresa Id Int. 200 / 12

Cantiere: Senese Giuseppe Via Olmo - Bellizzi (SA)

Coordinate lat. e long.: N40.61603 / E14.91511 Data esecuz. prova: 10/04/2012

Prova (n): DPSH 01 Certificato n° PSA139/200/1102 del 11/04/2012 Accett. n.: A139 / 12

Prof.	Colpi	Prof.	Colpi	Prof.	Colpi	Prof.	Colpi	Prof.	Colpi
(m)	(N)	(m)	(N)	(m)	(N)	(m)	(N)	(m)	(N)
0.30	14	9.30	16						
0.60	4	9.60	23						
0.90	5	9.90	23						
1.20	6	10.20	30						
1.50	5	10.50	36						
1.80	4	10.80	38						
2.10	4	11.10	39						
2.40	5	11.40	49						
2.70	5	11.70	37						
3.00	5	12.00	49						
3.30	4	12.30	60						
3.60	5								
3.90	6								
4.20	6								
4.50	8								
4.80	9								
5.10	9								
5.40	12								
5.70	12								
6.00	17								
6.30	15								
6.60	15								
6.90	13								
7.20	10							1	CE
7.50	13							/	FGE S.
7.80	15							-	DIRETTORE D
8.10	11							1	LABORATOR
8.40	13							48	Gillsenge Fool
8.70	16							/.	3
9.00	14								Per la 8

IL RESPONSABILE DI SITO

BILE DI SITO

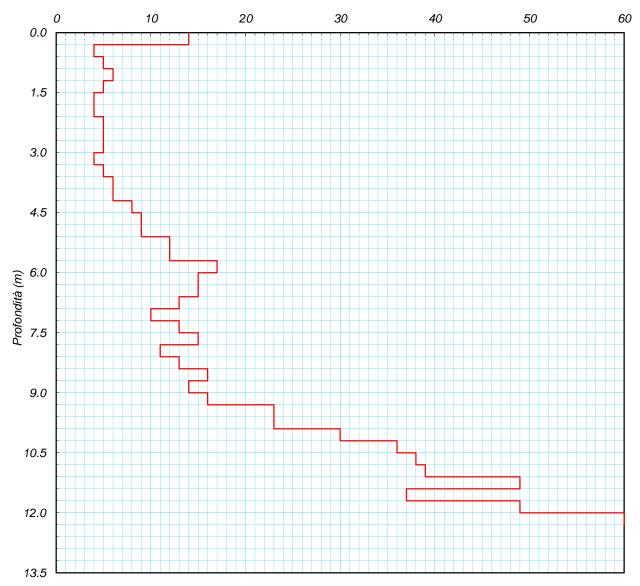
IL RES

Aut. Min. n. 154 del 19/04/11 esecuzione e certificazione di indagini geognostiche, prel. di campioni e prove in sito di cui all'art. 59 DPR. 380/01 (Sondaggi, prelievo campioni, prove SPT, prove di permeabilità; prove penetrometriche: DPSH, CPT, CPTE, CPTU; prove di carico su piastra; misura del peso di volume; CBR; perforazioni inclinate e orizzontali; monitoraggio e controlli)

PROVA PENETROMETRICA DINAMICA PESANTE (D.P.S.H.)

Standard utilizzato: Emilia (30) [peso maglio Kg 63.5, volata cm 75, area punta cmq 20, angolo di apertura della punta 60°]

Committente: Dott. Geol. Bassi Maria Teresa Id Int. 0200 / 12


Cantiere: Senese Giuseppe Via Olmo - Bellizzi (SA)

Coordinate lat. e long.: N40.61603 / E14.91511 Data esecuz. prova: 10/04/2012

Prova (n): DPSH 01 Certificato n° PSA139/200/1102 del 11/04/2012 Accett. n.: A139 / 12

GRAFICO NUMERO DI COLPI

Numero di colpi (n)

IL RESPONSABILE DI SITO

IL RESPONMBILE DI SITO
Dott. Geoi. Carmencita Ventrone

INGE s.r.l. Via Taverna Vecchia, 19 81020 Castel Morrone (CE) Tel e fax 0823-399115-399961

Aut. Min. n. 154 del 19/04/11 esecuzione e certificazione di indagini geognostiche, prel. di campioni e prove in sito di cui all'art. 59 DPR. 380/01 (Sondaggi, prelievo campioni, prove SPT, prove di permeabilità; prove penetrometriche: DPSH, CPTE, CPTE, CPTU; prove di carico su piastra; misura del peso di volume; CBR; perforazioni inclinate e orizzontali; monitoraggio e controlli)

PRELIEVO CAMPIONE INDISTURBATO

Standard utilizzato: AGI (1977) [Fustella a pareti sottili in acciaio inox L=60 cm; D=85 mm]

Committente: Dott. Geol. Bassi Maria Teresa Id Int. 0200 / 12

Cantiere: Senese Giuseppe Via Olmo - Bellizzi (SA)

Coordinate lat. e long.: 40.61603 - 14.91511 Data esecuz. prova: 10/04/2012

Sigla Campione DP1 - C1 Profondità di prelievo (m): 1.80 - 2.30

Prova (n): DPSH 01 Certificato n° PSA139/200/1102 del 11/04/2012 Accett. n.: A139 / 12

CAMPIONE PRELEVATO CON CAMPIONATORE INFISSO DAL PENETROMETRO STATICO

Campionatore nella posizione di infissione a pressione

Particolare punta Campionatore nella posizione di infissione a pressione

Particolare fustella Campionatore nella posizione di prelievo a pressione

IL RESPONSABILE DI SITO

IL RESPONSABILE DI SITO Dott. Geol. Carmencita Ventrone

PROVA PENETROMETRICA DINAMICA PESANTE (D.P.S.H.)

Standard utilizzato: Emilia (30) [peso maglio Kg 63.5, volata cm 75, area punta cmq 20, angolo di apertura della punta 60°]

Committente: Dott. Geol. Bassi Maria Teresa

Cantiere: Senese Giuseppe Via Olmo - Bellizzi (SA)

Coordinate lat. e long.: N40.61603 / E14.91511 Data esecuz. prova: 10/04/2012

Prova (n): **DPSH** 01

	S	TRATI	GRAF	IA INT	ERPRI
			DAT	I GENI	ERALI
Strato (n)	1	2	3	4	5
Profondità iniziale (m)	0.00	4.20	5.70	9.30	11.10
Profondità finale (m)	4.20	5.70	9.30	11.10	12.30
Potenza dello strato (m)	4.20	1.50	3.60	1.80	1.20
Peso di volume attribuito (g/cm³)	1.35	1.40	1.45	1.50	1.60
Pressione vert efficace (Kg/cm²)	0.57	0.80	1.35	1.67	1.97
Media numero colpi (N)	6	10	14	32	49
Media resist. alla Punta (Kg/cm²)	20.00	31.00	42.00	79.00	121.00
PARAMETI	RI GEO	TECNI	CI TEI	RRENI	DI NA
Angolo di attrito (°)	31	32	34	38	>38
Densità relativa (%)	43	56	66	99	100
Mod. di deformazione (Kg/cm²)	60	93	126	237	363
Mod. taglio dinamico (Kg/cm²)	138	200	359	496	586
Stato di addensamento	S	М	М	D	D
PARAME	TRI GE	EOTEC	NICI T	ERRE	NI DI N
Coesione non dren. (Kg/cm²)	0.97	1.51	2.03	3.87	5.95
Modulo edometrico (Kg/cm²)	44.00	68.00	92.00	173.00	266.00
Grado di sovracons. OCR (-)	27.04	12.35	3.94	2.59	1.95
Mod. di taglio dinam. (t/m²)	5'664	8'436	10'968	20'900	29'139
Stato di consistenza	Med	С	С	D	D

LEGENDA

Terreni di natura granulare - Stato di addensamento

M S=Molto sciolto, S=Sciolto, M=Medio, D=Denso, M D=Molto Denso

Terreni di natura coesiva - Stato di consistenza

M=Molle, T=Tenero, Med=Medio, C=Compatto, M C=Molto Compatto, D=Duro

Aut. Min. n. 154 del 19/04/11 esecuzione e certificazione di indagini geognostiche, prel. di campioni e prove in sito di cui all'art. 59 DPR. 380/01 (Sondaggi, prelievo campioni, prove SPT, prove di permeabilità; prove penetrometriche: DPSH, CPT, CPTE, CPTU; prove di carico su piastra; misura del peso di volume; CBR; perforazioni inclinate e orizzontali; monitoraggio e controlli)

PROVA PENETROMETRICA DINAMICA PESANTE (D.P.S.H.)

Standard utilizzato: Emilia (30) [peso maglio Kg 63.5, volata cm 75, area punta cmq 20, angolo di apertura della punta 60°]

Committente: Dott. Geol. Bassi Maria Teresa Id Int. 200 / 12

Cantiere: Senese Giuseppe Via Olmo - Bellizzi (SA)

Coordinate lat. e long.: N40.61625 / E14.91463 Data esecuz. prova: 10/04/2012

Prova (n): DPSH 02 Certificato n° PSA139/200/1103 del 11/04/2012 Accett. n.: A139 / 12

Prof.	Colpi	Prof.	Colpi	Prof.	Colpi	Prof.	Colpi	Prof.	Colpi
(m)	(N)	(m)	(N)	(m)	(N)	(m)	(N)	(m)	(N)
0.30	10	9.30	28						
0.60	6	9.60	33						
0.90	3	9.90	31						
1.20	5	10.20	30						
1.50	3	10.50	30						
1.80	4	10.80	26						
2.10	4	11.10	28						
2.40	7	11.40	38						
2.70	6	11.70	37						
3.00	9	12.00	60						
3.30	6								
3.60	7								
3.90	10								
4.20	10								
4.50	12								
4.80	19								
5.10	11								
5.40	21								
5.70	14								
6.00	13								
6.30	13								
6.60	15								
6.90	14								
7.20	14								GE
7.50	14							/-	2000
7.80	20							/ste /	DIRETTORE
8.10	20								Dott. Geo
8.40	24							4	Giliseingo Po
8.70	23							/	Don la c
9.00	28								10 10

IL RESPONSABILE DI SITO

BILE DI SITO

IL RES

Aut. Min. n. 154 del 19/04/11 esecuzione e certificazione di indagini geognostiche, prel. di campioni e prove in sito di cui all'art. 59 DPR. 380/01 (Sondaggi, prelievo campioni, prove SPT, prove di permeabilità; prove penetrometriche: DPSH, CPTE, CPTE, CPTU; prove di carico su piastra; misura del peso di volume; CBR; perforazioni inclinate e orizzontali; monitoraggio e controlli)

PROVA PENETROMETRICA DINAMICA PESANTE (D.P.S.H.)

Standard utilizzato: Emilia (30) [peso maglio Kg 63.5, volata cm 75, area punta cmq 20, angolo di apertura della punta 60°]

Committente: Dott. Geol. Bassi Maria Teresa Id Int. 200 / 12


Cantiere: Senese Giuseppe Via Olmo - Bellizzi (SA)

Coordinate lat. e long.: N40.61625 / E14.91463 Data esecuz. prova: 10/04/2012

Prova (n): DPSH 02 Certificato n° PSA139/200/1103 del 11/04/2012 Accett. n.: A139 / 12

GRAFICO NUMERO DI COLPI

Numero di colpi (n)

IL RESPONSABILE DI SITO

IL RESPONSABILE DI SITO Dott. Geol. Carmencita Ventrone

INGE s.r.l. Via Taverna Vecchia, 19 81020 Castel Morrone (CE) Tel e fax 0823-399115-399961 IL DIRETTORE DEL LABORATORIO Dott. Geol. Giuseppe Riello

ATTICO SOA

Cidate identification: 11 1977/1801/4 (Americanismo at 2) and 280 1/1979/

ATTESTALERONE 18 (QUALIFICAZIONE ALADA ESSECUENCE NE LAVORS FEBRE

Attestazione n. 3849/23/00 del 04/12/0

PROVA PENETROMETRICA DINAMICA PESANTE (D.P.S.H.)

Standard utilizzato: Emilia (30) [peso maglio Kg 63.5, volata cm 75, area punta cmq 20, angolo di apertura della punta 60°]

Committente: Dott. Geol. Bassi Maria Teresa

Cantiere: Senese Giuseppe Via Olmo - Bellizzi (SA)

Coordinate lat. e long.: N40.61625 / E14.91463 Data esecuz. prova: 10/04/2012

Prova (*n*): *DPSH* 02

	S	TRATI	GRAF	IA INTI	ERPRETATIVA
			DAT	I GENE	ERALI
Strato (n)	1	2	3	4	
Profondità iniziale (m)	0.00	4.20	7.50	11.10	
Profondità finale (m)	4.20	7.50	11.10	12.00	
Potenza dello strato (m)	4.20	3.30	3.60	0.90	
Peso di volume attribuito (g/cm³)	1.30	1.40	1.45	1.50	
Pressione vert efficace (Kg/cm²)	0.55	1.05	1.61	1.80	
Media numero colpi (N)	6	15	27	45	
Media resist. alla Punta (Kg/cm²)	23.00	46.00	72.00	106.00	
PARAMETI	RI GEO	TECNI	CI TEI	RRENI	DI NATURA GRANULARE
Angolo di attrito (°)	31	34	37	>38	
Densità relativa (%)	43	68	91	100	
Mod. di deformazione (Kg/cm²)	69	138	216	318	
Mod. taglio dinamico (Kg/cm²)	133	280	467	536	
Stato di addensamento	S	М	М	D	
PARAME	TRI GE	EOTEC	NICI T	ERREN	II DI NATURA COESIVA
Coesione non dren. (Kg/cm²)	1.12	2.25	3.52	5.21	
Modulo edometrico (Kg/cm²)	50.00	101.00	158.00	233.00	
Grado di sovracons. OCR (-)	28.08	6.57	2.68	2.19	
Mod. di taglio dinam. (t/m²)	5'664	11'574	18'306	27'267	
Stato di consistenza	Med	MC	MC	D	

LEGENDA

Terreni di natura granulare - Stato di addensamento

M S=Molto sciolto, S=Sciolto, M=Medio, D=Denso, M D=Molto Denso

Terreni di natura coesiva - Stato di consistenza

M=Molle, T=Tenero, Med=Medio, C=Compatto, M C=Molto Compatto, D=Duro

Aut. Min. n. 154 del 19/04/11 esecuzione e certificazione di indagini geognostiche, prel. di campioni e prove in sito di cui all'art. 59 DPR. 380/01 (Sondaggi, prelievo campioni, prove SPT, prove di permeabilità; prove penetrometriche: DPSH, CPT, CPTE, CPTU; prove di carico su piastra; misura del peso di volume; CBR; perforazioni inclinate e orizzontali; monitoraggio e controlli)

PROVA PENETROMETRICA DINAMICA PESANTE (D.P.S.H.)

Standard utilizzato: Emilia (30) [peso maglio Kg 63.5, volata cm 75, area punta cmq 20, angolo di apertura della punta 60°]

Committente: Dott. Geol. Bassi Maria Teresa Id Int. 200 / 12

Cantiere: Senese Giuseppe Via Olmo - Bellizzi (SA)

Coordinate lat. e long.: N40.61579 / E14.91481 Data esecuz. prova: 10/04/2012

Prova (n): DPSH 03 Certificato n° PSA139/200/1104 del 11/04/2012 Accett. n.: A139 / 12

Prof.	Colpi	Prof.	Colpi	Prof.	Colpi	Prof.	Colpi	Prof.	Colpi
(m)	(N)	(m)	(N)	(m)	(N)	(m)	(N)	(m)	(N)
0.30	6	9.30	14						
0.60	2	9.60	19						
0.90	1	9.90	17						
1.20	3	10.20	20						
1.50	8	10.50	27						
1.80	9	10.80	33						
2.10	7	11.10	32						
2.40	8	11.40	41						
2.70	7	11.70	60						
3.00	6								
3.30	6								
3.60	6								
3.90	6								
4.20	15								
4.50	9								
4.80	10								
5.10	12								
5.40	14								
5.70	10								
6.00	9								
6.30	10								
6.60	7								
6.90	9								
7.20	9								GE S.
7.50	6							/	1
7.80	12							(1	LABORATO
8.10	8							to	Dott. Geo.
8.40	13							7	3
8.70	9								Per la g
9.00	11								-

IL RESPONSABILE DI SITO

BILE DI SITO

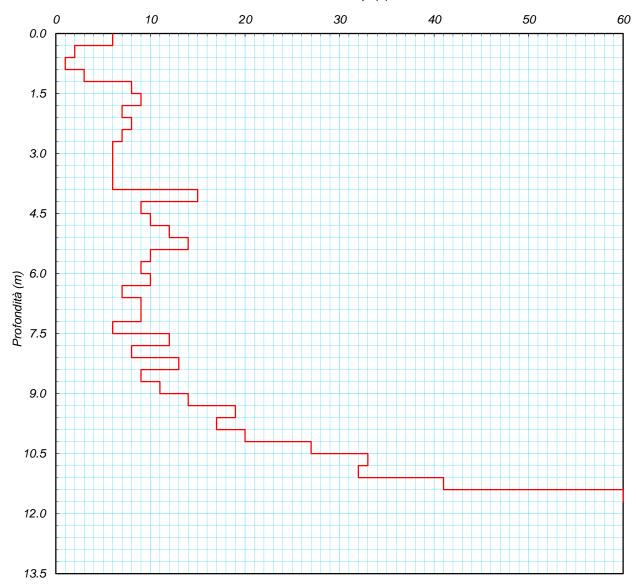
IL RES

Aut. Min. n. 154 del 19/04/11 esecuzione e certificazione di indagini geognostiche, prel. di campioni e prove in sito di cui all'art. 59 DPR. 380/01 (Sondaggi, prelievo campioni, prove SPT, prove di permeabilità; prove penetrometriche: DPSH, CPTE, CPTE, CPTU; prove di carico su piastra; misura del peso di volume; CBR; perforazioni inclinate e orizzontali; monitoraggio e controlli)

PROVA PENETROMETRICA DINAMICA PESANTE (D.P.S.H.)

Standard utilizzato: Emilia (30) [peso maglio Kg 63.5, volata cm 75, area punta cmq 20, angolo di apertura della punta 60°]

Committente: Dott. Geol. Bassi Maria Teresa Id Int. 200 / 12


Cantiere: Senese Giuseppe Via Olmo - Bellizzi (SA)

Coordinate lat. e long.: N40.61579 / E14.91481 Data esecuz. prova: 10/04/2012

Prova (n): DPSH 03 Certificato n° PSA139/200/1104 del 11/04/2012 Accett. n.: A139 / 12

GRAFICO NUMERO DI COLPI

Numero di colpi (n)

IL RESPONSABILE DI SITO

IL RESPONSABILE DI SITO Dott. Geol. Carmencita Ventrone

INGE s.r.l. Via Taverna Vecchia, 19 81020 Castel Morrone (CE) Tel e fax 0823-399115-399961 IL DIRETTORE DEL LABORATORIO Dott. Geol. Giuseppe Riello

ATTICO SOA

ATTICO

PROVA PENETROMETRICA DINAMICA PESANTE (D.P.S.H.)

Standard utilizzato: Emilia (30) [peso maglio Kg 63.5, volata cm 75, area punta cmq 20, angolo di apertura della punta 60°]

Committente: Dott. Geol. Bassi Maria Teresa

Cantiere: Senese Giuseppe Via Olmo - Bellizzi (SA)

Coordinate lat. e long.: N40.61579 / E14.91481 Data esecuz. prova: 10/04/2012

Prova (*n*): DPSH 03

	S	TRATI	GRAF	IA INT	ERPRI
			DAT	I GENI	ERALI
Strato (n)	1	2	3	4	5
Profondità iniziale (m)	0.00	1.20	3.90	9.00	11.10
Profondità finale (m)	1.20	3.90	9.00	11.10	11.70
Potenza dello strato (m)	1.20	2.70	5.10	2.10	0.60
Peso di volume attribuito (g/cm³)	1.30	1.35	1.40	1.45	1.50
Pressione vert efficace (Kg/cm²)	0.16	0.53	1.26	1.61	1.76
Media numero colpi (N)	3	7	10	23	51
Media resist. alla Punta (Kg/cm²)	10.00	25.00	31.00	59.00	115.00
PARAMETI	RI GEO	TECNI	CI TEF	RRENI	DI NA
Angolo di attrito (°)	29	31	32	36	>38
Densità relativa (%)	31	47	56	84	100
Mod. di deformazione (Kg/cm²)	30	75	93	177	345
Mod. taglio dinamico (Kg/cm²)	35	128	316	454	523
Stato di addensamento	MS	S	Μ	М	MD
PARAME	TRI GE	EOTEC	NICI T	ERREN	NI DI N
Coesione non dren. (Kg/cm²)	0.49	1.22	1.49	2.87	5.66
Modulo edometrico (Kg/cm²)	22.00	55.00	68.00	129.00	253.00
Grado di sovracons. OCR (-)	3.51	0.57	4.38	2.68	2.31
Mod. di taglio dinam. (t/m²)	3'298	6'387	8'436	16'154	30'063
Stato di consistenza	T	Med	С	МC	D

LEGENDA

Terreni di natura granulare - Stato di addensamento

M S=Molto sciolto, S=Sciolto, M=Medio, D=Denso, M D=Molto Denso

Terreni di natura coesiva - Stato di consistenza

M=Molle, T=Tenero, Med=Medio, C=Compatto, M C=Molto Compatto, D=Duro

Castel Morrone (CE), 30/04/2012

Accettazione n: TER060/12 Data ricevimento: 11/04/12 Data esecuzione prova: 11/04/12

Committente: Dott.ssa Geol. Bassi Maria Teresa Cantiere: Senese Giuseppe - Via Olmo - Bellizzi (SA)

Sondaggio: DP1 Campione: C1 Profondità di prelievo (m): 1.80 - 2.30

IDENTIFICAZIONE DEL TERRENO

(ASTM D2488-00)

CARATTERI IDENTIFICATIVI

Contenitore: Fustella pareti grosse in acciaio inox Diametro (cm): 8.50 Lungh. (cm): 20.30

Massa (Kg 2.254 Condizione del campione estruso: Buone Classe di qualità (AGI): Q5

PROVE DI CONSISTENZA SPEDITIVE

Pocket Penetrometer Test (MPa): 0.373 Pocket Vane Test (MPa): > 0.200

CARATTERISTICHE VISIVE

DESCRIZIONE DEL CAMPIONE

Materiale a granulometria argillosa sabbiosa. Mediamente consistente.

COLORE (Tavola di Munsell)

10YR marrone grigio scuro 4/2

Foto campione

LO SPERIMENTATORE

Geom. Alfonso Casapulla

IL DIRETTORE DEL LABORATORIO

Accettazione n: TER060/12 Data ricevimento: 11/04/12 Data esecuzione prova: 17/04/12

Committente: Dott.ssa Geol. Bassi Maria Teresa Cantiere: Senese Giuseppe - Via Olmo - Bellizzi (SA)

Sondaggio: DP1 Campione: C1 Profondità di prelievo (m): 1.80 - 2.30

CARATTERISTICHE FISICHE DEL TERRENO

(CNR-UNI 10008-64 BS 1377/75 ASTM D854-83)

CONDIZIONI NATURALI

Peso specifico del terreno γ_s (KN/m³) 27.06

Peso dell'unità di volume (fustellamento) γ (KN/m³) 17.96

Peso dell'unità di volume (pesata idrostatica) γ (KN/m³)

Contenuto d'acqua W (%) 30.43

Peso secco dell'unità di volume γ_d (KN/m³) 13.77

Indice di porosità e (-) 0.97

Porosità n (-) 0.49

Grado di saturazione S (-) 0.87

CONDIZIONI DI SATURAZIONE

Peso dellunità di volume immerso in acqua γ' (KN/m³) 8.78

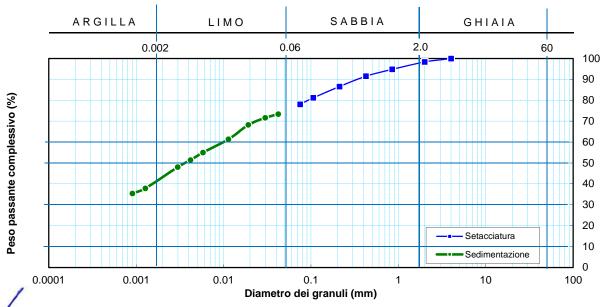
Peso dell'unità di volume saturo d'acqua γ_{sat} (KN/m³) 18.59

Contenuto d'acqua W_{sat} (%) 35.00

LO SPERIMENTATORE Geom. Alfonso Casapulla IL DIRETTORE DEL LABORATORIO

Accettazione n: TER060/12 Data ricevimento: 11/04/12 Data esecuzione prova: 16/04/12

Committente: Dott.ssa Geol. Bassi Maria Teresa Cantiere: Senese Giuseppe - Via Olmo - Bellizzi (SA)


Sondaggio: DP1 Campione: C1 Profondità di prelievo (m): 1.80 - 2.30

ANALISI GRANULOMETRICA

(ASTM D421-D422-D2217)

			(7101111 D 12		• /				
	VALORI	DETERI	MINATI M	IEDIANTE	SETACO	IATURA			
Vaglio ASTM (No)			5	10	20	40	70	140	200
Diametro granuli (mm)			4.000	2.000	0.850	0.425	0.212	0.106	0.075
Peso passante compl. (%)			99.94	98.34	94.78	91.52	86.56	81.16	78.07
ı	VALORI I	DETERM	INATI ME	EDIANTE S	SEDIMEN	TAZIONE			
Diametro granuli (mm)	0.042	0.030	0.019	0.011	0.006	0.004	0.003	0.0013	0.0009
Peso passante compl. (%)	73.36	71.59	68.20	61.34	55.01	51.39	48.00	37.86	35.41
FRA	AZIONI G	RANULO	OMETRIC	CHE E PAI	RAMETRI	CORREL	ATI		
Frazione argillosa < 0.002 m	m (%)	4	2.18	Diametro efficace D ₁₀			(mm)		
Frazione limosa < 0.06 mm	(%)	3	3.74	Diametro medio D ₃₀			(mm)		
Frazione < 0.074 mm	(%)	7	8.07	Diametro	medio D) ₅₀	(mm)	0.003	683
Frazione sabbiosa < 2 mm	(%)	2	4.02	Diametro	medio D	(mm)	0.010	182	
Frazione ghiaiosa < 60 mm	(%)	(0.06	Coefficie	ente di un	iformità (Ç _u (-)		
Frazione ciottolosa ≥ 60 r	nm (%)	(0.00	Coefficie	ente di cu	rvatura C	c (-)		
Class. A.G.I. (1990): Argilla	con lim	o sabbi	osa						

DIAGRAMMA DELLA DISTRIBUZIONE GRANULOMETRICA

IL DIRETTORE DEL LABORATORIO

Accettazione n: *TER060/12* **Data ricevimento:** 11/04/12 **Data prova** 11/04/12 / 28/04/12

Committente: Dott.ssa Geol. Bassi Maria Teresa Cantiere: Senese Giuseppe - Via Olmo - Bellizzi (SA)

Sondaggio: DP1 Campione: C1 Profondità di prelievo (m): 1.80 - 2.30

CONSOLIDAZIONE EDOMETRICA

(AGI 1994 ASTM D 2435-96)

CARATTERISTICHE DEL PROVINO EDOMETRICO

CONDIZIONI DI INIZIO PROVA						CONDIZIONI DI FINE PROVA					
Diam.	Altez.	Peso vol.	Peso vol.	Conten.	Grado	Altez.	Peso vol.	Peso vol.	Conten.	Grado	
prov.	prov.	umido	secco	d'acqua	satur.	prov.	umido	secco	d'acqua	saturaz.	
(cm)	(cm)	(KN/m ³)	(KN/m³)	(%)	(-)	(cm)	(KN/m³)	(KN/m ³)	(%)	(-)	
5.00	2.00	18.56	14.09	31.79	0.95	1.87	20.17	15.11	33.50	1.00	

PARAMET	וחט וח וא	MDRESSI	RII ITA

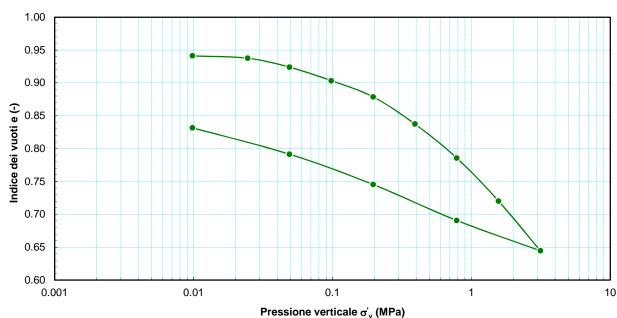
Gradino di carico (n)	Pressio. verticale σ'_{v} (MPa) 0.010	Cedim. assol. δH (mm)	Cedim. unitario $\varepsilon_{\rm v}$ (%) -1.04	Indice vuoti e (-)	Modulo edom. E _{ed} (MPa)	Coeff. di compress. m _v (1/MPa)	Coeff. di cons. prim. C _v (cm²/sec)	Coeff. di permeab. K (cm/sec)	Coeff. di cons. secon. $C_{\alpha\epsilon} \enskip (-)$
2	0.025	-0.170	-0.85	0.938	7.742	1.292E-01			
3	0.049	-0.028	-0.14	0.924	3.453	2.896E-01			
4	0.098	0.185	0.93	0.903	4.604	2.172E-01			
5	0.196	0.442	2.21	0.879	7.632	1.310E-01	4.80E-04	6.17E-09	1.16E-02
6	0.392	0.872	4.36	0.837	9.123	1.096E-01	3.57E-04	3.84E-09	1.16E-02
7	0.785	1.410	7.05	0.786	14.583	6.857E-02	2.64E-04	1.78E-09	2.90E-02
8	1.569	2.092	10.46	0.720	23.008	4.346E-02	2.47E-04	1.05E-09	5.03E-02
9	3.138	2.880	14.40	0.645	39.825	2.511E-02	1.25E-04	3.07E-10	1.78E-02
10	0.785	2.400	12.00	0.691					
11	0.196	1.830	9.15	0.745					
12	0.049	1.350	6.75	0.792					
13	0.010	0.932	4.66	0.832					

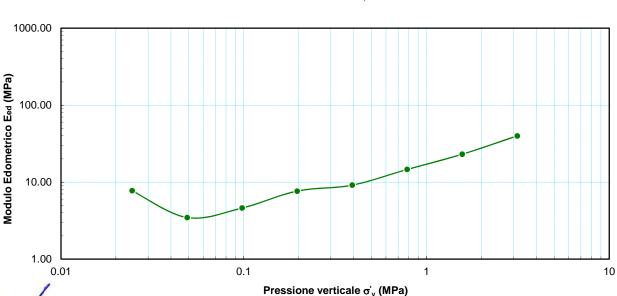
LO SPERIMENTATORE Geom. Alfonso Casapulla IL DIRETTORE DEL LABORATORIO

Castel Morrone (CE), 30/04/2012

Certificato n. 00220

Accettazione n: TER060/12 Data ricevimento:


Committente: Dott.ssa Geol. Bassi Maria Teresa Cantiere: Senese Giuseppe - Via Olmo - Bellizzi (SA)


Sondaggio: DP1 Campione: C1 Profondità di prelievo (m): 1.80 - 2.30

CONSOLIDAZIONE EDOMETRICA

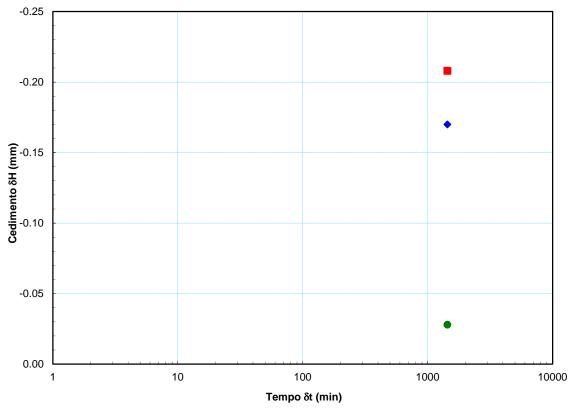
(AGI 1994 ASTM D 2435-96)

CURVA DI COMPRESSIBILITÀ

IL DIRETTORE DEL LABORATORIO

Accettazione n: *TER060/12* Data ricevimento: 11/04/12 Data prova 11/04/12 / 28/04/12

Committente: Dott.ssa Geol. Bassi Maria Teresa Cantiere: Senese Giuseppe - Via Olmo - Bellizzi (SA)


Sondaggio: DP1 Campione: C1 Profondità di prelievo (m): 1.80 - 2.30

CONSOLIDAZIONE EDOMETRICA

(AGI 1994 ASTM D 2435-96)

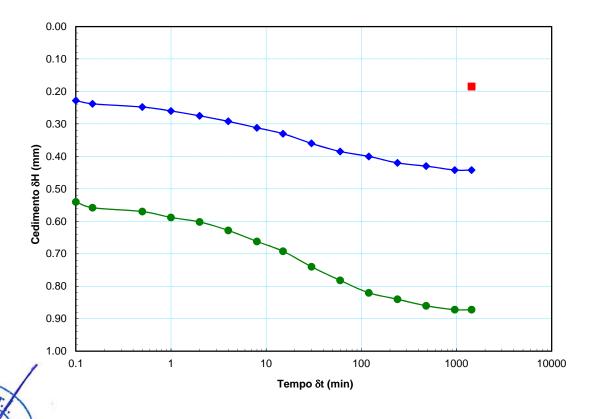
GRADINO n.1 ■	Pressione verticale in MPa da	0.000 a 0.010	
δt (min)			1440
δH (mm)			#
GRADINO n.2 🔷	Pressione verticale in MPa da	0.010 a 0.025	
δt (min)			1440
δH (mm)			#
GRADINO n.3 ●	Pressione verticale in MPa da	0.025 a 0.049	
δt (min)			1440
δH (mm)			#

DIAGRAMMA DEL DECORSO DEI CEDIMENTI NEL TEMPO

LO SPERIMENTATORE Geom. Alfonso Casapulla

Accettazione n: *TER060/12* Data ricevimento: 11/04/12 Data prova 11/04/12 / 28/04/12

Committente: Dott.ssa Geol. Bassi Maria Teresa Cantiere: Senese Giuseppe - Via Olmo - Bellizzi (SA)


Sondaggio: DP1 Campione: C1 Profondità di prelievo (m): 1.80 - 2.30

CONSOLIDAZIONE EDOMETRICA

(AGI 1994 ASTM D 2435-96)

GRADIN	IO n.4	Pro	ession	e verti	cale in	МРа	da 0	0.049	a 0.09	98						
δt	(min)															1440
δН	(mm)															0.185
GRADIN	IO n.5	Pre	ession	e verti	cale in	МРа	da 0	0.098	a 0.19	96						
δt	(min)	0.1	0.15	0.5	1	2	4	8	15	30	60	120	240	480	960	1440
δН	(mm)	0.228	0.238	0.248	0.260	0.275	0.292	0.312	0.330	0.360	0.385	0.400	0.420	0.430	0.442	0.442
GRADIN	IO n.6	Pro	ession	e verti	cale in	MPa d	da 0).196 a	a 0.39	92						
δt	(min)	0.1	0.15	0.5	1	2	4	8	15	30	60	120	240	480	960	1440
δΗ	(mm)	0.540	0.558	0.570	0.588	0.602	0.628	0.662	0.692	0.740	0.782	0.820	0.840	0.860	0.872	0.872

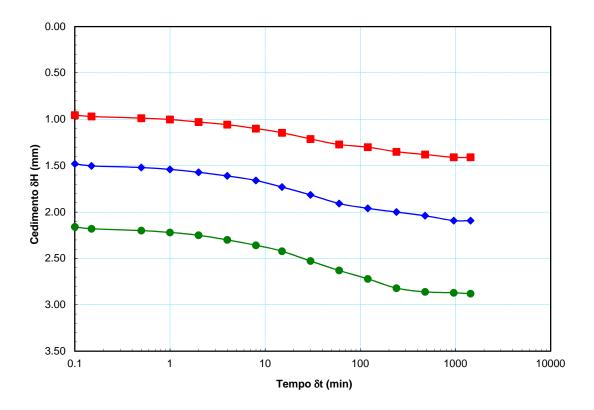
DIAGRAMMA DEL DECORSO DEI CEDIMENTI NEL TEMPO

LO SPERIMENTATORE
Geom. Alfonso Casapulla

IL DIRETTORE DEL LABORATORIO

Accettazione n: TER060/12 Data ricevimento: 11/04/12 Data prova 11/04/12 / 28/04/12

Committente: Dott.ssa Geol. Bassi Maria Teresa Cantiere: Senese Giuseppe - Via Olmo - Bellizzi (SA)


Sondaggio: DP1 Campione: C1 Profondità di prelievo (m): 1.80 - 2.30

CONSOLIDAZIONE EDOMETRICA

(AGI 1994 ASTM D 2435-96)

GRADINO n.7 ■ Pressione verticale in MPa da 0.392 a 0.785 δt (min) 0.1 0.15 0.5 15 1440 60 120 240 480 960 δН (mm) 0.955 0.970 0.988 1.002 1.030 1.058 1.100 1.145 1.212 1.272 1.300 1.350 1.380 1.410 1.410 GRADINO n.8 • Pressione verticale in MPa da 0.785 **a** 1.569 δt (min) 0.1 0.15 0.5 2 4 8 15 30 60 120 240 480 1440 δН 1.572 1.610 1.660 1.730 1.815 1.908 1.960 2.000 2.040 2.092 2.092 (mm) 1.480 1.502 1.520 1.540 GRADINO n.9 • Pressione verticale in MPa da 1.569 a 3.138 2 δt (min) 0.1 0.15 0.5 8 15 30 60 120 240 480 960 1440 δН (mm) 2.160 2.180 2.200 2.220 2.250 2.300 2.358 2.422 2.528 2.630 2.720 2.820 2.860 2.870 2.880

DIAGRAMMA DEL DECORSO DEI CEDIMENTI NEL TEMPO

LO SPERIMENTATORE

Geom. Alfonso Casapulla

IL DIRETTORE DEL LABORATORIO

Accettazione n: TER060/12 Data ricevimento: 11/04/12 Data esecuzione prova: 16/04/12

Committente: Dott.ssa Geol. Bassi Maria Teresa Cantiere: Senese Giuseppe - Via Olmo - Bellizzi (SA)

Sondaggio: DP1 Campione: C1 Profondità di prelievo (m): 1.80 - 2.30

TAGLIO DIRETTO

(ASTM D 3080-98)

	DIMENS	SIONI DEI F	PROVINI	VALORI A INIZIO	CONSOLIDAZ.	PARAMETRI DELLA CONSOLIDAZIONE				
Prov.	Lungh. lato	Altezza iniziale h	Area di base A _b	Peso di volume γ _i	Contenuto d'acqua w _i	Durata consol. δt	Pressione di consolidazione σ _n	Cedim. finale δh	Tempo	
(n)	(cm)	(cm)	(cm²)	(KN/m³)	(%)	(ore)	(MPa)	(mm)	(min)	
1 =	6.00	2.50	36.00	17.97	29.47	24.00	0.049	0.782	4.18	
2 🔷	6.00	2.50	36.00	17.83	30.62	24.00	0.098	1.098	6.90	
3 •	6.00	2.50	36.00	17.69	31.81	24.00	0.196	1.310	8.99	

	CONSOL	IDAZIO	NE DEI F	PROVINI			VALORI A FINE	CONSOLIDAZ.	
	o n.1 =		o n.2 🔷	Province		Prov.	Peso di	Contenuto	
Tempo t (min)	Cedim. δh (mm)	Tempo t (min)	Cedim. δh (mm)	Tempo t (min)	Cedim δh (mm)	(n)	volume γ _f (KN/m³)	d'acqua w _f (%)	
0.1	0.60	0.1	0.77	0.1	0.87	1 🔳	19.33	34.91	
0.25	0.62	0.25	0.81	0.25	0.92	2 🔷	19.28	35.08	
0.4	0.65	0.4	0.83	0.4	0.94	3 •	19.15	35.26	
0.5	0.66	0.5	0.85	0.5	0.96				
1	0.67	1	0.86	1	0.98				
2	0.69	2	0.90	2	1.02				
4	0.71	4	0.93	4	1.07				
8	0.73	8	0.97	8	1.13				
15	0.74	15	1.01	15	1.18		CARAT	TERISTICHE DELL	A PROVA
30	0.76	30	1.04	30	1.23		Condizione	Orientazione	Velocità di
60	0.77	60	1.06	60	1.25		del	strutturale	def. orizz.
120	0.77	120	1.07	120	1.26	Prov.	provino	del provino	V_{i}
240	0.77	240	1.07	240	1.27	(n)		(°)	(mm/min)
480	0.78	480	1.08	480	1.28	1 🔳	Indisturbato	n.d.	0.043
960	0.78	960	1.09	960	1.30	2 🔷	Indisturbato	n.d.	0.043
1440	0.78	1440	1.10	1440	1.31	3 •	Indisturbato	n.d.	0.043

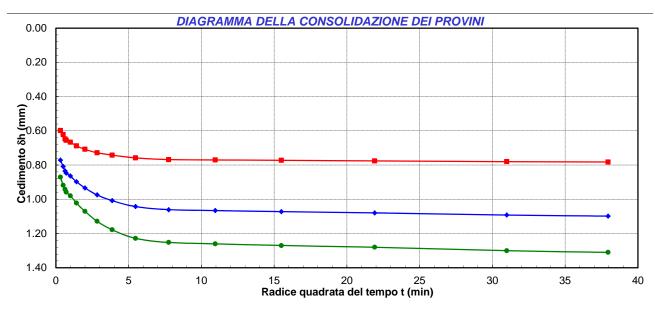
Note: Prova di taglio eseguita con la scatola di Casagrande.

LO SPERIMENTATORE
Geom. Alfonso Casapulla

IL DIRETTORE DEL LABORATORIO

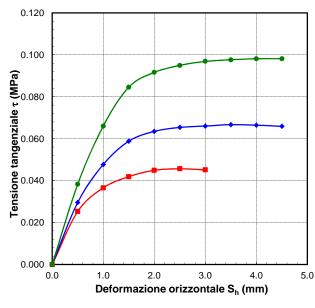
00221

Castel Morrone (CE), 30/04/2012 Certificato n.


Accettazione n: TER060/12 Data ricevimento: 11/04/12 Data esecuzione prova: 16/04/12

Committente: Dott.ssa Geol. Bassi Maria Teresa Cantiere: Senese Giuseppe - Via Olmo - Bellizzi (SA)

Sondaggio: DP1 Campione: C1 Profondità di prelievo (m): 1.80 - 2.30


TAGLIO DIRETTO

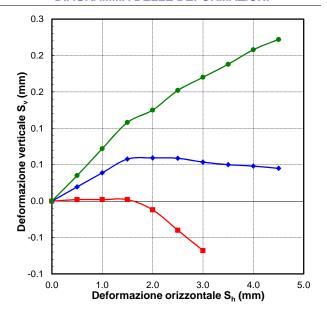

(ASTM D 3080-98)

DIAGRAMMA DEFORMAZIONE-TENSIONE

DIAGRAMMA DELLE DEFORMAZIONI

LO SPERIMENTATORE Geom. Alfonso Casapulla

IL DIRETTORE DEL LABORATORIO

Accettazione n: TER060/12 Data ricevimento: 11/04/12 Data esecuzione prova: 16/04/12

Committente: Dott.ssa Geol. Bassi Maria Teresa Cantiere: Senese Giuseppe - Via Olmo - Bellizzi (SA)

Sondaggio: DP1 Campione: C1 Profondità di prelievo (m): 1.80 - 2.30

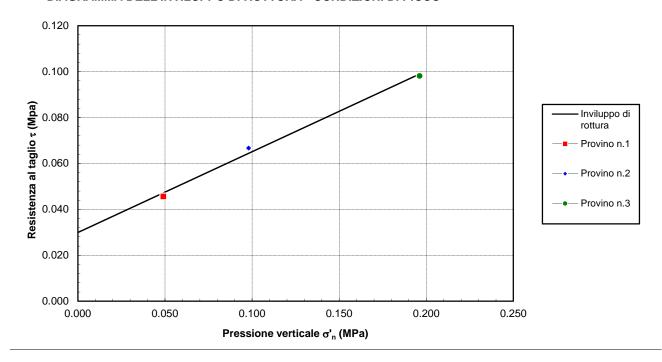
TAGLIO DIRETTO

(ASTM D 3080-98)

VALORI RILEVATI AI COMPARATORI DELLA MACCHINA DI TAGLIO - CONDIZIONI DI PICCO

	Provino n.	1 -	F	Provino n.2	2 🔷	ı	Provino n.	3 ●
Def. orizz. S _h (mm)	Def. vert. S _v (mm)	Tensione tangenziale τ (MPa)	Def. orizz. S _h (mm)	Def. vert. S _v (mm)	Tensione tangenziale τ (MPa)	Def. orizz. S _h (mm)	Def. vert. S _v (mm)	Tensione tangenziale τ (MPa)
0.00	0.00	0.000	0.00	0.00	0.000	0.00	0.00	0.000
0.50	0.00	0.025	0.50	0.02	0.030	0.50	0.04	0.038
1.00	0.00	0.037	1.00	0.04	0.048	1.00	0.07	0.066
1.50	0.00	0.042	1.50	0.06	0.059	1.50	0.11	0.085
2.00	-0.01	0.045	2.00	0.06	0.063	2.00	0.13	0.092
2.50	-0.04	0.046	2.50	0.06	0.065	2.50	0.15	0.095
3.00	-0.07	0.045	3.00	0.05	0.066	3.00	0.17	0.097
			3.50	0.05	0.067	3.50	0.19	0.098
			4.00	0.05	0.066	4.00	0.21	0.098
			4.50	0.05	0.066	4.50	0.22	0.098

LO SPERIMENTATORE Geom. Alfonso Casapulla



Sondaggio: *DP1* Campione: *C1* Profondità di prelievo (m): 1.80 - 2.30

TAGLIO DIRETTO

		CONDIZIONI D	OI PICCO	
Provino	Pressione verticale σ' _n	Deformazione orizzontale S _{hf}	Deformazione verticale S _{vf}	Resistenza al taglio τ _f
(n)	(MPa)	(mm)	(mm)	(MPa)
1 ■	0.049	2.50	-0.04	0.046
2 🔷	0.098	3.50	0.05	0.067
3 ●	0.196	4.00	0.21	0.098

DIAGRAMMA DELL'INVILUPPO DI ROTTURA - CONDIZIONI DI PICCO

<i>ELL'INVILUPPO</i>	Angolo	Coesione	
Errore stand.	di attrito	intercetta	
sulla stima di c	ф	С	
S_V	(gradi)	(Mpa)	
(-)			
2.89E-02	19.38	0.030	
	Errore stand. sulla stima di c s _v (-)	Errore stand. sulla stima di c s _v (gradi) (-)	Errore stand. di attrito intercetta sulla stima di c ϕ c s_v (gradi) (Mpa) (-)

Castel Morrone (CE), 19/07/2011

Accettazione n: TER091/11 Data ricevimento: 07/07/11 Data esecuzione prova: 08/07/11

Committente: Dott.ssa Bassi M. Teresa

Cantiere: Sig. Mazza - Via Curtatone, Bellizzi (SA)

Sondaggio: P1 Campione: C1 Profondità di prelievo (m): 1.50 - 1.80

IDENTIFICAZIONE DEL TERRENO

(ASTM D2488-00)

CARATTERI IDENTIFICATIVI

Contenitore: Fustella pareti grosse in ferro Diametro (cm): 8.35 Lungh. (cm): 18.50

Massa (Kg 1.932 Condizione del campione estruso: Buone Classe di qualità (AGI): Q5

PROVE DI CONSISTENZA SPEDITIVE

Pocket Penetrometer Test (MPa): 0.490 Pocket Vane Test (MPa): > 0.200

CARATTERISTICHE VISIVE

DESCRIZIONE DEL CAMPIONE

Materiale a granulometria argilloso - limosa, contenente noduli organici di dimensioni millimetriche. Materiale consistente.

COLORE (Tavola di Munsell)

10YR Marrone tendente al giallo 5/4

Foto campione

LO SPERIMENTATORE
Geom. Alfonso Casapulla

IL DIRETTORE DEL LABORATORIO

Accettazione n: TER091/11 Data ricevimento: 07/07/11 Data esecuzione prova: 08/07/11

Committente: Dott.ssa Bassi M. Teresa

Cantiere: Sig. Mazza - Via Curtatone, Bellizzi (SA)

Sondaggio: P1 Campione: C1 Profondità di prelievo (m): 1.50 - 1.80

CARATTERISTICHE FISICHE DEL TERRENO

(CNR-UNI 10008-64 BS 1377/75 ASTM D854-83)

CONDIZIONI NATURALI

Peso specifico del terreno γ_s (KN/m³) 26.74

Peso dell'unità di volume (fustellamento) γ (KN/m³) 19.20

Peso dell'unità di volume (pesata idrostatica) γ (KN/m³)

Contenuto d'acqua W (%) 22.57

Peso secco dell'unità di volume γ_d (KN/m³) 15.66

Indice di porosità e (-) 0.71

Porosità n (-) 0.41

Grado di saturazione S (-) 0.87

CONDIZIONI DI SATURAZIONE

Peso dellunità di volume immerso in acqua γ' (KN/m³) 9.91

Peso dell'unità di volume saturo d'acqua γ_{sat} (KN/m³) 19.72

Contenuto d'acqua W_{sat} (%) 25.94

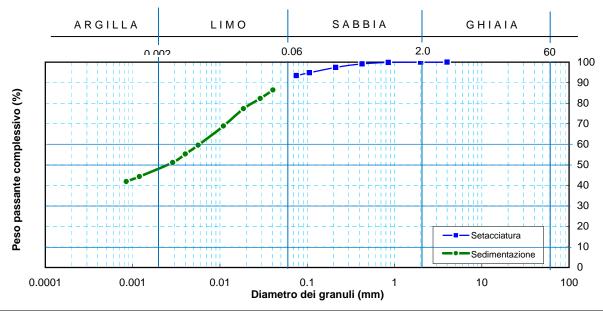
LO SPERIMENTATORE Geom. Alfonso Casapulla IL DIRETTORE DEL LABORATORIO

Accettazione n: TER091/11 Data esecuzione prova: 11/07/11

Committente: Dott.ssa Bassi M. Teresa

Cantiere: Sig. Mazza - Via Curtatone, Bellizzi (SA)

Sondaggio: P1 Campione: C1 Profondità di prelievo (m): 1.50 - 1.80


ANALISI GRANULOMETRICA

(ASTM D421-D422-D2217)

			•						
,	VALORI	DETERI	INATI M	EDIANTE	SETACC	IATURA			
Vaglio ASTM (No)			5	10	20	40	70	140	200
Diametro granuli (mm)			4.000	2.000	0.850	0.425	0.212	0.106	0.075
Peso passante compl. (%)			100.00	100.00	99.83	99.15	97.41	94.89	93.42
V	ALORI E	DETERM	INATI ME	DIANTE S	EDIMEN	TAZIONE			
Diametro granuli (mm)	0.041	0.029	0.019	0.011	0.006	0.004	0.003	0.0012	0.0008
Peso passante compl. (%)	86.47	82.31	77.31	68.88	59.53	55.27	51.10	44.25	41.89
FRA	ZIONI G	RANULO	OMETRIC	HE E PAR	RAMETRI	CORREL	ATI		
Frazione argillosa < 0.002 mr	n (%)	4	7.52	Diametro	efficace	D ₁₀	(mm)		
Frazione limosa < 0.06 mm	(%)	4	2 87	Diametro	medio D)	(mm)		

Frazione argillosa < 0.002 mm	(%)	47.52	Diametro efficace D ₁₀	(mm)	
Frazione limosa < 0.06 mm	(%)	42.87	Diametro medio D ₃₀	(mm)	
Frazione < 0.074 mm	(%)	93.42	Diametro medio D ₅₀	(mm)	0.002608
Frazione sabbiosa < 2 mm	(%)	9.61	Diametro medio D ₆₀	(mm)	0.005908
Frazione ghiaiosa < 60 mm	(%)	0.00	Coefficiente di uniformità Cu	(-)	
Frazione ciottolosa ≥ 60 mm	(%)	0.00	Coefficiente di curvatura C _c	(-)	
Class. A.G.I. (1990): Argilla con	n limo deb	olmente s	abbiosa		

DIAGRAMMA DELLA DISTRIBUZIONE GRANULOMETRICA

LO SPERIMENTATORE
Geom. Alfonso Casapulla

IL DIRETTORE DEL LABORATORIO

Accettazione n: TER091/11 Data ricevimento: 07/07/11 Data esecuzione prova: 08/07/11

Committente: Dott.ssa Bassi M. Teresa

Cantiere: Sig. Mazza - Via Curtatone, Bellizzi (SA)

Sondaggio: P1 Campione: C1 Profondità di prelievo (m): 1.50 - 1.80

TAGLIO DIRETTO

(ASTM D 3080-98)

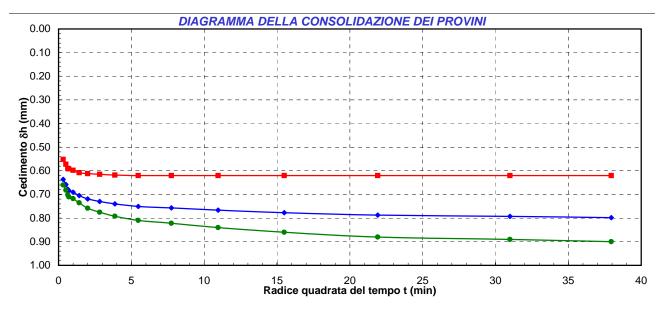
	DIMENS	SIONI DEI I	PROVINI	VALORI A INIZIO	CONSOLIDAZ.	PARAMETRI DELLA CONSOLIDAZIONE				
Prov.	Lungh. lato I	Altezza iniziale h	Area di base A _b	Peso di volume γ _i	Contenuto d'acqua w _i	Durata consol. δt	Pressione di consolidazione σ _n	Cedim. finale δh	Tempo T ₁₀₀	
(n)	(cm)	(cm)	(cm²)	(KN/m³)	(%)	(ore)	(MPa)	(mm)	(min)	
1 🔳	6.00	2.50	36.00	19.08	22.93	24.00	0.049	0.620	1.47	
2 🔷	6.00	2.50	36.00	19.28	22.73	24.00	0.098	0.798	4.93	
3 •	6.00	2.50	36.00	19.48	22.54	24.00	0.196	0.900	9.03	

	CONSOL	IDAZIOI	NE DEI F	PROVINI			VALORI A FINE	CONSOLIDAZ.	
Provin	o n.1 📕	Provinc	o n.2 🔷	Provinc	o n.3 •	Prov.	Peso di	Contenuto	
Tempo t (min)	Cedim. δh (mm)	Tempo t (min)	Cedim. δh (mm)	Tempo t (min)	Cedim δh (mm)	(n)	volume ^γ f (KN/m³)	d'acqua w _f (%)	
0.1	0.55	0.1	0.64	0.1	0.66	1 💻	20.13	26.44	
0.25	0.57	0.25	0.66	0.25	0.68	2 🔷	20.42	25.82	
0.4	0.59	0.4	0.68	0.4	0.70	3 •	20.65	25.21	
0.5	0.59	0.5	0.68	0.5	0.71			_	
1	0.60	1	0.69	1	0.72				
2	0.61	2	0.71	2	0.74				
4	0.61	4	0.72	4	0.76				
8	0.62	8	0.73	8	0.78				
15	0.62	15	0.74	15	0.79		CARAT	TERISTICHE DELL	A PROVA
30	0.62	30	0.75	30	0.81		Condizione	Orientazione	Velocità di
60	0.62	60	0.76	60	0.82		del	strutturale	def. orizz.
120	0.62	120	0.77	120	0.84	Prov.	provino	del provino	V_{i}
240	0.62	240	0.78	240	0.86	(n)		(°)	(mm/min)
480	0.62	480	0.79	480	0.88	1 -	Indisturbato	n.d.	0.043
960	0.62	960	0.79	960	0.89	2 🔷	Indisturbato	n.d.	0.043
1440	0.62	1440	0.80	1440	0.90	3 •	Indisturbato	n.d.	0.043

Note: Prova di taglio eseguita con la scatola di Casagrande.

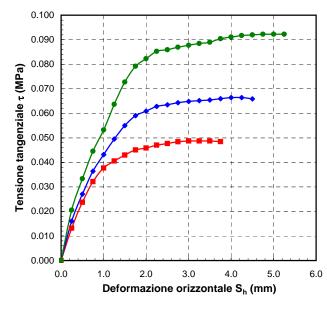
LO SPERIMENTATORE
Geom. Alfonso Casapulla

Accettazione n: TER091/11 Data ricevimento: 07/07/11 Data esecuzione prova: 08/07/11


Committente: Dott.ssa Bassi M. Teresa

Cantiere: Sig. Mazza - Via Curtatone, Bellizzi (SA)

Sondaggio: P1 Campione: C1 Profondità di prelievo (m): 1.50 - 1.80


TAGLIO DIRETTO

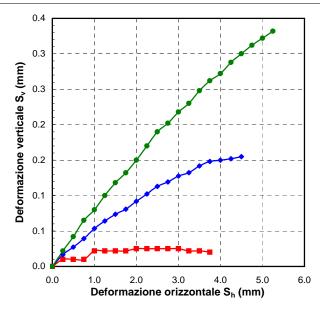

(ASTM D 3080-98)

DIAGRAMMA DEFORMAZIONE-TENSIONE

DIAGRAMMA DELLE DEFORMAZIONI

LO SPERIMENTATORE Geom. Alfonso Casapulla

Accettazione n: TER091/11 Data esecuzione prova: 08/07/11

Committente: Dott.ssa Bassi M. Teresa

Cantiere: Sig. Mazza - Via Curtatone, Bellizzi (SA)

Sondaggio: P1 Campione: C1 Profondità di prelievo (m): 1.50 - 1.80

TAGLIO DIRETTO

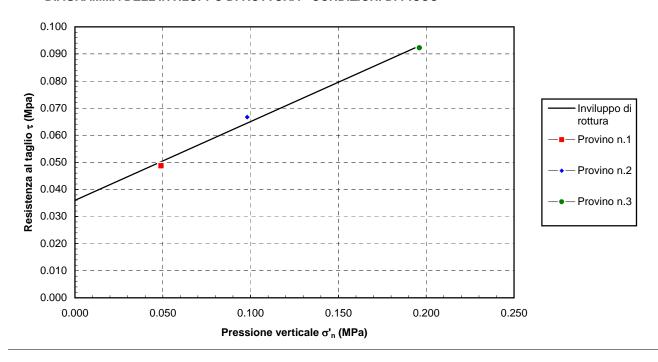
(ASTM D 3080-98)

VALORI RILEVATI AI COMPARATORI DELLA MACCHINA DI TAGLIO - CONDIZIONI DI PICCO

	Provino n.	1 =	P	rovino n.2	2 🔷	F	Provino n.:	3 ●
Def. orizz. S _h	Def. vert. S _v	Tensione tangenziale τ	Def. orizz. S _h	Def. vert. S _v	Tensione tangenziale τ	Def. orizz. S _h	Def. vert. S _v	Tensione tangenziale τ
(mm)	(mm)	(MPa)	(mm)	(mm)	(MPa)	(mm)	(mm)	(MPa)
0.00	0.00	0.000	0.00	0.00	0.000	0.00	0.00	0.000
0.25	0.01	0.013	0.25	0.02	0.016	0.25	0.02	0.021
0.50	0.01	0.024	0.50	0.03	0.027	0.50	0.04	0.033
0.75	0.01	0.032	0.75	0.04	0.036	0.75	0.07	0.045
1.00	0.02	0.038	1.00	0.05	0.043	1.00	0.08	0.053
1.25	0.02	0.041	1.25	0.06	0.050	1.25	0.10	0.064
1.50	0.02	0.043	1.50	0.07	0.055	1.50	0.12	0.073
1.75	0.02	0.045	1.75	0.08	0.059	1.75	0.13	0.079
2.00	0.03	0.046	2.00	0.09	0.061	2.00	0.15	0.082
2.25	0.03	0.047	2.25	0.10	0.063	2.25	0.17	0.085
2.50	0.03	0.048	2.50	0.11	0.063	2.50	0.19	0.086
2.75	0.03	0.048	2.75	0.12	0.064	2.75	0.20	0.087
3.00	0.03	0.049	3.00	0.13	0.065	3.00	0.22	0.088
3.25	0.02	0.049	3.25	0.13	0.065	3.25	0.23	0.088
3.50	0.02	0.049	3.50	0.14	0.065	3.50	0.25	0.089
3.75	0.02	0.048	3.75	0.15	0.066	3.75	0.26	0.090
			4.00	0.15	0.066	4.00	0.27	0.091
			4.25	0.15	0.066	4.25	0.29	0.092
			4.50	0.16	0.066	4.50	0.30	0.092
						4.75	0.31	0.092
						5.00	0.32	0.092
						5.25	0.33	0.092

LO SPERIMENTATORE
Geom. Alfonso Casapulla

IL DIRETTORE DEL LABORATORIO



Sondaggio: P1 Campione: C1 Profondità di prelievo (m): 1.50 - 1.80

TAGLIO DIRETTO

	CONDIZIONI DI PICCO									
Provino	Pressione verticale σ' _n	Deformazione orizzontale S _{hf}	Deformazione verticale S _{vf}	Resistenza al taglio τ _f						
(n)	(MPa)	(mm)	(mm)	(MPa)						
1 ■	0.049	3.00	0.03	0.049						
2 🔷	0.098	4.00	0.15	0.067						
3 ●	0.196	4.75	0.31	0.092						

DIAGRAMMA DELL'INVILUPPO DI ROTTURA - CONDIZIONI DI PICCO

PARAMETRI D Coeff. di	DELL'INVILUPPO Errore stand.	Angolo di attrito	Coesione intercetta
determinaz.	sulla stima di c	ф	С
r² (-)	s _v (-)	(gradi)	(Mpa)
9.92E-01	2.81E-02	16.21	0.036

Standard utilizzato: Emilia (30) [peso maglio Kg 63.5, volata cm 75, area punta cmq 20, angolo di apertura della punta 60°]

Committente: Sig. Laudisio Giovanni

Cantiere: Via Piave - Bellizzi (SA)

Data esecuz. prova: 11/11/2010

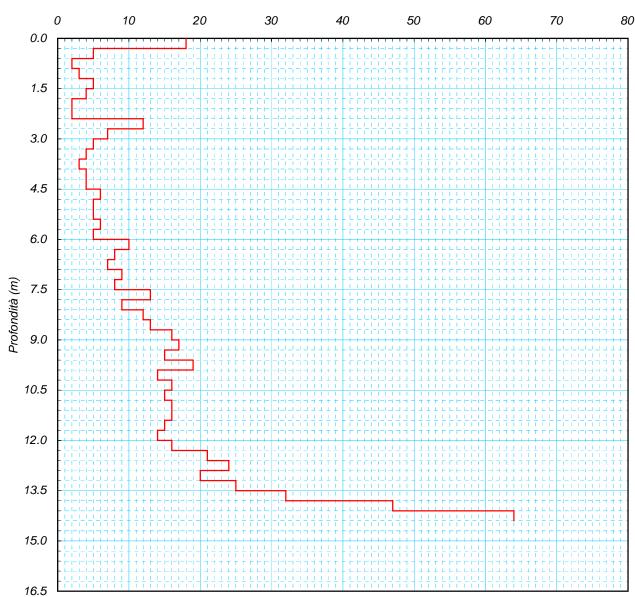
Prova (n): DPSH n. 1 Profondità della falda (m) n.d. Protocollo n.: 621/10

Prof.	Colpi	Prof.	Colpi	Prof.	Colpi	Prof.	Colpi	Prof.	Colpi
(m)	(N)	(m)	(N)	(m)	(N)	(m)	(N)	(m)	(N)
0.30	18	9.30	17						
0.60	5	9.60	15						
0.90	2	9.90	19						
1.20	3	10.20	14						
1.50	5	10.50	16						
1.80	4	10.80	15						
2.10	2	11.10	16						
2.40	2	11.40	16						
2.70	12	11.70	15						
3.00	7	12.00	14						
3.30	5	12.30	16						
3.60	4	12.60	21						
3.90	3	12.90	24						
4.20	4	13.20	20						
4.50	4	13.50	25						
4.80	6	13.80	32						
5.10	5	14.10	47						
5.40	5	14.40	64						
5.70	6								
6.00	5								
6.30	10								
6.60	8								
6.90	7								
7.20	9								
7.50	8								
7.80	13								
8.10	9								
8.40	12								
8.70	13								
9.00	16								

IL RESPONSABILE DEL SETTORE Dott. Geol. Giuseppe RIELLO

Standard utilizzato: Emilia (30) [peso maglio Kg 63.5, volata cm 75, area punta cmq 20, angolo di apertura della punta 60°]

Committente: Sig. Laudisio Giovanni


Cantiere: Via Piave - Bellizzi (SA)

Data esecuz. prova: 11/11/2010

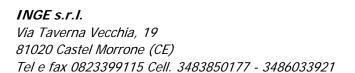

Prova (n): DPSH n. 1 Profondità della falda (m) n.d. Protocollo n.: 621/10

GRAFICO NUMERO DI COLPI

Numero di colpi (n)

IL RESPONSABILE DEL SETTORE Dott. Geol. Giuseppe RIELLO

Standard utilizzato: Emilia (30) [peso maglio Kg 63.5, volata cm 75, area punta cmq 20, angolo di apertura della punta 60°]

Committente: Sig. Laudisio Giovanni

Cantiere: Via Piave - Bellizzi (SA)

Data esecuz. prova: 11/11/2010

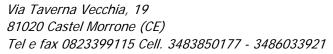
Prova (n): DPSH n. 1 Profondità della falda (m) n.d. Protocollo n.: 621/10

	S	TRATI	GRAF	IA INT	ERPRI
			DAT	I GENI	ERALI
Strato (n)	1	2	3	4	5
Profondità iniziale (m)	0.00	6.00	8.70	12.30	13.80
Profondità finale (m)	6.00	8.70	12.30	13.80	14.40
Potenza dello strato (m)	6.00	2.70	3.60	1.50	0.60
Peso di volume attribuito (g/cm³)	1.40	1.40	1.45	1.50	1.50
Pressione vert efficace (Kg/cm²)	0.84	1.22	1.78	2.07	2.16
Media numero colpi (N)	5	10	16	24	56
Media resist. alla Punta (Kg/cm²)	19.00	28.00	42.00	57.00	113.00
PARAMETE	RI GEO	TECNI	CI TEI	RRENI	DI NA
Angolo di attrito (°)	30	32	34	37	>38
Densità relativa (%)	39	56	70	86	100
Mod. di deformazione (Kg/cm²)	57	84	126	171	339
Mod. taglio dinamico (Kg/cm²)	198	306	475	600	644
Stato di addensamento	S	Μ	Μ	М	MD
PARAME	TRI GE	EOTEC	NICI T	ERRE	NI DI N
Coesione non dren. (Kg/cm²)	0.91	1.34	2.01	2.75	5.54
Modulo edometrico (Kg/cm²)	41.00	61.00	92.00	125.00	248.00
Grado di sovracons. OCR (-)	10.95	4.72	2.15	1.63	1.49
Mod. di taglio dinam. (t/m²)	4'913	8'436	12'171	16'699	32'338
Stato di consistenza	Med	С	МC	МC	D

LEGENDA

Terreni di natura granulare - Stato di addensamento

M S=Molto sciolto, S=Sciolto, M=Medio, D=Denso, M D=Molto Denso


Terreni di natura coesiva - Stato di consistenza

M=Molle, T=Tenero, Med=Medio, C=Compatto, M C=Molto Compatto, D=Duro

IL RESPONSABILE DEL SETTORE Dott. Geol. Giuseppe RIELLO

Accettazione n: TER/007/11 Data ricevimento: 14/11/11 Data esecuzione prova: 21/11/11

Committente: Dott. Bassi Maria Teresa per conto del Sig. Lanaro

Cantiere: Via Olmo, 49 Bellizzi Salerno

Sondaggio: Campione: C1 Profondità di prelievo (m): 2.50-3.00

IDENTIFICAZIONE DEL TERRENO

(ASTM D2488-00)

CARATTERI IDENTIFICATIVI

Contenitore: Fustella pareti grosse in acciaio inox Diametro (cm): 8.50 Lungh. (cm): 31.00

Massa (Kg 2.521 Condizione del campione estruso: Buone Classe di qualità (AGI): Q5

PROVE DI CONSISTENZA SPEDITIVE

Pocket Penetrometer Test (MPa): 0,294 Pocket Vane Test (MPa): > 0,200

CARATTERISTICHE VISIVE

DESCRIZIONE DEL CAMPIONE

Materiale a granulometria limoso sabbiosa di origine piroclastica con abbondante presenza di pomici e scorie millimetriche alterate. Materiale mediamente consistente.

COLORE (Tavola di Munsell)

10YR Marrone 5/3

Foto campione

LO SPERIMENTATORE
Geom. Alfonso Casapulla

IL DIRETTORE DEL LABORATORIO

Certificato n. 00019 Castel Morrone (CE), **27/01/2011**

Accettazione n: TER/007/11 Data ricevimento: 14/11/11 Data esecuzione prova: 21/11/11

Committente: Dott. Bassi Maria Teresa per conto del Sig. Lanaro

Cantiere: Via Olmo, 49 Bellizzi Salerno

Sondaggio: Campione: C1 Profondità di prelievo (m): 2.50-3.00

CARATTERISTICHE FISICHE DEL TERRENO

(CNR-UNI 10008-64 BS 1377/75 ASTM D854-83)

CONDIZIONI NATURALI

CONDIZIONI NATOR	KALI
Peso specifico del terreno γ_s (KN/m³)	26.91
Peso dell'unità di volume (fustellamento) γ (KN/m³)	14.01
Peso dell'unità di volume (pesata idrostatica) γ (KN/m³)	
Contenuto d'acqua W (%)	70.83
Peso secco dell'unità di volume γ_d (KN/m³)	8.20
Indice di porosità e (-)	2.28
Porosità n (-)	0.70
Grado di saturazione S (-)	0.85

CONDIZIONI DI SATURAZIONE

Peso dellunità di volume immerso in acqua γ' (KN/m³)	5.21
Peso dell'unità di volume saturo d'acqua γ_{sat} (KN/m³)	15.02
Contenuto d'acqua W _{ass} (%)	83.16

LO SPERIMENTATORE Geom. Alfonso Casapulla

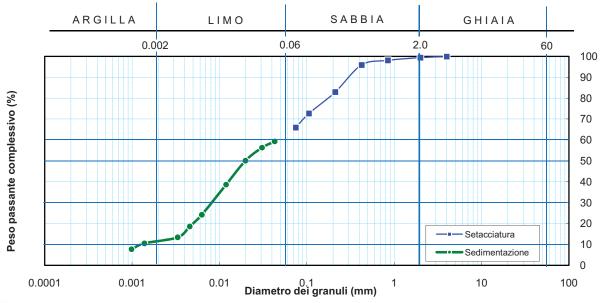
Certificato n.

00020

Accettazione n: TER/007/11 Data esecuzione prova: 24/01/11

Committente: Dott. Bassi Maria Teresa per conto del Sig. Lanaro

Cantiere: Via Olmo, 49 Bellizzi Salerno


Sondaggio: Campione: C1 Profondità di prelievo (m): 2.50-3.00

ANALISI GRANULOMETRICA

(ASTM D421-D422-D2217)

					,				
V	'ALORI	DETERN	IINATI M	IEDIANTE	SETACC	IATURA			
Vaglio ASTM (No)			5	10	20	40	70	140	200
Diametro granuli (mm)			4.000	2.000	0.850	0.425	0.212	0.106	0.075
Peso passante compl. (%)			99.87	99.37	98.05	95.85	82.91	72.63	65.92
VA	LORI L	DETERM	INATI ME	DIANTE S	SEDIMEN	TAZIONE			
Diametro granuli (mm)	0.043	0.031	0.020	0.012	0.006	0.005	0.003	0.0014	0.0010
Peso passante compl. (%) 5	59.27	56.30	50.03	38.59	24.18	18.58	13.37	10.46	7.68
FRAZ	ZIONI G	RANULO	OMETRIC	CHE E PAR	RAMETRI	CORREL	ATI		
Frazione argillosa < 0.002 mm	(%)	1	1.37	Diametro efficace D ₁₀			(mm)	0.001	321
Frazione limosa < 0.06 mm	(%)	5	1.44	Diametro medio D ₃₀			(mm)	0.008	570
Frazione < 0.074 mm	(%)	6	5.92	Diametro	medio D) ₅₀	(mm)	0.019	844
Frazione sabbiosa < 2 mm	(%)	3	7.06	Diametro	medio D) ₆₀	(mm)	0.046	400
Frazione ghiaiosa < 60 mm	(%)	(0.13	Coefficie	nte di un	iformità C	Ç _u (-)	35.1	12
Frazione ciottolosa ≥ 60 mr	n (%)	(0.00	Coefficiente di curvatura C _c			c (-)	1.2	0
Class. A.G.I. (1990): Limo con	n sabb	ia debo	Imente :	argilloso					

DIAGRAMMA DELLA DISTRIBUZIONE GRANULOMETRICA

LO SPERIMENTATORE Geom. Alfonso Casapulla IL DIRETTORE DEL LABORATORIO

Certificato n.

00021

Accettazione n: TER/007/11 Data ricevimento: 14/11/11 Data esecuzione prova: 21/01/11

Committente: Dott. Bassi Maria Teresa per conto del Sig. Lanaro

Cantiere: Via Olmo, 49 Bellizzi Salerno

Sondaggio: Campione: C1 Profondità di prelievo (m): 2.50-3.00

TAGLIO DIRETTO

(ASTM D 3080-98)

	DIMENS	SIONI DEI F	PROVINI	VALORI A INIZIO	CONSOLIDAZ.	PARAMETRI DELLA CONSOLIDAZIONE				
Prov.	Lungh. lato	Altezza iniziale	Area di base	Peso di volume	Contenuto d'acqua	Durata consol.	Pressione di consolidazione	Cedim. finale	Tempo	
(n)	l (cm)	h (cm)	A _b (cm²)	γ _i (KN/m³)	w _i (%)	δt (ore)	თ _ი (MPa)	δh (mm)	T ₁₀₀ (min)	
1 🔳	6.00	2.50	36.00	14.04	76.18	24.00	0.049	0.473	3.56	
2 🔷	6.00	2.50	36.00	13.99	74.62	24.00	0.098	0.899	4.88	
3 •	6.00	2.50	36.00	13.94	73.08	24.00	0.196	1.240	5.49	

(CONSOL	IDAZIOI	NE DEI F	PROVINI			VALORI A FINE	CONSOLIDAZ.	
	o n.1 =		o n.2 ♦	Provinc		Prov.	Peso di	Contenuto	
Tempo t (min)	Cedim. δh (mm)	Tempo t (min)	Cedim. δh (mm)	Tempo t (min)	Cedim δh (mm)	(n)	volume γ _ε (KN/m³)	d'acqua w _f (%)	
0.1	0.40	0.1	0.74	0.1	1.02	1 📕	14.76	81.73	
0.25	0.42	0.25	0.77	0.25	1.05	2 🔷	15.17	82.56	
0.4	0.42	0.4	0.78	0.4	1.07	3 •	15.54	83.39	
0.5	0.43	0.5	0.79	0.5	1.08			_	
1	0.43	1	0.80	1	1.09				
2	0.44	2	0.81	2	1.11				
4	0.44	4	0.82	4	1.12				
8	0.44	8	0.83	8	1.13				
15	0.45	15	0.84	15	1.15		CARAT	TERISTICHE DELL	A PROVA
30	0.45	30	0.85	30	1.17		Condizione	Orientazione	Velocità di
60	0.45	60	0.86	60	1.18		del	strutturale	def. orizz.
120	0.46	120	0.87	120	1.20	Prov.	provino	del provino	V_{i}
240	0.47	240	0.88	240	1.22	(n)		(°)	(mm/min)
480	0.47	480	0.89	480	1.23	1 🔳	Indisturbato	n.d.	0.071
960	0.47	960	0.90	960	1.24	2 🔷	Indisturbato	n.d.	0.071
1440	0.47	1440	0.90	1440	1.24	3 •	Indisturbato	n.d.	0.071

Note: Prova di taglio eseguita con la scatola di Casagrande.

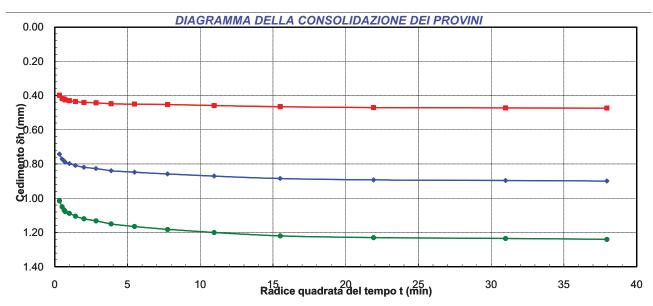
LO SPERIMENTATORE
Geom. Alfonso Casapulla

IL DIRETTORE DEL LABORATORIO

Certificato n.

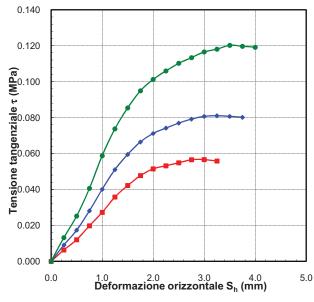
00021

Accettazione n: TER/007/11 Data esecuzione prova: 21/01/11


Committente: Dott. Bassi Maria Teresa per conto del Sig. Lanaro

Cantiere: Via Olmo, 49 Bellizzi Salerno

Sondaggio: Campione: C1 Profondità di prelievo (m): 2.50-3.00


TAGLIO DIRETTO

(ASTM D 3080-98)

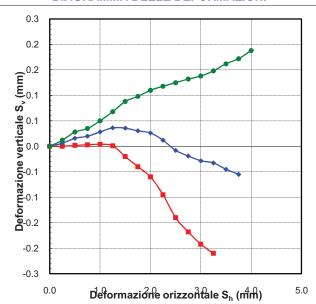


DIAGRAMMA DEFORMAZIONE-TENSIONE

DIAGRAMMA DELLE DEFORMAZIONI

LO SPERIMENTATORE Geom. Alfonso Casapulla

Certificato n.

00021

Accettazione n: TER/007/11 Data esecuzione prova: 21/01/11

Committente: Dott. Bassi Maria Teresa per conto del Sig. Lanaro

Cantiere: Via Olmo, 49 Bellizzi Salerno

Sondaggio: Campione: C1 Profondità di prelievo (m): 2.50-3.00

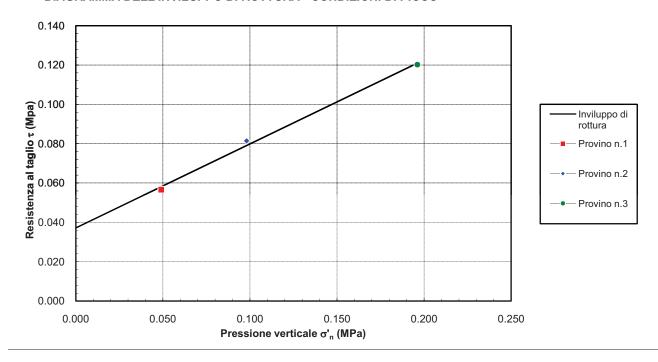
TAGLIO DIRETTO

(ASTM D 3080-98)

VALORI RILEVATI AI COMPARATORI DELLA MACCHINA DI TAGLIO - CONDIZIONI DI PICCO

Provino n.1 ■			F	Provino n.2	2 🔷	Provino n.3			
Def. orizz.	Def. vert.	Tensione tangenziale	Def. orizz.	Def. vert.	Tensione tangenziale	Def. orizz.	Def. vert.	Tensione tangenziale	
S _h	S _v	τ (MD-)	S _h	S _v	τ (MD=)	S _h	S _v	τ (MD-)	
(mm)	(mm)	(MPa)	(mm)	(mm)	(MPa)	(mm)	(mm)	(MPa)	
0.00	0.00	0.000	0.00	0.00	0.000	0.00	0.00	0.000	
0.25	0.00	0.006	0.25	0.01	0.009	0.25	0.01	0.013	
0.50	0.00	0.012	0.50	0.02	0.017	0.50	0.03	0.025	
0.75	0.00	0.020	0.75	0.02	0.028	0.75	0.04	0.041	
1.00	0.00	0.027	1.00	0.03	0.040	1.00	0.05	0.059	
1.25	0.00	0.036	1.25	0.04	0.051	1.25	0.07	0.074	
1.50	-0.02	0.042	1.50	0.04	0.059	1.50	0.09	0.085	
1.75	-0.04	0.048	1.75	0.03	0.066	1.75	0.10	0.095	
2.00	-0.06	0.051	2.00	0.03	0.071	2.00	0.11	0.101	
2.25	-0.10	0.053	2.25	0.01	0.074	2.25	0.12	0.106	
2.50	-0.14	0.055	2.50	-0.01	0.077	2.50	0.13	0.110	
2.75	-0.17	0.057	2.75	-0.02	0.079	2.75	0.13	0.113	
3.00	-0.19	0.057	3.00	-0.03	0.081	3.00	0.14	0.117	
3.25	-0.21	0.056	3.25	-0.03	0.081	3.25	0.15	0.118	
			3.50	-0.05	0.081	3.50	0.16	0.120	
			3.75	-0.06	0.080	3.75	0.17	0.120	
						4.00	0.19	0.119	

LO SPERIMENTATORE Geom. Alfonso Casapulla



Sondaggio: Campione: C1 Profondità di prelievo (m): 2.50-3.00

TAGLIO DIRETTO

CONDIZIONI DI PICCO										
Provino	Pressione verticale σ' _n	Deformazione orizzontale S _{hf}	Deformazione verticale S _{vf}	Resistenza al taglio τ _ε						
(n)	(MPa)	(mm)	(mm)	(MPa)						
1 ■	0.049	3.00	-0.19	0.057						
2 🔷	0.098	3.25	-0.03	0.081						
3 ●	0.196	3.50	0.16	0.120						

DIAGRAMMA DELL'INVILUPPO DI ROTTURA - CONDIZIONI DI PICCO

PARAMETRI D Coeff. di	DELL'INVILUPPO Errore stand.	Angolo di attrito	Coesione intercetta	
determinaz.	sulla stima di c	ф	С	
r ² (-)	s _v (-)	(gradi)	(Mpa)	
9.96E-01	2.94E-02	23.13	0.037	

Aut. Min. n. 154 del 19/04/11 esecuzione e certificazione di indagini geognostiche, prel. di campioni e prove in sito di cui all'art. 59 DPR. 380/01 (Sondaggi, prelievo campioni, prove SPT, prove di permeabilità; prove penetrometriche: DPSH, CPT, CPTE, CPTU; prove di carico su piastra; misura del peso di volume; CBR; perforazioni inclinate e orizzontali; monitoraggio e controlli)

PROVA PENETROMETRICA DINAMICA PESANTE (D.P.S.H.)

Standard utilizzato: Emilia (30) [peso maglio Kg 63.5, volata cm 75, area punta cmq 20, angolo di apertura della punta 60°]

Committente:

Dott.ssa Bassi Maria Teresa

ld Int. 586 / 11

Cantiere:

Lamberti Gaetano Via Cuomo - Bellizzi (SA)

Coordinate lat. e long.:

N40.62124 / E14.95079

Data esecuz. prova:

15/11/2011

Prova (n): DPSH 01

Certificato nº PSA396/586/709

del 15/11/2011 Accett. n.:

A396 / 11

Prof.	Colpi	Prof.	Colpi	Prof.	Colpi	Prof.	Colpi	Prof.	Colp
(m)	(N)	(m)	(N)	(m)	(N)	(m)	(N)	(m)	(N)
0.30	3	9.30	20						
0.60	1	9.60	21						
0.90	3	9.90	23			*			
1.20	3	10.20	23						
1.50	4	10.50	28						
1.80	5	10.80	31						
2.10	9	11.10	34						
2.40	11	11.40	33						
2.70	12	11.70	39						
3.00	13	12.00	40						
3.30	8	12.30	50						
3,60	9	12.60	58						
3.90	10								
4.20	14								
4.50	10								
4.80	10								
5.10	9								
5.40	8					#E			
5.70	5								
6.00	4								
6.30	6								
6.60	6								
6.90	5								
7.20	7								
7.50	9								
7.80	9								
8.10	12								
8.40	10								
8.70	12								
9.00	16								

IL RESPONSABILE DI SITO

IL RESPONSABILE DI SITO Dott. Geol. Carmencita Ventrone

INGE s.r.l. Via Taverna Vecchia, 19 81020 Castel Morrone (CE) Tel e fax 0823-399115-399961 IL DIRETTORE DEL LABORATORIO Dott. Geol. Giuseppe Riello

Aut. Min. n. 154 del 19/04/11 esecuzione e certificazione di indagini geognostiche, prel. di campioni e prove in sito di cui all'art. 59 DPR. 380/01 (Sondaggi, prelievo campioni, prove SPT, prove di permeabilità; prove penetrometriche: DPSH, CPT, CPTE, CPTU; prove di carico su piastra; misura del peso di volume; CBR; perforazioni inclinate e orizzontali; monitoraggio e controlli)

PROVA PENETROMETRICA DINAMICA PESANTE (D.P.S.H.)

Standard utilizzato: Emilia (30) [peso maglio Kg 63.5, volata cm 75, area punta cmq 20, angolo di apertura della punta 60°]

Committente:

Dott.ssa Bassi Maria Teresa

Id Int. 0586 / 11

Lamberti Gaetano Via Cuomo - Bellizzi (SA)

Certificato nº

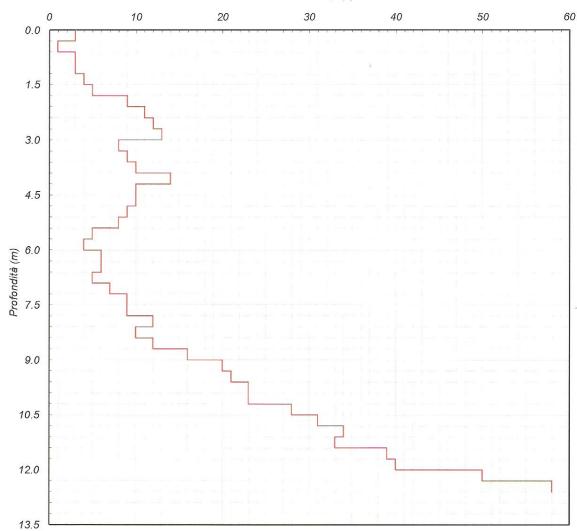
Coordinate lat. e long .: Prova (n): DPSH 01

N40.62124 / E14.95079

Data esecuz, prova:

del

15/11/2011


15/11/2011 Accett. n.:

A396 / 11

GRAFICO NUMERO DI COLPI

PSA396/586/709

IL RESPONSABILE DI SITO

IL RESPONSABILE DI SITO Dott. Geol. Earmendita Ventrone

INGE s.r.l. Via Taverna Vecchia, 19 81020 Castel Morrone (CE) Tel e fax 0823-399115-399961 IL DIRETTORE DEL LABORATORIO Dott. Geol. Giuseppe Riello

Pag. 2 di 3

Aut. Min. n. 154 del 19/04/11 esecuzione e certificazione di indagini geognostiche, prel. di campioni e prove in sito di cui all'art. 59 DPR. 380/01 (Sondaggi, prelievo campioni, prove SPT, prove di permeabilità; prove penetrometriche: DPSH, CPT, CPTE, CPTU; prove di carico su piastra; misura del peso di volume; CBR; perforazioni inclinate e orizzontali; monitoraggio e controlli)

PRELIEVO CAMPIONE INDISTURBATO

Standard utilizzato: AGI (1977) [Fustella a pareti sottili in acciaio inox L=60 cm; D=85 mm]

Committente:

Dott.ssa Bassi Maria Teresa

Id Int. 0586 / 11

Cantiere: Lamberti Gaetano Via Cuomo - Bellizzi (SA)

Coordinate lat. e long.:

40.62124 - 14.95079

Data esecuz. prova:

15/11/2011

A396

Sigla Campione DP1-C1 Prova (n): DPSH 01

Profondità di prelievo (m): 1.50-2.00 Certificato nº PSA396/586/709

del 15/11/2011

Accett, n.:

/ 11

CAMPIONE PRELEVATO CON CAMPIONATORE INFISSO DAL PENETROMETRO STATICO

Campionatore nella posizione di infissione a pressione

Particolare punta Campionatore nella posizione di infissione a pressione

Particolare fustella Campionatore nella posizione di prelievo a pressione

IL RESPONSABILE DI SITO IL RESPONSABILE DI SITO Dott. Geol. Carmencità Ventrone

INGE s.r.l. Via Taverna Vecchia, 19 81020 Castel Morrone (CE) Tel e fax 0823-399115-399961 IL DIRETTORE DEL LABORATORIO Dott. Geol. Gjuseppe Riello.

odr la % Pag. 3 di 3

Standard utilizzato: Emilia (30) [peso maglio Kg 63.5, volata cm 75, area punta cmq 20, angolo di apertura della punta 60°]

Committente:

Dott.ssa Bassi Maria Teresa

Cantiere: Lamberti Gaetano Via Cuomo - Bellizzi (SA)

Coordinate lat. e long.:

N40.62124 / E14.95079

Data esecuz. prova:

15/11/2011

Prova (n): DPSH 01

	S	TRATI	GRAF.	IA INT	ERPRI	ETATI	V A	
			DAT	I GENI	ERALI		5 200	
Strato (n)	1	2	3	4	5	6	7	8
Profondità iniziale (m)	0.00	1.80	3.00	5.40	7.20	8.70	10.20	11.40
Profondità finale (m)	1.80	3.00	5.40	7.20	8.70	10.20	11.40	12.60
Potenza dello strato (m)	1.80	1.20	2.40	1.80	1.50	1.50	1.20	1.20
Peso di volume attribuito (g/cm³)	1.30	1.35	1.35	1.30	1.35	1.40	1.40	1.50
Pressione vert efficace (Kg/cm²)	0.23	0.41	0.73	0.94	1.17	1.43	1.60	1.89
Media numero colpi (N)	3	11	10	6	10	21	32	47
Media resist. alla Punta (Kg/cm²)	11.00	38.00	35.00	18.00	29.00	54.00	79.00	113.00
PARAMETE	RI GEO	TECNI	CI TEF	RRENI	DINA	TURA	GRAN	ULARE
Angolo di attrito (°)	29	33	32	31	32	36	38	>38
Densità relativa (%)	31	59	56	43	56	80	99	100
Mod. di deformazione (Kg/cm²)	33	114	105	54	87	162	237	339
Mod. taglio dinamico (Kg/cm²)	53	105	183	227	295	403	475	563
Stato di addensamento	M S	М	М	S	М	М	D	D
PARAMETRI GEOTECNICI TERRENI DI NATURA COESIVA								
Coesione non dren. (Kg/cm²)	0.54	1.88	1.71	0.85	1.39	2.63	3.87	5.56
Modulo edometrico (Kg/cm²)	24.00	83.00	77.00	39.00	63.00	118.00	173.00	248.00
Grado di sovracons. OCR (-)	1.44	1.55	14.56	7.76	4.90	3.33	2.62	1.97
Mod. di taglio dinam. (t/m²)	3'298	9'087	8'436	5'664	8'436	15'047	20'900	28'207
Stato di consistenza	T	С	С	Med	C	MC	D	D

LEGENDA

Terreni di natura granulare - Stato di addensamento

M S=Molto sciolto, S=Sciolto, M=Medio, D=Denso, M D=Molto Denso

Terreni di natura coesiva - Stato di consistenza

M=Molle, T=Tenero, Med=Medio, C=Compatto, M C=Molto Compatto, D=Duro

Accettazione n: TER160/2011

Data ricevimento: 15/11/11 Data esecuzione prova:

16/11/11

Committente: Bassi Maria Teresa per conto di Lamberti Gaetano

Cantiere: Via Cuomo - Bellizzi (SA)

Sondaggio:

DP1

Campione: C1

Profondità di prelievo (m): 1.50 - 2.00

IDENTIFICAZIONE DEL TERRENO

(ASTM D2488-00)

CARATTERI IDENTIFICATIVI

Contenitore: fustella pareti grosse in acciaio inox

Diametro (cm):

8.52 Lungh. (cm):

21.50

Massa (Kg 2.264

Condizione del campione estruso:

#N/D

Classe di qualità (AGI): #N/D

PROVE DI CONSISTENZA SPEDITIVE

Pocket Penetrometer Test (MPa):

Pocket Vane Test (MPa):

> 0.200

CARATTERISTICHE VISIVE

DESCRIZIONE DEL CAMPIONE Materiale a granulometria argillosa - limosa debolmente sabbiosa. Molto consistente

COLORE (Tavola di Munsell)

10YR marrone grigio molto scuro 3/2

Foto campione

LO SPERIMENTATORE Geom. Alfonso Casapulla

Certificato n.

01726

Accettazione n: TER160/2011

Data ricevimento: 15/11/11 Data esecuzione prova:

18/11/11

Committente: Bassi Maria Teresa per conto di Lamberti Gaetano

Cantiere: Via Cuomo - Bellizzi (SA)

Sondaggio:

Campione: C1

Profondità di prelievo (m): 1.50 - 2.00

CARATTERISTICHE FISICHE DEL TERRENO

(CNR-UNI 10008-64 BS 1377/75 ASTM D854-83)

CONDIZIONI NATURALI

Peso specifico del terreno γ_s (KN/m³) 25.58

Peso dell'unità di volume (fustellamento) γ (KN/m³) 18.52

Peso dell'unità di volume (pesata idrostatica) γ (KN/m³)

Contenuto d'acqua W (%) 23.11

Peso secco dell'unità di volume γ_d (KN/m³) 15.05

> Indice di porosità e (-) 0.70

> > Porosità n (-) 0.41

Grado di saturazione S (-) 0.86

CONDIZIONI DI SATURAZIONE

Peso dellunità di volume immerso in acqua γ' (KN/m³) 9.28

Peso dell'unità di volume saturo d'acqua γ_{sat} (KN/m³)

19.09

Contenuto d'acqua W_{sat} (%)

26.83

LO SPERIMENTATORE

Geom. Alfonso Casapulla

Certificato n.

01727

Accettazione n: TER160/2011

Data ricevimento:

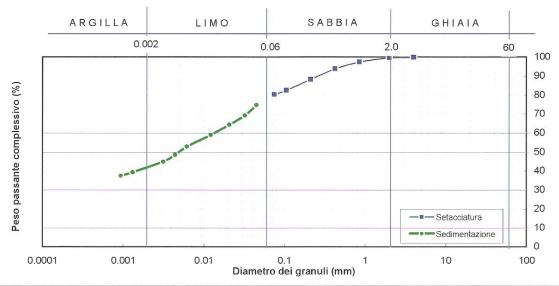
15/11/11 Data esecuzione prova: 17/11/11

Committente: Bassi Maria Teresa per conto di Lamberti Gaetano

Cantiere: Via Cuomo - Bellizzi (SA) DP1

Sondaggio:

Campione: C1


Profondità di prelievo (m): 1.50 - 2.00

ANALISI GRANULOMETRICA

(ASTM D421-D422-D2217)

		VALORI	DETERN	IINATI N	EDIANTE	SETACO	IATURA			
Vaglio ASTM	(No)			5	10	20	40	70	140	200
Diametro granuli	(mm)			4.000	2.000	0.850	0.425	0.212	0.106	0.075
Peso passante compl.	(%)			99.94	99.66	97.51	93.83	88.33	82.52	80.34
		VALORI I	DETERM	INATI ME	EDIANTE	SEDIMEN	TAZIONE			
Diametro granuli	(mm)	0.045	0.032	0.021	0.012	0.006	0.004	0.003	0.0013	0.0009
Peso passante compl.	(%)	74.73	69.17	64.35	59.00	52.90	48.45	44.83	39.27	37.41
	FR	AZIONI G	RANULO	OMETRIC	HE E PAI	RAMETRI	CORREL	ATI		
Frazione argillosa < 0	.002 m	ım (%)	4	1.33	Diametro	efficace	D ₁₀	(mm)		
Frazione limosa < 0.0	6 mm	(%)	3	6.23	Diametro	medio [) ₃₀	(mm)		
Frazione < 0.074 mm		(%)	8	0.34	Diametro	medio [) ₅₀	(mm)	0.005	051
Frazione sabbiosa < 2	2 mm	(%)	2	2.38	Diametro	medio [O ₆₀	(mm)	0.013	755
Frazione ghiaiosa < 60 mm (%) 0.06					Coefficie	ente di un				
Frazione ciottolosa	≥ 60 ı	mm (%)	(0.00	Coefficie	ente di cu	rvatura C	c (-)		
Class. A.G.I. (1990): A	rgilla	con lim	o sabbio	osa						

DIAGRAMMA DELLA DISTRIBUZIONE GRANULOMETRICA

LO SPERIMENTATORE Geom. Alfonso Casapulla IL DIRETTORE DEL LABORATORIO

Certificato n.

01728

Accettazione n: TER160/2011

Data ricevimento:

15/11/11 Data esecuzione prova:

16/11/11

Committente: Bassi Maria Teresa per conto di Lamberti Gaetano

Cantiere: Via Cuomo - Bellizzi (SA)

Sondaggio:

DP1

Campione: C1

Profondità di prelievo (m): 1.50 - 2.00

TAGLIO DIRETTO

(ASTM D 3080-98)

	DIMENS	IONI DEI F	PROVINI	VALORI A INIZIO	CONSOLIDAZ.	PARAI	METRI DELLA COI	VSOLIDAZ	ZIONE
Prov.	Lungh. lato I	Altezza iniziale h	Area di base A _b	Peso di volume γι	Contenuto d'acqua _{Wi}	Durata consol. δt	Pressione di consolidazione σ_n	Cedim. finale δh	Tempo
(n)	(cm)	(cm)	(cm²)	(KN/m³)	(%)	(ore)	(MPa)	(mm)	(min)
1 🔳	6.00	2.50	36.00	18.60	23.36	24.00	0.049	0.652	1.21
2 🄷	6.00	2.50	36.00	18.53	24.63	24.00	0.098	0.936	2.31
3 •	6.00	2.50	36.00	18.46	25.93	24.00	0.196	1.130	3.75

	CONSOLIDAZ.	VALORI A FINE			ROVINI	VE DEI P	.IDAZIOI	CONSOL	(
	Contenuto	Peso di	Prov.	n.3 •	Provinc	o n.2 🔷	Province	o n.1 🔳	Provin
	d'acqua w _f (%)	volume ^γ r (KN/m³)	(n)	Cedim δh (mm)	Tempo t (min)	Cedim. δh (mm)	Tempo t (min)	Cedim. δh (mm)	Tempo t (min)
	30.31	20.17	1 👅	1.03	0.1	0.86	0.1	0.60	0.1
	30.89	20.22	2 🔷	1.05	0.25	0.88	0.25	0.62	0.25
	31.49	20.19	3 •	1.06	0.4	0.89	0.4	0.63	0.4
				1.07	0.5	0.89	0.5	0.64	0.5
				1.07	1	0.90	1	0.64	1
				1.08	2	0.90	2	0.64	2
				1.09	4	0.91	4	0.65	4
				1.09	8	0.92	8	0.65	8
PROVA	TERISTICHE DELLA	CARATI		1.10	15	0.92	15	0.65	15
Velocità di	Orientazione	Condizione		1.11	30	0.92	30	0.65	30
def. orizz.	strutturale	del		1.11	60	0.93	60	0.65	60
V_{i}	del provino	provino	Prov.	1.11	120	0.93	120	0.65	120
(mm/min)	(°)		(n)	1.12	240	0.93	240	0.65	240
0.104	n.d.	Indisturbato	1 =	1.12	480	0.93	480	0.65	480
0.104	n.d.	Indisturbato	2 ♦	1.12	960	0.93	960	0.65	960
0.104	n.d.	Indisturbato	3 •	1.13	1440	0.94	1440	0.65	1440

Note: Prova di taglio eseguita con la scatola di Casagrande.

LO SPERIMENTATORE Geom. Alfonso Casapulla IL DIRETTORE DEL LABORATORIO

Certificato n.

01728

Accettazione n: TER160/2011

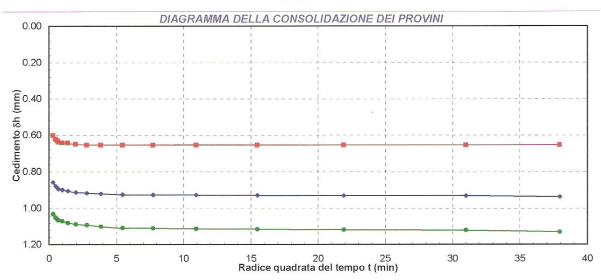
Data ricevimento:

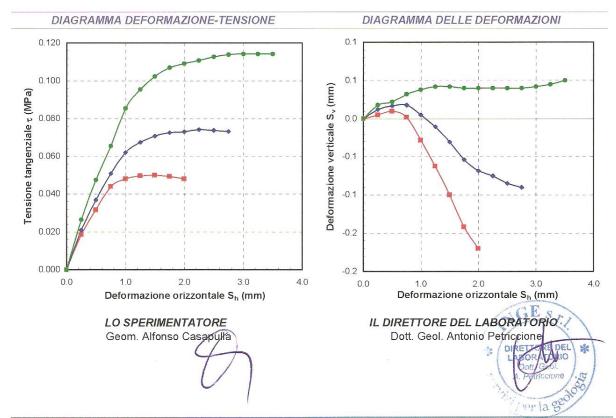
15/11/11 Data esecuzione prova:

16/11/11

Committente: Bassi Maria Teresa per conto di Lamberti Gaetano

Cantiere: Via Cuomo - Bellizzi (SA) DP1


Sondaggio:


Campione: C1

Profondità di prelievo (m): 1.50 - 2.00

TAGLIO DIRETTO

(ASTM D 3080-98)

Certificato n.

01728

Accettazione n: TER160/2011

Data ricevimento:

15/11/11 Data esecuzione prova:

Committente: Bassi Maria Teresa per conto di Lamberti Gaetano

Cantiere: Via Cuomo - Bellizzi (SA)

Sondaggio:

DP1

Campione: C1

Profondità di prelievo (m): 1.50 - 2.00

TAGLIO DIRETTO

(ASTM D 3080-98)

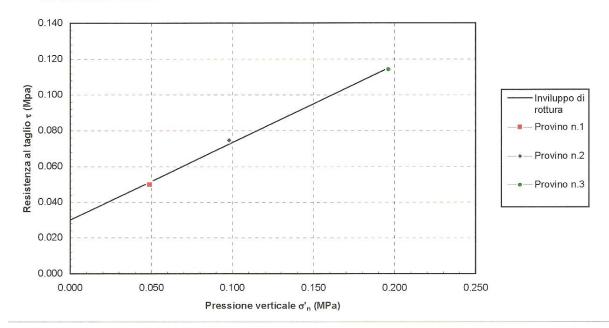
VALORI RILEVATI AI COMPARATORI DELLA MACCHINA DI TAGLIO - CONDIZIONI DI PICCO

	Provino n.	1		Provino n.2	2 🔷		Provino n.3	3 •
Def. orizz. S _h	Def. vert. S _v	Tensione tangenziale τ	Def. orizz. S _h	Def. vert. S _v	Tensione tangenziale	Def. orizz. S _h	Def. vert. S _v	Tensione tangenziale
(mm)	(mm)	(MPa)	(mm)	(mm)	(MPa)	(mm)	(mm)	(MPa)
0.00	0.00	0.000	0.00	0.00	0.000	0.00	0.00	0.000
0.25	0.01	0.018	0.25	0.01	0.021	0.25	0.02	0.026
0.50	0.01	0.032	0.50	0.02	0.037	0.50	0.02	0.047
0.75	0.00	0.044	0.75	0.02	0.051	0.75	0.03	0.065
1.00	-0.03	0.048	1.00	0.01	0.062	1.00	0.04	0.085
1.25	-0.06	0.050	1.25	-0.01	0.068	1.25	0.04	0.096
1.50	-0.10	0.050	1.50	-0.03	0.071	1.50	0.04	0.102
1.75	-0.14	0.049	1.75	-0.05	0.073	1.75	0.04	0.107
2.00	-0.17	0.048	2.00	-0.07	0.073	2.00	0.04	0.109
			2.25	-0.08	0.074	2.25	0.04	0.111
			2.50	-0.09	0.074	2.50	0.04	0.113
			2.75	-0.09	0.073	2.75	0.04	0.114
						3.00	0.04	0.114
						3.25	0.05	0.114
						3.50	0.05	0.114
		1						

LO SPERIMENTATORE Geom. Alfonso Casapulla IL DIRETTORE DEL LABORATORIO.

Sondaggio:

DP1


Campione: C1

Profondità di prelievo (m): 1.50 - 2.00

TAGLIO DIRETTO

		CONDIZIONI D	I PICCO	
Provino	Pressione verticale σ' _n	Deformazione orizzontale S _{hf}	Deformazione verticale S _{vf}	Resistenza al taglio ್ಚ
(n)	(MPa)	(mm)	(mm)	(MPa)
1 🔳	0.049	1.50	-0.10	0.050
2 🄷	0.098	2.25	-0.08	0.075
3 •	0.196	3.00	0.04	0.114

DIAGRAMMA DELL'INVILUPPO DI ROTTURA - CONDIZIONI DI PICCO

PARAMETRI D	ELL'INVILUPPO	Angolo	Coesione
Coeff. di	Errore stand.	di attrito	intercetta
determinaz.	sulla stima di c	ф	С
r^2	s_y	(gradi)	(Mpa)
(-)	(-)		
9.97E-01	2.56E-02	23.39	0.030

Cantiere:

Id Int. 090 / 15

Aut. Min. n. 154 del 19/04/11 esecuzione e certificazione di indagini geognostiche, prel. di campioni e prove in sito di cui all'art. 59 DPR. 380/01 (Sondaggi, prelievo campioni, prove SPT, prove di permeabilità; prove penetrometriche: DPSH, CPT, CPTE, CPTU; prove di carico su piastra; misura del peso di volume; CBR; perforazioni inclinate e orizzontali; monitoraggio e controlli)

PROVA PENETROMETRICA STATICA (C.P.T.)

(penetrometro Pagani TG63-200KN)

Committente: Dott. Geol. Bassi Mariateresa

Cantiere Nautico Romar Snc Via delle Industrie, 37 - Bellizzi (SA)

Coordinate lat. e long.: N40.63166 / E14.95884 Data esecuz. prova: 24/04/2015

Prova (n): CPT 01 Certificato n° 0196/15 del 29/04/2015 Accett. n.: PSA066 / 15

Resistenza alla punta Rp (Kg/cm²) Resistenza laterale locale RII (Kg/cm²) 150 350 50 100 200 250 300 5.0 10.0 0.0 0.0 0.0 1.0 1.0 2.0 2.0 3.0 3.0 4.0 4.0 5.0 5.0 6.0 6.0 7.0 7.0 Profondità (m) Profondità (m) 8.0 8.0 9.0 9.0 10.0 10.0 11.0 11.0 12.0 12.0 13.0 13.0 14.0 14.0 15.0 15.0 16.0 16.0

IL RESPONSABILE DI SITO

Id Int. 090 / 15

Aut. Min. n. 154 del 19/04/11 esecuzione e certificazione di indagini geognostiche, prel. di campioni e prove in sito di cui all'art. 59 DPR. 380/01 (Sondaggi, prelievo campioni, prove SPT, prove di permeabilità; prove penetrometriche: DPSH, CPT, CPTE, CPTU; prove di carico su piastra; misura del peso di volume; CBR; perforazioni inclinate e orizzontali; monitoraggio e controlli)

PROVA PENETROMETRICA STATICA (C.P.T.)

(penetrometro Pagani TG63-200KN)

Committente: Dott. Geol. Bassi Mariateresa

Cantiere: Cantiere Nautico Romar Snc Via delle Industrie, 37 - Bellizzi (SA)

Coordinate lat. e long.: N40.63166 / E14.95884 Data esecuz. prova: 24/04/2015

Prova (n): CPT 01 Certificato n° 0196/15 del 29/04/2015 Accett. n.: PSA066 / 15

·		VAL	ORI MISU	JRATI I	IN SI	TU CON	PENE	TROMET	RO ST	TATICO DA 20 TONS	
Prof	. R _I		RI		Prof.	R	0	RI	ı	Prof. Rp RII	
(m)			(Kg/cm²)		(m)			(Kg/cm²)		(m) (Kg/cm²) (MPa) (Kg/cm²) (MPa)	
0.6	30.0	2.94	0.1	0.01	8.4	133.0	13.04	0.7	0.07		
0.8	7.0	0.69	0.8	0.08	8.6	62.0	6.08	2.2	0.22		
1.0	7.0	0.69	0.6	0.06	8.8	90.0	8.83	1.5	0.15		
1.2	14.0	1.37	0.3	0.03	9.0	34.0	3.33	3.0	0.29		
1.4	10.0	0.98	0.7	0.07	9.2	35.0	<i>3.4</i> 3	1.5	0.14		
1.6	8.0	0.78	0.9	0.09	9.4	38.0	3.73	1.3	0.12		
1.8	16.0	1.57	0.8	0.08	9.6	39.0	3.82	1.3	0.13		
2.0	12.0	1.18	1.0	0.10	9.8	25.0	2 <i>.4</i> 5	1.5	0.14		
2.2	12.0	1.18	1.3	0.12	10.0	22.0	2.16	0.7	0.07		
2.4	22.0	2.16	1.1	0.10	10.2	27.0	2.65	2.4	0.24		
2.6	24.0	2.35	1.0	0.10	10.4		7.36	1.7	0.16		
2.8	32.0	3.14	1.7	0.17	10.6		10.79	1.3	0.12		
3.0	40.0	3.92	1.5	0.14	10.8	102.0	10.00	0.9	0.08		
3.2	37.0	3.63	1.5	0.14	11.0	90.0	8.83	1.1	0.10		
3.4	38.0	3.73	0.8	0.08	11.2	99.0	9.71	0.5	0.05		
3.6	26.0	2.55	1.0	0.10	11.4	82.0	8.04	0.8	0.08		
3.8	32.0	3.14	3.9	0.38	11.6		2. <i>4</i> 5	3.1	0.31		
4.0	55.0	5.39	1.5	0.14	11.8	10.0	0.98	0.6	0.06		
4.2	90.0	8.83	8.3	0.81	12.0	37.0	3.63	1.1	0.11		
4.4	52.0	5.10	1.7	0.17	12.2	30.0	2.94	1.6	0.16		
4.6	70.0	6.86	3.1	0.30	12.4	29.0	2.84	1.4	0.14		
4.8	33.0	3.24	1.7	0.17	12.6		3.92	0.7	0.07		
5.0	25.0	2.45	0.8	0.08	12.8		5.59	1.1	0.11		
5.2	55.0	5.39	1.5	0.14	13.0	40.0	3.92	1.3	0.12		
5.4	17.0	1.67	1.4	0.14	13.2	40.0	3.92	1.4	0.14		
5.6	25.0	2. 4 5	1.7	0.17	13.4	40.0	3.92	1.5	0.15		
5.8	26.0	2.55	1.9	0.18	13.6	41.0	4.02	1.4	0.14		
6.0	25.0	2. 4 5	0.7	0.07	13.8	48.0	4.71	0.5	0.05		
6.2	22.0	2.16	0.7	0.07	14.0	47.0	4.61	0.8	0.08		
6.4	30.0	2.94	0.7	0.07	14.2	22.0	2.16	1.8	0.18		
6.6	35.0	3.43	0.7	0.07	14.4	29.0	2.84	0.6	0.06		
6.8	33.0	3.24	1.7	0.16	14.6	34.0	3.33	1.0	0.10		
7.0	49.0	4.81	1.0	0.10							
7.2	38.0	3.73	1.6	0.16							
7.4	52.0	5.10	0.7	0.07							
7.6	62.0	6.08	1.7	0.17							
7.8	38.0	3.73	2.1	0.20							
8.0	55.0	5.39	2.2	0.22							
8.2	49.0	4.81	4.2	0.41							

IL RESPONSABILE DI SITO

Aut. Min. n. 154 del 19/04/11 esecuzione e certificazione di indagini geognostiche, prel. di campioni e prove in sito di cui all'art. 59 DPR. 380/01 (Sondaggi, prelievo campioni, prove SPT, prove di permeabilità; prove penetrometriche: DPSH, CPT, CPTE, CPTU; prove di carico su piastra; misura del peso di volume; CBR; perforazioni inclinate e orizzontali; monitoraggio e controlli)

PRELIEVO CAMPIONE INDISTURBATO

Standard utilizzato: AGI (1977) [Fustella a pareti sottili in acciaio inox L=60 cm; D=85 mm]

Committente: Dott. Geol. Bassi Mariateresa

Id Int. 090 / 15

Cantiere: Cantiere Nautico Romar Snc Via delle Industrie, 37 - Bellizzi (SA)

Coordinate lat. e long.: 40.63166 - 14.95884 Data esecuz. prova: 24/04/2015

Sigla Campione CPT1 - C1 Profondità di prelievo (m): 2.00 - 2.50

Prova (n): CPT 01 Certificato n° 0196/15 del 29/04/2015 Accett. n.: PSA066 / 15

CAMPIONE PRELEVATO CON CAMPIONATORE INFISSO DAL PENETROMETRO STATICO

Campionatore nella posizione di infissione a pressione

Particolare punta Campionatore nella posizione di infissione a pressione

Particolare fustella Campionatore nella posizione di prelievo a pressione

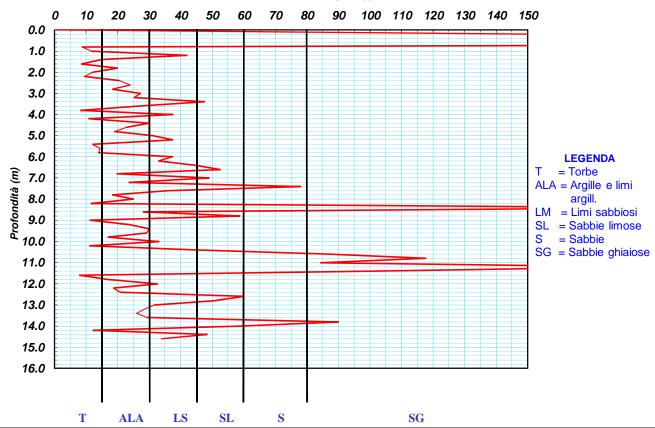
IL RESPONSABILE DI SITO

PROVA PENETROMETRICA STATICA (C.P.T.)

(penetrometro Pagani TG63-200KN)

Committente: Dott. Geol. Bassi Mariateresa

Cantiere: Cantiere Nautico Romar Snc Via delle Industrie, 37 - Bellizzi (SA)


Coordinate lat. e long.: N40.63166 / E14.95884 Data esecuz. prova: 24/04/2015

Prova (n): CPT 01

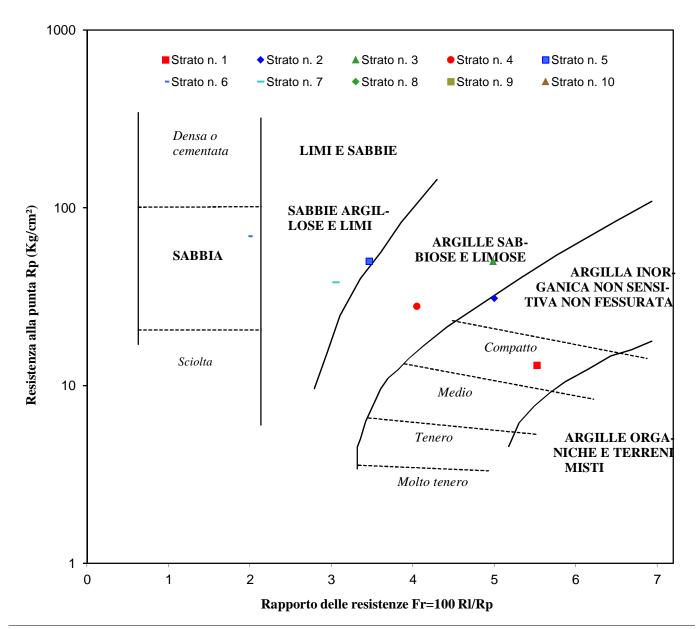
PARAMETRI GEOTECNICI

Str ato (n)	Prof da (m)	ond. a (m)	Peso di vol. γ_n (g/cm³)	Media Rp	Media RII (Kg/cm²)	Media Rp/RII (-)	Attrito interno (gradi)	Coesione non drenata (Kg/cm²)	Densità relativa (%)	Modulo edometrico (Kg/cm²)	Definizione della litologia
(,,)	()	(,,,,	(g/ciii /	(itg/ciii)	(itg/ciii)	()	(gradi)	(itg/ciii)	(70)	(itg/ciii)	intologia
1	0.0	2.2	1.70	13.00	0.72	18.1	26	0.57	15	39	Argille e limi argill.
2	2.2	3.8	1.80	31.00	1.55	20.0	29	1.39	40	93	Argille e limi argill.
3	3.8	5.4	1.85	50.00	2.49	20.1	30	2.24	49	150	Argille e limi argill.
4	5.4	6.8	1.80	28.00	1.13	24.7	27	1.22	24	84	Argille e limi argill.
5	6.8	10.2	1.90	50.00	1.73	28.8	29	2.20	38	150	Limi sabbiosi
6	10.2	11.8	1.80	69.00	1.37	50.4	30	3.05	44	207	Sabbie limose
7	11.8	14.6	1.70	38.00	1.16	32.7	26	1.62	21	114	Limi sabbiosi

Indice delle resistenze Rp/RII (-)

PROVA PENETROMETRICA STATICA (C.P.T.)

(penetrometro Pagani TG63-200KN)


Committente: Dott. Geol. Bassi Mariateresa Id Int. 090 / 15

Cantiere: Cantiere Nautico Romar Snc Via delle Industrie, 37 - Bellizzi (SA)

Coordinate lat. e long.: N40.63166 / E14.95884 Data esecuz. prova: 24/04/2015

Prova (n): CPT 01

CLASSIFICAZIONE DEI TERRENI SECONDO IL METODO DI SCHMERTMANN

Aut. Min. n. 154 del 19/04/11 esecuzione e certificazione di indagini geognostiche, prel. di campioni e prove in sito di cui all'art. 59 DPR. 380/01 (Sondaggi, prelievo campioni, prove SPT, prove di permeabilità; prove penetrometriche: DPSH, CPT, CPTE, CPTU; prove di carico su piastra; misura del peso di volume; CBR; perforazioni inclinate e orizzontali; monitoraggio e controlli)

PROVA PENETROMETRICA DINAMICA PESANTE (D.P.S.H.)

Standard utilizzato: Emilia (30) [peso maglio Kg 63.5, volata cm 75, area punta cmq 20, angolo di apertura della punta 60°]

Committente: Dott. Geol. Bassi Mariateresa Id Int. 090 / 15

Cantiere: Cantiere Nautico Romar Snc Via delle Industrie, 37 - Bellizzi (SA)

Coordinate lat. e long.: N40.63172 / E14.95860 Data esecuz. prova: 24/04/2015

Prova (n): DPSH 01 Certificato n° 0194/15 del 29/04/2015 Accett. n.: PSA066 / 15

Prof.	Colpi	Prof.	Colpi	Prof.	Colpi	Prof.	Colpi	Prof.	Colpi
(m)	(N)	(m)	(N)	(m)	(N)	(m)	(N)	(m)	(N)
0.30	2	9.30	6						
0.60	3	9.60	7						
0.90	3	9.90	9						
1.20	3	10.20	9						
1.50	2	10.50	10						
1.80	3	10.80	10						
2.10	3	11.10	12						
2.40	3	11.40	14						
2.70	2	11.70	13						
3.00	5	12.00	15						
3.30	4	12.30	14						
3.60	4	12.60	13						
3.90	5	12.90	24						
4.20	5	13.20	27						
4.50	5	13.50	29						
4.80	7	13.80	39						
5.10	6	14.10	38						
5.40	4								
5.70	4								
6.00	5								
6.30	5								
6.60	9								
6.90	13								
7.20	6								
7.50	5								
7.80	7								
8.10	4								
8.40	11								
8.70	10								
9.00	7								

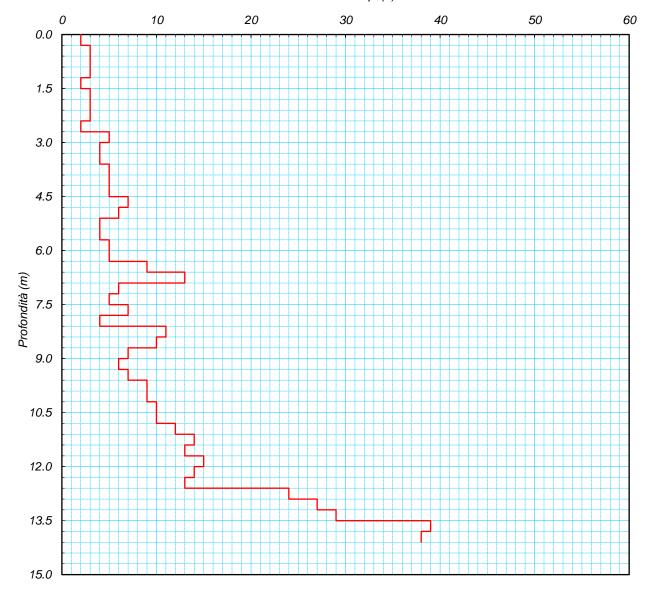
IL RESPONSABILE DI SITO

Aut. Min. n. 154 del 19/04/11 esecuzione e certificazione di indagini geognostiche, prel. di campioni e prove in sito di cui all'art. 59 DPR. 380/01 (Sondaggi, prelievo campioni, prove SPT, prove di permeabilità; prove penetrometriche: DPSH, CPT, CPTE, CPTU; prove di carico su piastra; misura del peso di volume; CBR; perforazioni inclinate e orizzontali; monitoraggio e controlli)

PROVA PENETROMETRICA DINAMICA PESANTE (D.P.S.H.)

Standard utilizzato: Emilia (30) [peso maglio Kg 63.5, volata cm 75, area punta cmq 20, angolo di apertura della punta 60°]

Committente: Dott. Geol. Bassi Mariateresa Id Int. 090 / 15


Cantiere: Cantiere Nautico Romar Snc Via delle Industrie, 37 - Bellizzi (SA)

Coordinate lat. e long.: N40.63172 / E14.95860 Data esecuz. prova: 24/04/2015

Prova (n): DPSH 01 Certificato n° 0194/15 del 29/04/2015 Accett. n.: PSA066 / 15

GRAFICO NUMERO DI COLPI

Numero di colpi (n)

IL RESPONSABILE DI SITO

PROVA PENETROMETRICA DINAMICA PESANTE (D.P.S.H.)

Standard utilizzato: Emilia (30) [peso maglio Kg 63.5, volata cm 75, area punta cmq 20, angolo di apertura della punta 60°]

Committente: Dott. Geol. Bassi Mariateresa

Cantiere: Cantiere Nautico Romar Snc Via delle Industrie, 37 - Bellizzi (SA)

Coordinate lat. e long.: N40.63172 / E14.95860 Data esecuz. prova: 24/04/2015

Prova (*n*): DPSH 01

	S	TRATI	GRAF	IA INT	ERPRI	ETATI	VA	
			DAT	I GENI	ERALI			
Strato (n)	1	2	3	4	5	6	7	
Profondità iniziale (m)	0.00	2.70	6.30	8.10	10.80	12.60	13.50	
Profondità finale (m)	2.70	6.30	8.10	10.80	12.60	13.50	14.10	
Potenza dello strato (m)	2.70	3.60	1.80	2.70	1.80	0.90	0.60	
Peso di volume attribuito (g/cm³)	1.80	1.70	1.70	1.80	1.60	1.70	1.80	
Pressione vert efficace (Kg/cm²)	0.49	1.07	1.38	1.94	2.02	2.30	2.54	
Media numero colpi (N)	3	5	7	9	14	27	39	
Media resist. alla Punta (Kg/cm²)	9.00	16.00	21.00	23.00	33.00	57.00	85.00	
PARAMETE	RI GEO	TECNI	CI TEF	RRENI	DI NA	ΓURA	GRANI	JL
Angolo di attrito (°)	29	30	31	32	34	37	>38	
Densità relativa (%)	31	39	46	53	66	91	100	
Mod. di deformazione (Kg/cm²)	27	48	63	69	99	171	255	
Mod. taglio dinamico (Kg/cm²)	110	252	335	488	537	666	756	
Stato di addensamento	MS	S	S	S	М	М	D	
PARAME	TRI GE	EOTEC	NICI T	ERREN	NI DI N	ATUR	A COE	SIV
Coesione non dren. (Kg/cm²)	0.43	0.75	0.98	1.05	1.55	2.74	4.12	
Modulo edometrico (Kg/cm²)	19.00	35.00	46.00	50.00	72.00	125.00	187.00	
Grado di sovracons. OCR (-)	0.33	0.09	0.06	0.03	0.04	0.06	0.08	
Mod. di taglio dinam. (t/m²)	3'298	4'913	6'387	7'770	10'968	18'306	24'387	
Stato di consistenza	T	Med	Med	С	С	МC	D	

LEGENDA

Terreni di natura granulare - Stato di addensamento

M S=Molto sciolto, S=Sciolto, M=Medio, D=Denso, M D=Molto Denso

Terreni di natura coesiva - Stato di consistenza

M=Molle, T=Tenero, Med=Medio, C=Compatto, M C=Molto Compatto, D=Duro

Committente:

Id Int. 090 / 15

Aut. Min. n. 154 del 19/04/11 esecuzione e certificazione di indagini geognostiche, prel. di campioni e prove in sito di cui all'art. 59 DPR. 380/01 (Sondaggi, prelievo campioni, prove SPT, prove di permeabilità; prove penetrometriche: DPSH, CPT, CPTE, CPTU; prove di carico su piastra; misura del peso di volume; CBR; perforazioni inclinate e orizzontali; monitoraggio e controlli)

PROVA PENETROMETRICA DINAMICA PESANTE (D.P.S.H.)

Standard utilizzato: Emilia (30) [peso maglio Kg 63.5, volata cm 75, area punta cmq 20, angolo di apertura della punta 60°]

Cantiere: Cantiere Nautico Romar Snc Via delle Industrie, 37 - Bellizzi (SA)

Dott. Geol. Bassi Mariateresa

Coordinate lat. e long.: N40.63178 / E14.95856 Data esecuz. prova: 24/04/2015

Prova (n): DPSH 02 Certificato n° 0195/15 del 29/04/2015 Accett. n.: PSA066 / 15

V.	ALORI MI								TE
Prof.	Colpi	Prof.	Colpi	Prof.	Colpi	Prof.	Colpi	Prof.	Colpi
(m)	(N)	(m)	(N)	(m)	(N)	(m)	(N)	(m)	(N)
0.30	15	9.30	6						
0.60	4	9.60	8						
0.90	5	9.90	8						
1.20	3	10.20	9						
1.50	2	10.50	13						
1.80	5	10.80	12						
2.10	4	11.10	12						
2.40	2	11.40	12						
2.70	3	11.70	11						
3.00	4	12.00	14						
3.30	5	12.30	19						
3.60	7	12.60	20						
3.90	8	12.90	27						
4.20	7	13.20	30						
4.50	8	13.50	29						
4.80	5	13.80	37						
5.10	6	14.10	40						
5.40	7								
5.70	6								
6.00	7								
6.30	7								
6.60	8								
6.90	6								
7.20	7								
7.50	5								
7.80	9								
8.10	8								
8.40	12								
8.70	6								
9.00	5								

IL RESPONSABILE DI SITO

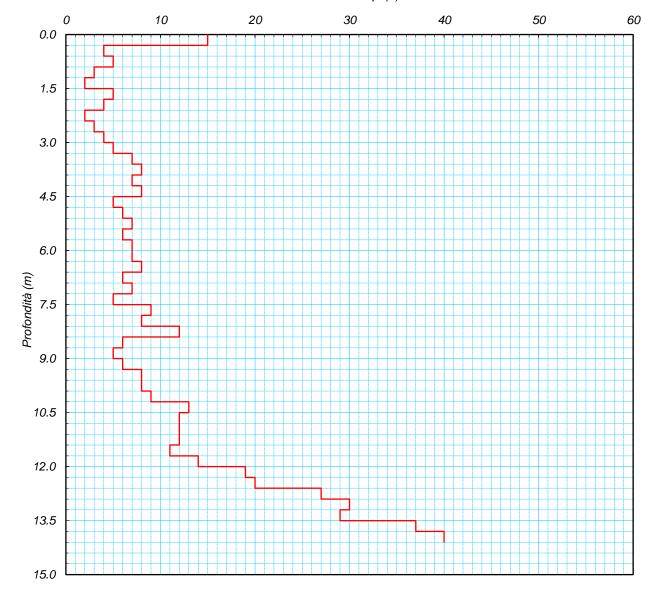
Id Int. 090 / 15

Aut. Min. n. 154 del 19/04/11 esecuzione e certificazione di indagini geognostiche, prel. di campioni e prove in sito di cui all'art. 59 DPR. 380/01 (Sondaggi, prelievo campioni, prove SPT, prove di permeabilità; prove penetrometriche: DPSH, CPT, CPTE, CPTU; prove di carico su piastra; misura del peso di volume; CBR; perforazioni inclinate e orizzontali; monitoraggio e controlli)

PROVA PENETROMETRICA DINAMICA PESANTE (D.P.S.H.)

Standard utilizzato: Emilia (30) [peso maglio Kg 63.5, volata cm 75, area punta cmq 20, angolo di apertura della punta 60°]

Committente: Dott. Geol. Bassi Mariateresa


Cantiere: Cantiere Nautico Romar Snc Via delle Industrie, 37 - Bellizzi (SA)

Coordinate lat. e long.: N40.63178 / E14.95856 Data esecuz. prova: 24/04/2015

Prova (n): DPSH 02 Certificato n° 0195/15 del 29/04/2015 Accett. n.: PSA066 / 15

GRAFICO NUMERO DI COLPI

Numero di colpi (n)

IL RESPONSABILE DI SITO

PROVA PENETROMETRICA DINAMICA PESANTE (D.P.S.H.)

Standard utilizzato: Emilia (30) [peso maglio Kg 63.5, volata cm 75, area punta cmq 20, angolo di apertura della punta 60°]

Committente: Dott. Geol. Bassi Mariateresa

Cantiere: Cantiere Nautico Romar Snc Via delle Industrie, 37 - Bellizzi (SA)

Coordinate lat. e long.: N40.63178 / E14.95856 Data esecuz. prova: 24/04/2015

Prova (*n*): DPSH 02

	S	TRATI	GRAF	IA INT	ERPRI	ETATI	VA	
			DAT	I GENI	ERALI			
Strato (n)	1	2	3	4	5	6	7	
Profondità iniziale (m)	0.00	3.30	7.50	8.40	10.20	12.00	13.50	
Profondità finale (m)	3.30	7.50	8.40	10.20	12.00	13.50	14.10	
Potenza dello strato (m)	3.30	4.20	0.90	1.80	1.80	1.50	0.60	
Peso di volume attribuito (g/cm³)	1.80	1.70	1.80	1.75	1.80	1.80	1.80	
Pressione vert efficace (Kg/cm²)	0.59	1.28	1.51	1.79	2.16	2.43	2.54	
Media numero colpi (N)	5	7	10	7	12	25	39	
Media resist. alla Punta (Kg/cm²)	17.00	22.00	25.00	21.00	31.00	57.00	85.00	
PARAMETI	RI GEO	TECNI	CI TEF	RRENI	DI NA	ΓURA	GRANU	JLARE
Angolo di attrito (°)	30	31	32	31	33	37	>38	
Densità relativa (%)	39	47	56	46	61	87	100	
Mod. di deformazione (Kg/cm²)	51	66	75	63	93	171	255	
Mod. taglio dinamico (Kg/cm²)	140	310	379	434	559	705	756	
Stato di addensamento	S	S	М	S	Μ	Μ	D	
PARAME	TRI GE	EOTEC	NICI T	ERREN	II DI N	ATUR	A COES	SIVA
Coesione non dren. (Kg/cm²)	0.82	1.04	1.17	0.96	1.44	2.73	4.12	
Modulo edometrico (Kg/cm²)	37.00	48.00	55.00	46.00	68.00	125.00	187.00	
Grado di sovracons. OCR (-)	0.41	0.08	0.07	0.04	0.04	0.06	0.08	
Mod. di taglio dinam. (t/m²)	4'913	6'387	8'436	6'387	9'725	17'239	24'387	
Stato di consistenza	Med	Med	С	Med	С	МC	D	

LEGENDA

Terreni di natura granulare - Stato di addensamento

M S=Molto sciolto, S=Sciolto, M=Medio, D=Denso, M D=Molto Denso

Terreni di natura coesiva - Stato di consistenza

M=Molle, T=Tenero, Med=Medio, C=Compatto, M C=Molto Compatto, D=Duro

Castel Morrone (CE), 05/05/2015

Accettazione n: TER 021/15 Data ricevimento: 27/04/15 Data esecuzione prova: 27/04/15

Committente: Dott. Geol. Bassi Maria Teresa

Cantiere: Cantiere Nautico Romar snc Via Delle Industrie, 37 Bellizzi (SA)

Sondaggio: CPT1 Campione: C1 Profondità di prelievo (m): 2.00-2.50

IDENTIFICAZIONE DEL TERRENO

(ASTM D2488-00)

CARATTERI IDENTIFICATIVI

Contenitore: Fustella Diametro (cm): 8.50 Lungh. (cm): 19.50

Massa (Kg 2.085 Condizione del campione estruso: Buone Classe di qualità (AGI): Q5

PROVE DI CONSISTENZA SPEDITIVE

Pocket Penetrometer Test (MPa): 0.324 Pocket Vane Test (MPa): 0.196

CARATTERISTICHE VISIVE

DESCRIZIONE DEL CAMPIONE

Materiale a granulometria limoso argillosa mediamente consistente con rari litici calcarei a spigoli vivi.

COLORE (Tavola di Munsell)

10YR Marrone scuro 3/3

Foto campione

LO SPERIMENTATORE
Geom. Alfonso Casapulla

IL DIRETTORE DEL LABORATORIO

Castel Morrone (CE), 05/05/2015 Certificato n. 00317/15

Accettazione n: TER 021/15 Data ricevimento: 27/04/15 Data esecuzione prova: 30/04/15

Committente: Dott. Geol. Bassi Maria Teresa

Cantiere: Cantiere Nautico Romar snc Via Delle Industrie, 37 Bellizzi (SA)

Sondaggio: CPT1 Campione: C1 Profondità di prelievo (m): 2.00-2.50

CARATTERISTICHE FISICHE DEL TERRENO

(CNR-UNI 10008-64 BS 1377/75 ASTM D854-83)

CONDIZIONI NATURALI

Peso specifico del terreno γ_s (KN/m³) 26.92

Peso dell'unità di volume (fustellamento) γ (KN/m³) 18.20

Peso dell'unità di volume (pesata idrostatica) γ (KN/m³)

Contenuto d'acqua W (%) 28.93

Peso secco dell'unità di volume γ_d (KN/m³) 14.11

Indice di porosità e (-) 0.91

Porosità n (-) 0.48

Grado di saturazione S (-) 0.88

CONDIZIONI DI SATURAZIONE

Peso dellunità di volume immerso in acqua γ' (KN/m³) 8.97

Peso dell'unità di volume saturo d'acqua γ_{sat} (KN/m³) 18.78

Contenuto d'acqua W_{sat} (%) 33.05

LO SPERIMENTATORE Geom. Alfonso Casapulla IL DIRETTORE DEL LABORATORIO

Castel Morrone (CE), 05/05/2015 Certificato n. 00318/15

Accettazione n: TER 021/15 Data ricevimento: 27/04/15 Data esecuzione prova: 30/04/15

Committente: Dott. Geol. Bassi Maria Teresa

Cantiere: Cantiere Nautico Romar snc Via Delle Industrie, 37 Bellizzi (SA)

Sondaggio: CPT1 Campione: C1 Profondità di prelievo (m): 2.00-2.50

TAGLIO DIRETTO

(ASTM D 3080-98)

	DIMENS	SIONI DEI I	PROVINI	VALORI A INIZIO	CONSOLIDAZ.	PARAI	PARAMETRI DELLA CONSOLIDAZIONE				
Prov.	Lungh. lato I	Altezza iniziale h	Area di base A _b	Peso di volume γ _i	Contenuto d'acqua w _i	Durata consol. δt	Pressione di consolidazionε σ _n	Cedim. finale δh	Tempo		
(n)	(cm)	(cm)	(cm²)	(KN/m³)	(%)	(ore)	(MPa)	(mm)	(min)		
1 🔳	6.00	2.50	36.00	18.20	31.50	24.00	0.049	0.960	3.80		
2 🔷	6.00	2.50	36.00	17.98	30.43	24.00	0.098	1.244	3.54		
3 •	6.00	2.50	36.00	17.76	29.37	24.00	0.196	1.410	3.38		

	CONSOLIDAZIONE DEI PROVINI						VALORI A FINE	CONSOLIDAZ.	
	o n.1 =	Province	-	Provinc		Prov.	Peso di	Contenuto	
Tempo t (min)	Cedim. δh (mm)	Tempo t (min)	Cedim. δh (mm)	Tempo t (min)	Cedim δh (mm)	(n)	volume γ _f (KN/m³)	d'acqua w _f (%)	
0.1	0.78	0.1	1.00	0.1	1.13	1 💻	19.26	33.86	
0.25	0.80	0.25	1.04	0.25	1.19	2 🔷	19.32	33.20	
0.4	0.82	0.4	1.07	0.4	1.22	3 •	19.28	32.54	
0.5	0.84	0.5	1.09	0.5	1.23				
1	0.85	1	1.10	1	1.25				
2	0.86	2	1.12	2	1.28				
4	0.87	4	1.14	4	1.30				
8	0.89	8	1.16	8	1.32				
15	0.90	15	1.18	15	1.34		CARAT	TERISTICHE DELL	A PROVA
30	0.91	30	1.19	30	1.35		Condizione	Orientazione	Velocità di
60	0.92	60	1.20	60	1.36		del	strutturale	def. orizz.
120	0.93	120	1.21	120	1.37	Prov.	provino	del provino	V_{i}
240	0.94	240	1.22	240	1.38	(n)		(°)	(mm/min)
480	0.95	480	1.23	480	1.39	1 💻	Indisturbato	n.d.	0.103
960	0.96	960	1.24	960	1.40	2 🔷	Indisturbato	n.d.	0.103
1440	0.96	1440	1.24	1440	1.41	3 •	Indisturbato	n.d.	0.103

Note: Prova di taglio eseguita con la scatola di Casagrande.

LO SPERIMENTATORE
Geom. Alfonso Casapulla

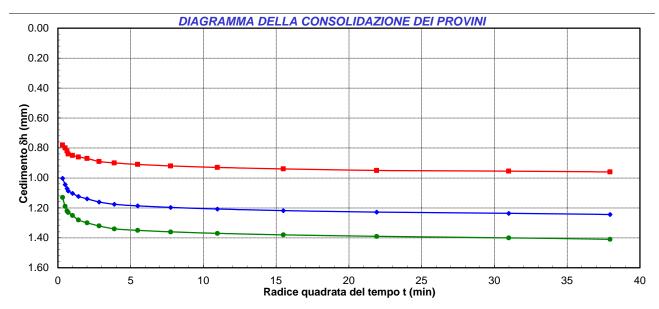
IL DIRETTORE DEL LABORATORIO

Castel Morrone (CE), 05/05/2015

Certificato n.

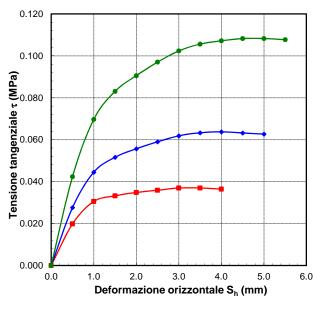
00318/15

Accettazione n: TER 021/15 Data ricevimento: 27/04/15 Data esecuzione prova: 30/04/15


Committente: Dott. Geol. Bassi Maria Teresa

Cantiere: Cantiere Nautico Romar snc Via Delle Industrie, 37 Bellizzi (SA)

Sondaggio: CPT1 Campione: C1 Profondità di prelievo (m): 2.00-2.50


TAGLIO DIRETTO

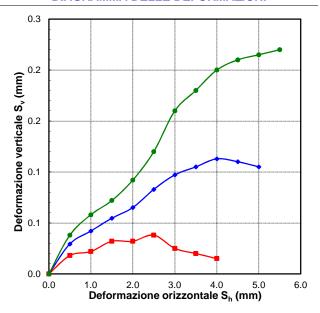

(ASTM D 3080-98)

DIAGRAMMA DEFORMAZIONE-TENSIONE

DIAGRAMMA DELLE DEFORMAZIONI

LO SPERIMENTATORE Geom. Alfonso Casapulla

IL DIRETTORE DEL LABORATORIO

Castel Morrone (CE), 05/05/2015 Certificato n. 00318/15

Accettazione n: TER 021/15 Data ricevimento: 27/04/15 Data esecuzione prova: 30/04/15

Committente: Dott. Geol. Bassi Maria Teresa

Cantiere: Cantiere Nautico Romar snc Via Delle Industrie, 37 Bellizzi (SA)

Sondaggio: CPT1 Campione: C1 Profondità di prelievo (m): 2.00-2.50

TAGLIO DIRETTO

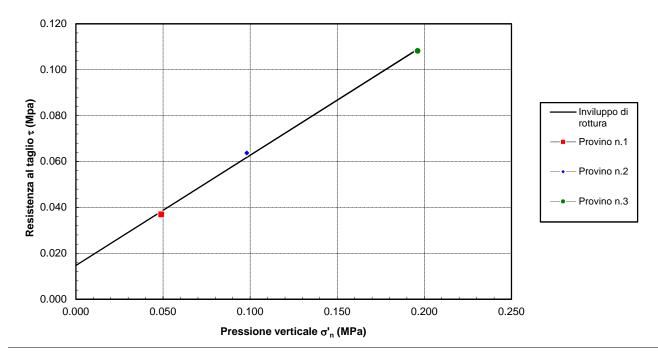
(ASTM D 3080-98)

VALORI RILEVATI AI COMPARATORI DELLA MACCHINA DI TAGLIO - CONDIZIONI DI PICCO

	Provino n.	1 📕	F	Provino n.2	2 🔷	Provino n.3 ●			
Def. orizz. S _h (mm)	Def. vert. S _v (mm)	Tensione tangenziale τ (MPa)	Def. orizz. S _h (mm)	Def. vert. S _v (mm)	Tensione tangenziale τ (MPa)	Def. orizz. S _h (mm)	Def. vert. S _v (mm)	Tensione tangenziale τ (MPa)	
0.00	0.00	0.000	0.00	0.00	0.000	0.00	0.00	0.000	
0.50	0.02	0.020	0.50	0.03	0.028	0.50	0.04	0.042	
1.00	0.02	0.031	1.00	0.04	0.044	1.00	0.06	0.070	
1.50	0.03	0.033	1.50	0.05	0.052	1.50	0.07	0.083	
2.00	0.03	0.035	2.00	0.07	0.056	2.00	0.09	0.091	
2.50	0.04	0.036	2.50	0.08	0.059	2.50	0.12	0.097	
3.00	0.03	0.037	3.00	0.10	0.062	3.00	0.16	0.102	
3.50	0.02	0.037	3.50	0.11	0.063	3.50	0.18	0.106	
4.00	0.02	0.036	4.00	0.11	0.064	4.00	0.20	0.107	
			4.50	0.11	0.063	4.50	0.21	0.108	
			5.00	0.11	0.063	5.00	0.22	0.108	
						5.50	0.22	0.108	

LO SPERIMENTATORE
Geom. Alfonso Casapulla

IL DIRETTORE DEL LABORATORIO



Sondaggio: CPT1 Campione: C1 Profondità di prelievo (m): 2.00-2.50

TAGLIO DIRETTO

	CONDIZIONI DI PICCO											
Provino	Pressione verticale σ' _n	Deformazione orizzontale S _{hf}	Deformazione verticale S _{vf}	Resistenza al taglio τ _f								
(n)	(MPa)	(mm)	(mm)	(MPa)								
1 ■	0.049	3.00	0.03	0.037								
2 🔷	0.098	4.00	0.11	0.064								
3 ●	0.196	4.50	0.21	0.108								

DIAGRAMMA DELL'INVILUPPO DI ROTTURA - CONDIZIONI DI PICCO

PARAMETRI D Coeff. di	Errore stand.	Angolo di attrito	Coesione intercetta
determinaz.	sulla stima di c	ф	С
r ² (-)	S _v (-)	(gradi)	(Mpa)
9.98E-01	2.47E-02	25.64	0.015

SG-039

Via Taverna Vecchia, 19 - 81020 Castel Morrone (CE) Tel e Fax 0823399115/961 Cell, 3483850177 - 3486033921 Web Site ingesrl.it - E Mail inge@ingesrl1.191.it

Riferimento: IACP Futura Sondaggio: S1 Località: Loc. Casermette Bellizzi (SA) Quota: Data: 25/05/10 - 26/05/10 Impresa esecutrice: INGE s.r.l. Coordinate: Redattore: Dott. Antonio Petriccione Perforazione: A carotaggio continuo metri LITOLOGIA Campioni A mm DESCRIZIONE Materiale di riporto Terreno vegetale Argilla di colore marrone scuro, compatta e fortemente coesiva Ghiaia carbonatica in abbondante matrice sabbiosa, debolmente coesiva di colore ocra 3_ 5 6_ 7 8_ Sabbia grossolana di colore beige-giallastro debolmente coesiva con presenza di clasti millimetrici 9 10. Sabbia con ghiaia sciolta di colore ocra 11 12 13 14. Limo argilloso a discreta coesione di colore beige-marrone con piccoli clasti nella parte bassa 15. Sabbia con ghiaia sciolta di colore ocra 16_ 17_ 18 19_ Argilla di colore grigio-giallastro debolmente consistente e coesiva Ghiaia carbonatica con sabbia di colore beige con clasti di dimensioni prevalenti di 2-3 cm 20_ 21 22_ 23_ 24. Sabbia debolmente coesiva di colore marrone-beige 25_ Argilla plastica di colore grigio scuro compatta e coesiva 26 Sabbia da grossolana a media debolmente coesiva di colore marrone-beige 27 28. 29_

Castel Morrone (CE), 17/06/2010

Accettazione n: TER142/2010 Data ricevimento: 27/05/10 Data esecuzione prova: 03/06/10

Committente: IACP Futura

Cantiere: Loc. Casermette - Bellizzi (SA)

Sondaggio: S1 Campione: C1 Profondità di prelievo (m): 14.20 - 14.70

IDENTIFICAZIONE DEL TERRENO

(ASTM D2488-00)

CARATTERI IDENTIFICATIVI

Contenitore: Fustella a pareti sottili in ferro Diametro (cm): 8.40 Lungh. (cm): 30.50

Massa (Kg 3.616 Condizione del campione estruso: Buone Classe di qualità (AGI): Q5

PROVE DI CONSISTENZA SPEDITIVE

Pocket Penetrometer Test (MPa): 0.108 Pocket Vane Test (MPa): 0.078

CARATTERISTICHE VISIVE

DESCRIZIONE DEL CAMPIONE

Materiale a granulometria argilloso - limosa con tratti sabbiosi, contenente clasti di dimensioni variabili da qualche millimetro a 2 centimetri. Materiale mediamente consistente.

COLORE (Tavola di Munsell)

10YR Marrone tendente al giallo 5/4

Foto campione

LO SPERIMENTATORE
Geom. Alfonso Casapulla

IL DIRETTORE DEL LABORATORIO

Accettazione n: TER142/2010 Data ricevimento: 27/05/10 Data esecuzione prova: 03/06/10

Committente: IACP Futura

Cantiere: Loc. Casermette - Bellizzi (SA)

Sondaggio: S1 Campione: C1 Profondità di prelievo (m): 14.20 - 14.70

CARATTERISTICHE FISICHE DEL TERRENO

(CNR-UNI 10008-64 BS 1377/75 ASTM D854-83)

CONDIZIONI NATURALI

Peso specifico del terreno γ_s (KN/m³) 26.94

Peso dell'unità di volume (fustellamento) γ (KN/m³) 19.22

Peso dell'unità di volume (pesata idrostatica) γ (KN/m³)

Contenuto d'acqua W (%) 25.34

Peso secco dell'unità di volume γ_d (KN/m³) 15.34

Indice di porosità e (-) 0.76

Porosità n (-) 0.43

Grado di saturazione S (-) 0.92

CONDIZIONI DI SATURAZIONE

Peso dellunità di volume immerso in acqua γ' (KN/m³) 9.75

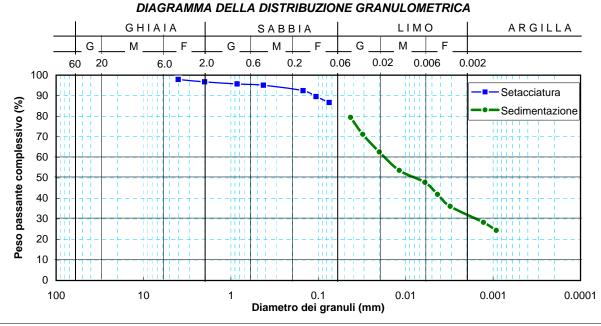
Peso dell'unità di volume saturo d'acqua γ_{sat} (KN/m³) 19.56

Contenuto d'acqua W_{sat} (%) 27.57

LO SPERIMENTATORE Geom. Alfonso Casapulla IL DIRETTORE DEL LABORATORIO

Accettazione n: TER142/2010 Data ricevimento: 27/05/10 Data esecuzione prova: 08/06/10

Committente: IACP Futura


Cantiere: Loc. Casermette - Bellizzi (SA)

Sondaggio: S1 Campione: C1 Profondità di prelievo (m): 14.20 - 14.70

ANALISI GRANULOMETRICA

(ASTM D421-D422-D2217)

					• /				
	VALORI	DETERN	INATI M	EDIANTE	SETACC	IATURA			
Vaglio ASTM (No)			5	100	20	40	100	140	200
Diametro granuli (mm)			4.000	2.000	0.850	0.425	0.149	0.106	0.075
Peso passante compl. (%)			97.91	96.70	95.70	95.10	92.46	89.53	86.65
	VALORI I	DETERM	INATI ME	DIANTE	SEDIMEN	TAZIONE	•		
Diametro granuli (mm)	0.043	0.031	0.020	0.012	0.006	0.004	0.003	0.0013	0.0009
Peso passante compl. (%)	79.40	71.13	62.57	53.61	47.77	41.94	36.10	28.31	24.42
FR	AZIONI G	RANULO	OMETRIC	HE E PAI	RAMETRI	CORREL	.ATI		
Frazione argillosa < 0.002 m	nm (%)	3	1.38	Diametro	efficace	D ₁₀	(mm)		
Frazione limosa < 0.06 mm	(%)	5	1.91	Diametro	medio D) ₃₀	(mm)	0.001	680
Frazione < 0.074 mm	(%)	8	6.65	Diametro	medio D) ₅₀	(mm)	0.008	240
Frazione sabbiosa < 2 mm	(%)	1	4.62	Diametro	medio D) ₆₀	(mm)	0.017	689
Frazione ghiaiosa < 60 mm	(%)	2	2.09	Coefficie	ente di un	iformità (C _u (-)		
Frazione ciottolosa ≥ 60	mm (%)	(0.00	Coefficie	ente di cu	rvatura C	c (-)		

LO SPERIMENTATORE Geom. Alfonso Casapulla

Class. A.G.I. (1990): Limo con argilla debolmente sabbioso

IL DIRETTORE DEL LABORATORIO

Accettazione n: TER142/2010 Data ricevimento: 27/05/10 Data prova 03/06/10 / 17/06/10

Committente: IACP Futura

Cantiere: Loc. Casermette - Bellizzi (SA)

Sondaggio: S1 Campione: C1 Profondità di prelievo (m): 14.20 - 14.70

CONSOLIDAZIONE EDOMETRICA

(AGI 1994 ASTM D 2435-96)

	CARATTERISTICHE DEL PROVINO EDOMETRICO													
CONDIZIONI DI INIZIO PROVA CONDIZIONI DI FINE PROVA														
Diam.	Altez.	Peso vol.	Peso vol.	Conten.	Grado	Altez.	Peso vol.	Peso vol.	Conten.	Grado				
prov.	prov.	umido	secco	d'acqua	satur.	prov.	umido	secco	d'acqua	saturaz.				
(cm)	(cm)	(KN/m ³)	(KN/m^3)	(%)	(-)	(cm)	(KN/m ³)	(KN/m^3)	(%)	(-)				
5.00	2.00	20.20	15.99	26.28	1.05	1.65	23.01	19.34	19.02	1.00				

	PARAMETRI DI COMPRESSIBILITÀ											
Gradino di carico (n)	Pressio. verticale σ'_{v} (MPa)	Cedim. assol. δH (mm)	Cedim. unitario $\epsilon_{\rm v}$ (%)	Indice vuoti e (-)	Modulo edom. E _{ed} (MPa)	Coeff. di compress. m _v (1/MPa)	Coeff. di cons. prim. C_v (cm²/sec)	Coeff. di permeab. K (cm/sec)	Coeff. di cons. secon. $C_{\alpha\epsilon} \begin{tabular}{l} $C_{\alpha\epsilon} \end{tabular}$			
1	0.010	0.092	0.46	0.677								
2	0.025	0.300	1.50	0.659	1.414	7.070E-01						
3	0.049	0.490	2.45	0.643	2.581	3.875E-01						
4	0.098	0.795	3.98	0.617	3.215	3.110E-01	6.18E-04	1.88E-08	2.67E-02			
5	0.196	1.200	6.00	0.583	4.843	2.065E-01	2.47E-04	5.00E-09	8.90E-03			
6	0.392	1.795	8.98	0.533	6.593	1.517E-01	5.71E-04	8.49E-09	1.78E-02			
7	0.785	2.570	12.85	0.468	10.123	9.878E-02	1.40E-03	1.35E-08	2.26E-02			
8	1.569	3.328	16.64	0.404	20.701	4.831E-02	3.35E-03	1.59E-08	2.51E-02			
9	3.138	4.170	20.85	0.333	37.271	2.683E-02	1.24E-03	3.27E-09	2.75E-02			
10	0.785	4.000	20.00	0.348								
11	0.196	3.750	18.75	0.369								
12	0.049	3.457	17.28	0.393								
13	0.010	3.105	15.53	0.423								

LO SPERIMENTATORE
Geom. Alfonso Casapulla

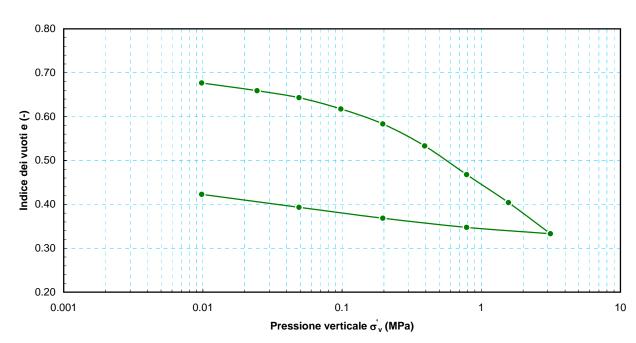
IL DIRETTORE DEL LABORATORIO

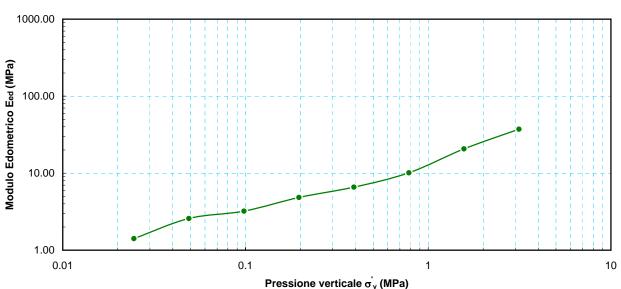
Castel Morrone (CE), 17/06/2010

Certificato n.

00863

Committente: IACP Futura


Cantiere: Loc. Casermette - Bellizzi (SA)


Sondaggio: S1 Campione: C1 Profondità di prelievo (m): 14.20 - 14.70

CONSOLIDAZIONE EDOMETRICA

(AGI 1994 ASTM D 2435-96)

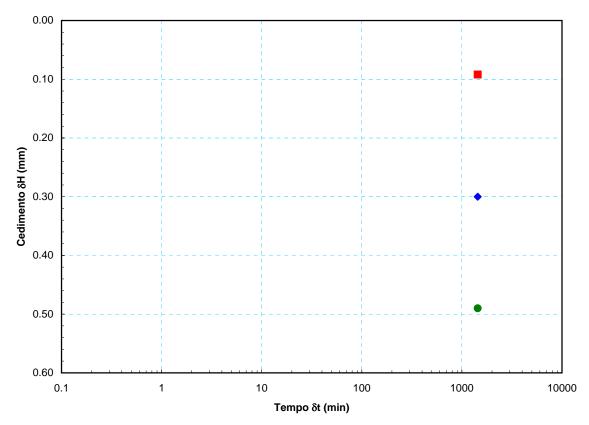
CURVA DI COMPRESSIBILITÀ

LO SPERIMENTATORE
Geom. Alfonso Casapulla

IL DIRETTORE DEL LABORATORIO

Committente: IACP Futura

Cantiere: Loc. Casermette - Bellizzi (SA)


Sondaggio: S1 Campione: C1 Profondità di prelievo (m): 14.20 - 14.70

CONSOLIDAZIONE EDOMETRICA

(AGI 1994 ASTM D 2435-96)

GRAD	INO n.1	Pr	ession	e verti	cale in	MPa o	da	0.000	a 0.0	10						
δt	(min)	0.1	0.15	0.5	1	2	4	8	15	30	60	120	240	480	960	1440
δН	(mm)															0.092
GRAD	INO n.2	Pr	ession	e verti	cale in	МРа	da	0.010	a 0.0	025						
δt	(min)	0.1	0.15	0.5	1	2	4	8	15	30	60	120	240	480	960	1440
δН	(mm)															0.300
GRAD	INO n.3	Pr	ession	e verti	cale in	МРа	da	0.025	5 a 0.0	049						
δt	(min)	0.1	0.15	0.5	1	2	4	8	15	30	60	120	240	480	960	1440
δН	(mm)															0.490

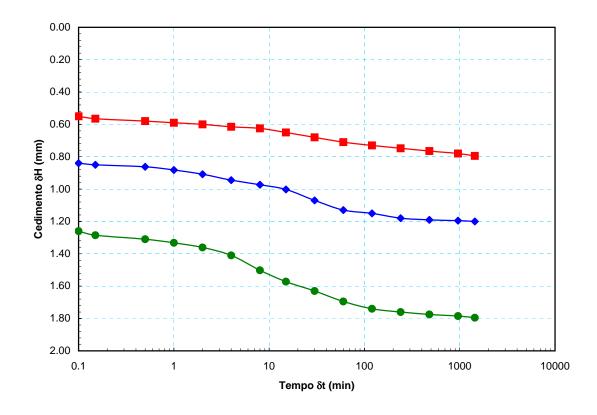
DIAGRAMMA DEL DECORSO DEI CEDIMENTI NEL TEMPO

LO SPERIMENTATORE
Geom. Alfonso Casapulla

Accettazione n: TER142/2010 Data ricevimento: 27/05/10 Data prova 03/06/10 / 17/06/10

Committente: IACP Futura

Cantiere: Loc. Casermette - Bellizzi (SA)


Sondaggio: S1 Campione: C1 Profondità di prelievo (m): 14.20 - 14.70

CONSOLIDAZIONE EDOMETRICA

(AGI 1994 ASTM D 2435-96)

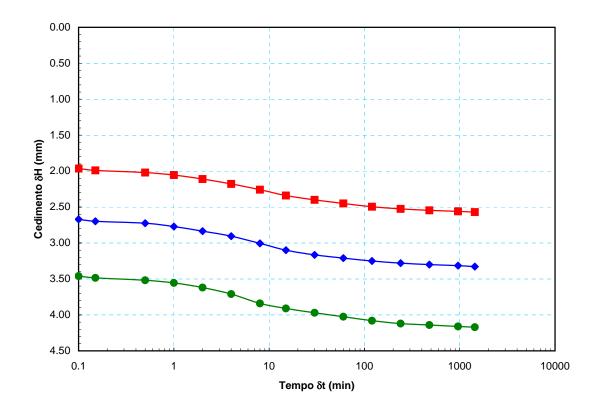
GRADINO n.4 ■ Pressione verticale in MPa da 0.049 a 0.098 (min) 0.1 0.15 0.5 2 4 8 15 δt 30 60 120 240 480 960 1440 (mm) 0.550 0.565 0.580 0.590 δН GRADINO n.5 • Pressione verticale in MPa da 0.098 a 0.196 2 δt (min) 0.1 0.15 0.5 8 15 30 60 120 240 480 960 1440 (mm) 0.840 0.850 0.862 0.882 0.908 0.945 0.973 1.002 1.070 1.130 1.150 1.180 δН 1.190 1.195 1.200 GRADINO n.6 ● Pressione verticale in MPa da 0.196 a 0.392 δt 0.15 0.5 2 15 30 60 120 240 480 960 1440 δН (mm) 1.260 1.285 1.310 1.332 1.361 1.410 1.502 1.572 1.630 1.695 1.740 1.760 1.775 1.785 1.795

DIAGRAMMA DEL DECORSO DEI CEDIMENTI NEL TEMPO

LO SPERIMENTATORE
Geom. Alfonso Casapulla

Committente: IACP Futura

Cantiere: Loc. Casermette - Bellizzi (SA)


Sondaggio: S1 Campione: C1 Profondità di prelievo (m): 14.20 - 14.70

CONSOLIDAZIONE EDOMETRICA

(AGI 1994 ASTM D 2435-96)

GRADINO n.7 ■ Pressione verticale in MPa da 0.392 a 0.785 (min) 0.1 0.15 0.5 2 8 15 δt 30 60 120 240 480 960 1440 (mm) 1.965 1.990 2.020 2.055 2.110 2.178 2.258 2.340 2.400 2.450 2.495 2.525 2.545 2.560 2.570 δН GRADINO n.8 • Pressione verticale in MPa da 0.785 a 1.569 2 δt (min) 0.1 0.15 0.5 8 15 30 60 120 240 480 960 1440 δН (mm) 2.670 2.698 2.725 2.772 2.835 2.905 3.005 3.100 3.165 3.210 3.250 3.280 3.300 3.315 3.328 GRADINO n.9 • Pressione verticale in MPa da 1.569 a 3.138 δt 0.15 0.5 2 15 30 60 120 240 480 960 1440 δН (mm) 3.460 3.485 3.518 3.555 3.620 3.710 3.840 3.910 3.970 4.025 4.080 4.120 4.140 4.160 4.170

DIAGRAMMA DEL DECORSO DEI CEDIMENTI NEL TEMPO

LO SPERIMENTATORE
Geom. Alfonso Casapulla

Accettazione n: TER142/2010 Data ricevimento: 27/05/10 Data esecuzione prova: 07/06/10

Committente: IACP Futura

Cantiere: Loc. Casermette - Bellizzi (SA)

Sondaggio: S1 Campione: C1 Profondità di prelievo (m): 14.20 - 14.70

TAGLIO DIRETTO

(ASTM D 3080-98)

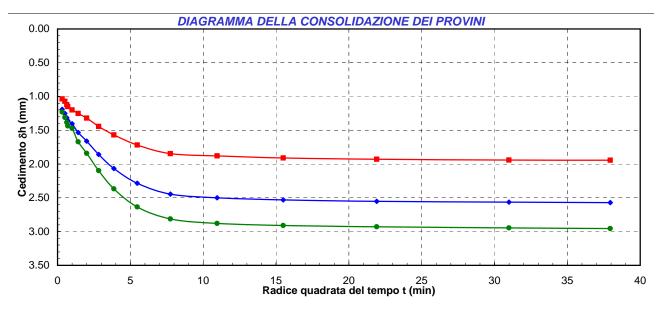
	DIMENS	SIONI DEI I	PROVINI	VALORI A INIZIO	CONSOLIDAZ.	PARAMETRI DELLA CONSOLIDAZIONE				
Prov.	Lungh. lato I	Altezza iniziale h	Area di base A _b	Peso di volume γ _i	Contenuto d'acqua w _i	Durata consol. δt	Pressione di consolidazione σ _n	Cedim. finale δh	Tempo	
(n)	(cm)	(cm)	(cm²)	(KN/m³)	(%)	(ore)	(MPa)	(mm)	(min)	
1 🔳	6.00	2.50	36.00	18.99	29.62	24.00	0.147	1.942	15.38	
2 🔷	6.00	2.50	36.00	18.92	30.46	24.00	0.245	2.571	20.64	
3 •	6.00	2.50	36.00	18.85	31.31	24.00	0.392	2.955	24.70	

	CONSOLIDAZIONE DEI PROVINI						VALORI A FINE	CONSOLIDAZ.	
Provin	o n.1 💻	Provin	o n.2 🔷	Provinc	o n.3 •	Prov.	Peso di	Contenuto	
Tempo t (min)	Cedim. δh (mm)	Tempo t (min)	Cedim. δh (mm)	Tempo t (min)	Cedim δh (mm)	(n)	volume γ _f (KN/m³)	d'acqua w _f (%)	
0.1	1.04	0.1	1.19	0.1	1.23	1 💻	20.53	29.27	
0.25	1.07	0.25	1.25	0.25	1.31	2 🔷	20.75	28.36	
0.4	1.12	0.4	1.32	0.4	1.39	3 •	20.75	27.43	
0.5	1.15	0.5	1.36	0.5	1.44				
1	1.20	1	1.40	1	1.47				
2	1.25	2	1.53	2	1.67				
4	1.32	4	1.66	4	1.84				
8	1.44	8	1.86	8	2.10				
15	1.57	15	2.07	15	2.37		CARAT	TERISTICHE DELL	.A PROVA
30	1.72	30	2.29	30	2.64		Condizione	Orientazione	Velocità di
60	1.85	60	2.44	60	2.81		del	strutturale	def. orizz.
120	1.88	120	2.50	120	2.88	Prov.	provino	del provino	V_{i}
240	1.91	240	2.53	240	2.91	(n)		(°)	(mm/min)
480	1.93	480	2.55	480	2.93	1 🔳	Indisturbato	n.d.	0.015
960	1.94	960	2.56	960	2.95	2 🔷	Indisturbato	n.d.	0.015
1440	1.94	1440	2.57	1440	2.96	3 •	Indisturbato	n.d.	0.015

Note: Prova di taglio eseguita con la scatola di Casagrande.

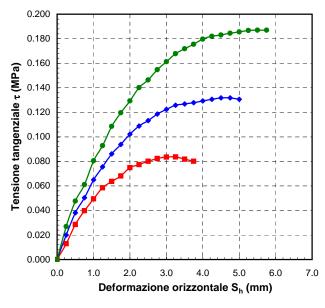
LO SPERIMENTATORE Geom. Alfonso Casapulla IL DIRETTORE DEL LABORATORIO

Accettazione n: TER142/2010 Data ricevimento: 27/05/10 Data esecuzione prova: 07/06/10


Committente: IACP Futura

Cantiere: Loc. Casermette - Bellizzi (SA)

Sondaggio: S1 Campione: C1 Profondità di prelievo (m): 14.20 - 14.70


TAGLIO DIRETTO

(ASTM D 3080-98)

DIAGRAMMA DEFORMAZIONE-TENSIONE

DIAGRAMMA DELLE DEFORMAZIONI

0.5 0.5 0.4 S_v (mm) 0.4 Deformazione verticale 0.3 0.3 0.2 0.2 0.1 0.1 0.0 0.0 20 3.0 4.0 5.0 7.0 Deformazione orizzontale S_h (mm)

LO SPERIMENTATORE Geom. Alfonso Casapulla

Accettazione n: TER142/2010 Data ricevimento: 27/05/10 Data esecuzione prova: 07/06/10

Committente: IACP Futura

Cantiere: Loc. Casermette - Bellizzi (SA)

Sondaggio: S1 Campione: C1 Profondità di prelievo (m): 14.20 - 14.70

TAGLIO DIRETTO

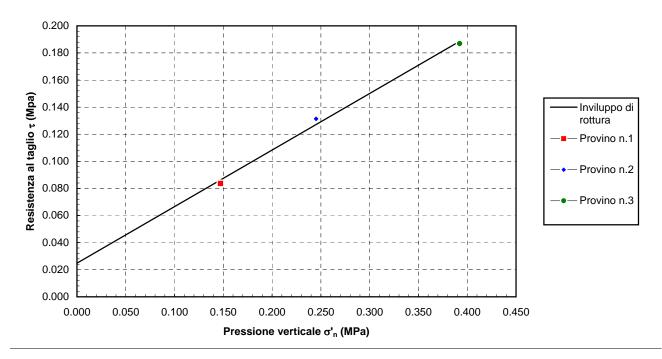
(ASTM D 3080-98)

VALORI RILEVATI AI COMPARATORI DELLA MACCHINA DI TAGLIO - CONDIZIONI DI PICCO

	Provino n.	1 =	F	Provino n.2	2 🔷	Provino n.3 ●			
Def. orizz. S _h	Def. vert. S _v	Tensione tangenziale τ	Def. orizz. S _h	Def. vert. S _v	Tensione tangenziale τ	Def. orizz. S _h	Def. vert. S _v	Tensione tangenziale τ	
(mm)	(mm)	(MPa)	(mm)	(mm)	(MPa)	(mm)	(mm)	(MPa)	
0.00	0.00	0.000	0.00	0.00	0.000	0.00	0.00	0.000	
0.25	0.02	0.013	0.25	0.03	0.020	0.25	0.04	0.027	
0.50	0.04	0.029	0.50	0.05	0.038	0.50	0.05	0.048	
0.75	0.07	0.040	0.75	0.08	0.050	0.75	0.08	0.061	
1.00	0.09	0.049	1.00	0.11	0.065	1.00	0.11	0.081	
1.25	0.12	0.058	1.25	0.13	0.076	1.25	0.13	0.093	
1.50	0.13	0.064	1.50	0.15	0.086	1.50	0.15	0.109	
1.75	0.15	0.068	1.75	0.17	0.094	1.75	0.17	0.120	
2.00	0.17	0.075	2.00	0.19	0.102	2.00	0.20	0.129	
2.25	0.18	0.077	2.25	0.21	0.109	2.25	0.22	0.140	
2.50	0.19	0.080	2.50	0.23	0.113	2.50	0.24	0.146	
2.75	0.20	0.082	2.75	0.24	0.119	2.75	0.26	0.155	
3.00	0.21	0.083	3.00	0.26	0.122	3.00	0.29	0.161	
3.25	0.23	0.084	3.25	0.28	0.126	3.25	0.31	0.168	
3.50	0.24	0.082	3.50	0.30	0.127	3.50	0.33	0.172	
3.75	0.25	0.080	3.75	0.31	0.128	3.75	0.35	0.175	
			4.00	0.33	0.129	4.00	0.37	0.180	
			4.25	0.34	0.131	4.25	0.38	0.182	
			4.50	0.35	0.132	4.50	0.39	0.183	
			4.75	0.35	0.132	4.75	0.41	0.184	
			5.00	0.35	0.131	5.00	0.42	0.185	
						5.25	0.43	0.187	
						5.50	0.45	0.187	
						5.75	0.45	0.187	

LO SPERIMENTATORE
Geom. Alfonso Casapulla

IL DIRETTORE DEL LABORATORIO



Sondaggio: S1 Campione: C1 Profondità di prelievo (m): 14.20 - 14.70

TAGLIO DIRETTO

		CONDIZIONI D	OI PICCO	
Provino	Pressione verticale σ' _n	Deformazione orizzontale S _{hf}	Deformazione verticale S _{vf}	Resistenza al taglio τ _f
(n)	(MPa)	(mm)	(mm)	(MPa)
1 ■	0.147	3.25	0.23	0.084
2 🔷	0.245	4.50	0.35	0.131
3 ●	0.392	5.50	0.45	0.187

DIAGRAMMA DELL'INVILUPPO DI ROTTURA - CONDIZIONI DI PICCO

	ELL'INVILUPPO	Angolo	Coesione	
Coeff. di	Errore stand.	di attrito	intercetta	
determinaz.	sulla stima di c	ф	С	
r ²	S_v	(gradi)	(Mpa)	
(-)	(-)			
9.95E-01	5.32E-02	22.67	0.025	

SG-040

Via Taverna Vecchia, 19 - 81020 Castel Morrone (CE) Tel e Fax 0823399115/961 Cell, 3483850177 - 3486033921 Web Site ingesrl.it - E Mail inge@ingesrl1.191.it

SONDAGGIO - SZ

Riferimento: IACP Futura Sondaggio: S2 Località: Loc. Casermette Bellizzi (SA) Quota: Data: 26/05/10 - 27/05/10 Impresa esecutrice: INGE s.r.l. Coordinate: Redattore: Dott. Antonio Petriccione Perforazione: A carotaggio continuo metri LITOLOGIA Campioni A ø R v DESCRIZIONE Materiale di riporto frammisto a terreno vegetale Limo argilloso di colore marrone scuro, coesivo 1) She < 2.70 3 Ghiaia e ciottoli in abbondante matrice sabbiosa di colore grigio-giallastro con frammisti livelli di ghiaia grigiastra 5 6 Sabbia giallastra debolmente coesiva 8 Limo argilloso di colore marrone scuro con inclusi millimetrici di natura vulcanica Ghiaietto in abbondante matrice sabbiosa di colore giallo-ocra 9 Sabbia di colore marrone chiaro-giallastro con buona coesione 10 Alternanza di ghiaia a clasti di dimensioni variabili da millimetrici e centimetrici in abbondante matrice sabbiosa e livelli più francamente sabbiosi di colore marrone chiaro-giallastro, a debole coesione. Nella parte bassa dello strato prevale la frazione grossolana con clasti centimetrici. 12 13 Alternanza di strati decimetrici di sabbia grossolana e ghiaia sabbiosa sciolta di colore grigiastro 16 20 22

Castel Morrone (CE), 17/06/2010

Accettazione n: TER142/2010 Data ricevimento: 27/05/10 Data esecuzione prova: 03/06/10

Committente: IACP Futura

Cantiere: Loc. Casermette - Bellizzi (SA)

Sondaggio: S2 Campione: C1 Profondità di prelievo (m): 2.70 - 3.00

IDENTIFICAZIONE DEL TERRENO

(ASTM D2488-00)

CARATTERI IDENTIFICATIVI

Contenitore: Fustella a pareti sottili in ferro Diametro (cm): 7.80 Lungh. (cm): 27.50

Massa (Kg 2.575 Condizione del campione estruso: Buone Classe di qualità (AGI): Q5

PROVE DI CONSISTENZA SPEDITIVE

Pocket Penetrometer Test (MPa): 0.123 Pocket Vane Test (MPa): 0.010

CARATTERISTICHE VISIVE

DESCRIZIONE DEL CAMPIONE

Materiale di origine piroclastica, a granulometria argilloso limosa con tratti sabbiosi, contenente pomici millimetriche, venature di colore marrone - rossastro dovute a fenomeni di ossidazione del ferro e rari clasti calcarei.

COLORE (Tavola di Munsell)

10YR Marrone 5/3

Foto campione

LO SPERIMENTATORE Geom. Alfonso Casapulla IL DIRETTORE DEL LABORATORIO

Accettazione n: TER142/2010 Data ricevimento: 27/05/10 Data esecuzione prova: 03/06/10

Committente: IACP Futura

Cantiere: Loc. Casermette - Bellizzi (SA)

Sondaggio: S2 Campione: C1 Profondità di prelievo (m): 2.70 - 3.00

CARATTERISTICHE FISICHE DEL TERRENO

(CNR-UNI 10008-64 BS 1377/75 ASTM D854-83)

CONDIZIONI NATURALI

Peso specifico del terreno γ_s (KN/m³) 26.94

Peso dell'unità di volume (fustellamento) γ (KN/m³) 18.41

Peso dell'unità di volume (pesata idrostatica) γ (KN/m³)

Contenuto d'acqua W (%) 29.41

Peso secco dell'unità di volume γ_d (KN/m³) 14.22

Indice di porosità e (-) 0.89

Porosità n (-) 0.47

Grado di saturazione S (-) 0.90

CONDIZIONI DI SATURAZIONE

Peso dellunità di volume immerso in acqua γ' (KN/m³) 9.05

Peso dell'unità di volume saturo d'acqua γ_{sat} (KN/m³) 18.85

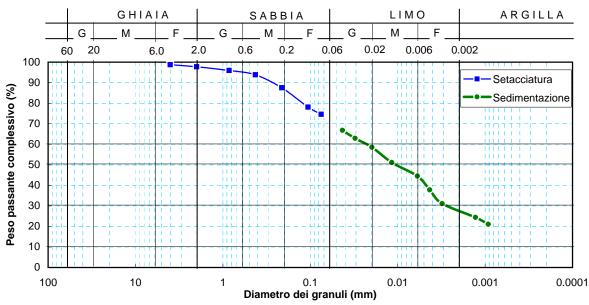
Contenuto d'acqua W_{sat} (%) 32.55

LO SPERIMENTATORE Geom. Alfonso Casapulla IL DIRETTORE DEL LABORATORIO

Accettazione n: TER142/2010 Data ricevimento: 27/05/10 Data esecuzione prova: 09/06/10

Committente: IACP Futura

Cantiere: Loc. Casermette - Bellizzi (SA)


Sondaggio: S2 Campione: C1 Profondità di prelievo (m): 2.70 - 3.00

ANALISI GRANULOMETRICA

(ASTM D421-D422-D2217)

			(ASTN D42	1-0422-0221	1)				
	VALORI	DETERI	MINATI M	IEDIANTE	SETACO	IATURA			
Vaglio ASTM (No)			5	10	20	40	70	140	200
Diametro granuli (mm)			4.000	2.000	0.850	0.425	0.212	0.106	0.075
Peso passante compl. (%)			98.75	97.74	95.96	93.85	87.50	78.09	74.58
	VALORI I	DETERM	INATI ME	EDIANTE S	SEDIMEN	TAZIONE			
Diametro granuli (mm)	0.043	0.031	0.020	0.012	0.006	0.004	0.003	0.0013	0.0009
Peso passante compl. (%)	66.80	62.89	58.54	51.17	44.47	37.77	31.07	24.37	21.02
FR	AZIONI G	RANUL	OMETRIC	CHE E PAR	RAMETRI	CORREL	A <i>TI</i>		
Frazione argillosa < 0.002 m	nm (%)	2	27.00	Diametro	efficace	D ₁₀	(mm)		
Frazione limosa < 0.06 mm	(%)	4	13.94	Diametro	medio D) ₃₀	(mm)	0.002	809
Frazione < 0.074 mm	(%)	7	74.58	Diametro	medio D) ₅₀	(mm)	0.010	671
Frazione sabbiosa < 2 mm	(%)	2	27.81	Diametro	medio D) ₆₀	(mm)	0.023	425
Frazione ghiaiosa < 60 mm	(%)		1.25	Coefficie	ente di un	iformità C	u (-)		
Frazione ciottolosa ≥ 60 i	mm (%)		0.00	Coefficie	ente di cu	rvatura C	(-)		
Class. A.G.I. (1990): Limo o	on sabb	oia con a	argilla						

DIAGRAMMA DELLA DISTRIBUZIONE GRANULOMETRICA

LO SPERIMENTATORE
Geom. Alfonso Casapulla

IL DIRETTORE DEL LABORATORIO

Accettazione n: TER142/2010 Data ricevimento: 27/05/10 Data esecuzione prova: 07/06/10

Committente: IACP Futura

Cantiere: Loc. Casermette - Bellizzi (SA)

Sondaggio: S2 Campione: C1 Profondità di prelievo (m): 2.70 - 3.00

TAGLIO DIRETTO

(ASTM D 3080-98)

	DIMENS	SIONI DEI I	PROVINI	VALORI A INIZIO	CONSOLIDAZ.	PARAI	METRI DELLA COI	VSOLIDA	ZIONE
Prov.	Lungh. lato I	Altezza iniziale h	Area di base A _b	Peso di volume γ _i	Contenuto d'acqua w _i	Durata consol. δt	Pressione di consolidazione σ _n	Cedim. finale δh	Tempo
(n)	(cm)	(cm)	(cm²)	(KN/m³)	(%)	(ore)	(MPa)	(mm)	(min)
1 🔳	6.00	2.50	36.00	18.61	28.77	24.00	0.049	0.840	11.09
2 🔷	6.00	2.50	36.00	18.42	29.98	24.00	0.098	2.251	18.46
3 •	6.00	2.50	36.00	18.24	31.23	24.00	0.196	3.448	21.95

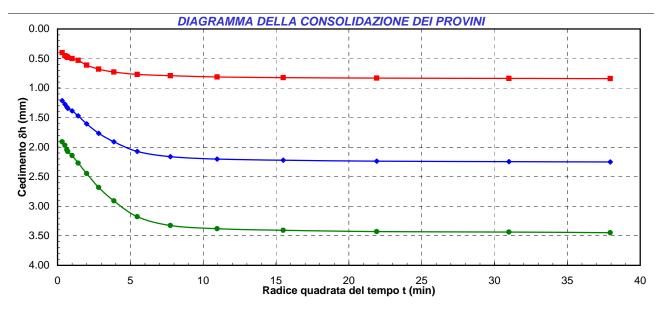
	CONSOL	IDAZIO	NE DEI F	PROVINI			VALORI A FINE	CONSOLIDAZ.	
Provin	o n.1 💻	Provin	o n.2 🔷	Province	o n.3 •	Prov.	Peso di	Contenuto	
Tempo t (min)	Cedim. δh (mm)	Tempo t (min)	Cedim. δh (mm)	Tempo t (min)	Cedim δh (mm)	(n)	volume γ _f (KN/m³)	d'acqua w _f (%)	
0.1	0.40	0.1	1.21	0.1	1.91	1 💻	19.04	27.36	
0.25	0.45	0.25	1.27	0.25	1.97	2 🔷	19.65	26.19	
0.4	0.47	0.4	1.32	0.4	2.05	3 •	20.14	24.97	
0.5	0.48	0.5	1.34	0.5	2.08				
1	0.50	1	1.39	1	2.14				
2	0.53	2	1.47	2	2.27				
4	0.61	4	1.60	4	2.45				
8	0.68	8	1.77	8	2.68				
15	0.73	15	1.91	15	2.91		CARAT	TERISTICHE DEL	LA PROVA
30	0.77	30	2.07	30	3.18		Condizione	Orientazione	Velocità di
60	0.79	60	2.16	60	3.33		del	strutturale	def. orizz.
120	0.81	120	2.20	120	3.38	Prov.	provino	del provino	V_{i}
240	0.82	240	2.22	240	3.41	(n)		(°)	(mm/min)
480	0.83	480	2.24	480	3.43	1 =	Indisturbato	n.d.	0.017
960	0.84	960	2.24	960	3.44	2 🔷	Indisturbato	n.d.	0.017
1440	0.84	1440	2.25	1440	3.45	3 •	Indisturbato	n.d.	0.017

Note: Prova di taglio eseguita con la scatola di Casagrande.

LO SPERIMENTATORE
Geom. Alfonso Casapulla

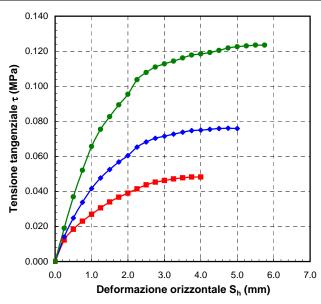
IL DIRETTORE DEL LABORATORIO

Accettazione n: TER142/2010 Data ricevimento: 27/05/10 Data esecuzione prova: 07/06/10


Committente: IACP Futura

Cantiere: Loc. Casermette - Bellizzi (SA)

Sondaggio: S2 Campione: C1 Profondità di prelievo (m): 2.70 - 3.00


TAGLIO DIRETTO

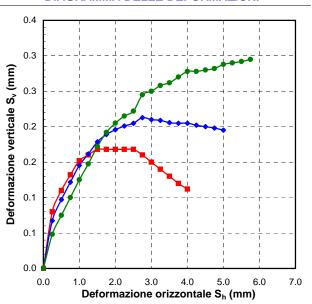

(ASTM D 3080-98)

DIAGRAMMA DEFORMAZIONE-TENSIONE

DIAGRAMMA DELLE DEFORMAZIONI

LO SPERIMENTATORE Geom. Alfonso Casapulla

IL DIRETTORE DEL LABORATORIO
Dott. Geol. Antonio Petriccione

Accettazione n: TER142/2010 Data ricevimento: 27/05/10 Data esecuzione prova: 07/06/10

Committente: IACP Futura

Cantiere: Loc. Casermette - Bellizzi (SA)

Sondaggio: S2 Campione: C1 Profondità di prelievo (m): 2.70 - 3.00

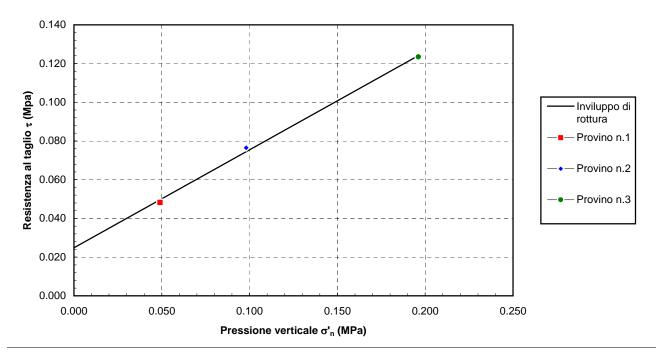
TAGLIO DIRETTO

(ASTM D 3080-98)

VALORI RILEVATI AI COMPARATORI DELLA MACCHINA DI TAGLIO - CONDIZIONI DI PICCO

	Provino n.	1 ■	F	Provino n.2	2 🔷	F	Provino n.:	3 ●
Def. orizz. S _h	Def. vert. S _v	Tensione tangenziale τ	Def. orizz. S _h	Def. vert. S _v	Tensione tangenziale τ	Def. orizz. S _h	Def. vert. S _v	Tensione tangenziale τ
(mm)	(mm)	(MPa)	(mm)	(mm)	(MPa)	(mm)	(mm)	(MPa)
0.00	0.00	0.000	0.00	0.00	0.000	0.00	0.00	0.000
0.25	0.08	0.012	0.25	0.07	0.014	0.25	0.05	0.019
0.50	0.11	0.018	0.50	0.10	0.025	0.50	0.08	0.037
0.75	0.13	0.023	0.75	0.12	0.034	0.75	0.10	0.052
1.00	0.15	0.027	1.00	0.15	0.042	1.00	0.13	0.066
1.25	0.16	0.031	1.25	0.16	0.048	1.25	0.15	0.075
1.50	0.17	0.034	1.50	0.18	0.052	1.50	0.17	0.083
1.75	0.17	0.037	1.75	0.19	0.057	1.75	0.19	0.089
2.00	0.17	0.039	2.00	0.20	0.060	2.00	0.21	0.095
2.25	0.17	0.041	2.25	0.20	0.065	2.25	0.22	0.104
2.50	0.17	0.044	2.50	0.20	0.068	2.50	0.22	0.108
2.75	0.16	0.045	2.75	0.21	0.070	2.75	0.25	0.111
3.00	0.15	0.046	3.00	0.21	0.072	3.00	0.25	0.113
3.25	0.14	0.047	3.25	0.21	0.073	3.25	0.26	0.114
3.50	0.13	0.048	3.50	0.21	0.074	3.50	0.26	0.116
3.75	0.12	0.048	3.75	0.20	0.075	3.75	0.27	0.118
4.00	0.11	0.048	4.00	0.20	0.075	4.00	0.28	0.118
			4.25	0.20	0.075	4.25	0.28	0.119
			4.50	0.20	0.076	4.50	0.28	0.120
			4.75	0.20	0.076	4.75	0.28	0.122
			5.00	0.20	0.076	5.00	0.29	0.123
					0.007	5.25	0.29	0.123
						5.50	0.29	0.123
						5.75	0.30	0.123

LO SPERIMENTATORE Geom. Alfonso Casapulla IL DIRETTORE DEL LABORATORIO



Sondaggio: S2 Campione: C1 Profondità di prelievo (m): 2.70 - 3.00

TAGLIO DIRETTO

		CONDIZIONI E	DI PICCO	
Provino	Pressione verticale σ' _n (MPa)	Deformazione orizzontale S _{hf}	Deformazione verticale S _{vf} (mm)	Resistenza al taglio ^τ ι (MPa)
(n)	` '	(mm)	` '	` ,
1 ■	0.049	3.75	0.12	0.048
2 🔷	0.098	<i>4.75</i>	0.20	0.076
3 ●	0.196	5.50	0.29	0.123

DIAGRAMMA DELL'INVILUPPO DI ROTTURA - CONDIZIONI DI PICCO

PARAMETRI D Coeff. di	DELL'INVILUPPO Errore stand.	Angolo di attrito	Coesione intercetta
determinaz.	sulla stima di c	ф	С
r² (-)	s _v (-)	(gradi)	(Mpa)
9.98E-01	2.60E-02	26.86	0.025

SG-041

Standard utilizzato: Emilia (30) [peso maglio Kg 63.5, volata cm 75, area punta cmq 20, angolo di apertura della punta 60°]

Committente: I.A.C.P. Futura

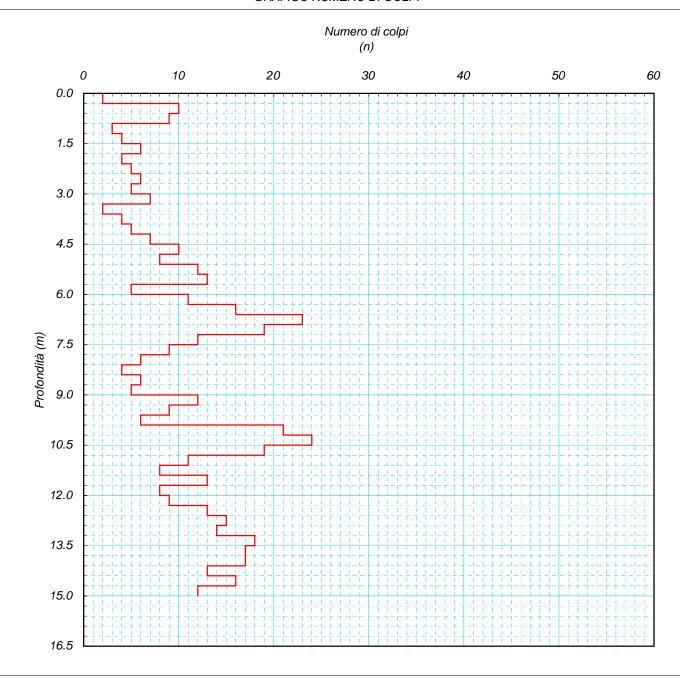
Cantiere: Loc. Casermette Bellizzi (SA)

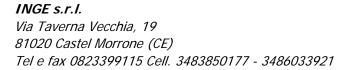
Data esecuz. prova: 26/05/2010

Prova (n): DPSH 01 Profondità della falda (m) n.d. Protocollo n.: 376/10

Prof.	Colpi	Prof.	Colpi	Prof.	Colpi	Prof.	Colpi	Prof.	Colpi
(m)	(N)	(m)	(N)	(m)	(N)	(m)	(N)	(m)	(N)
0.30	2	9.30	12						
0.60	10	9.60	9						
0.90	9	9.90	6						
1.20	3	10.20	21						
1.50	4	10.50	24						
1.80	6	10.80	19						
2.10	4	11.10	11						
2.40	5	11.40	8						
2.70	6	11.70	13						
3.00	5	12.00	8						
3.30	7	12.30	9						
3.60	2	12.60	13						
3.90	4	12.90	15						
4.20	5	13.20	14						
4.50	7	13.50	18						
4.80	10	13.80	17						
5.10	8	14.10	17						
5.40	12	14.40	13						
5.70	13	14.70	16						
6.00	5	15.00	12						
6.30	11								
6.60	16								
6.90	23								
7.20	19								
7.50	12								
7.80	9								
8.10	6								
8.40	4								
8.70	6								
9.00	5								

Standard utilizzato: Emilia (30) [peso maglio Kg 63.5, volata cm 75, area punta cmq 20, angolo di apertura della punta 60°]


Committente: I.A.C.P. Futura


Cantiere: Loc. Casermette Bellizzi (SA)

Data esecuz. prova: 26/05/2010

Prova (n): DPSH 01 Profondità della falda (m) n.d. Protocollo n.: 376/10

GRAFICO NUMERO DI COLPI

Standard utilizzato: Emilia (30) [peso maglio Kg 63.5, volata cm 75, area punta cmq 20, angolo di apertura della punta 60°]

Committente: I.A.C.P. Futura

Cantiere: Loc. Casermette Bellizzi (SA)

Data esecuz. prova: 26/05/2010

Prova (n): DPSH 01 Profondità della falda (m) n.d. Protocollo n.: 376/10

	S	TRATI	GRAF	IA INT	ERPRI
			DAT	I GENI	ERALI
Strato (n)	1	2	3	4	5
Profondità iniziale (m)	0.00	4.50	5.70	7.80	9.90
Profondità finale (m)	4.50	5.70	7.80	9.90	15.00
Potenza dello strato (m)	4.50	1.20	2.10	2.10	5.10
Peso di volume attribuito (g/cm³)	1.40	1.40	1.50	1.40	1.50
Pressione vert efficace (Kg/cm²)	0.63	0.80	1.17	1.39	2.25
Media numero colpi (N)	5	11	14	7	15
Media resist. alla Punta (Kg/cm²)	19.00	33.00	42.00	20.00	35.00
PARAMETE	RI GEO	TECNI	CI TEF	RRENI	DI NA
Angolo di attrito (°)	30	33	34	31	34
Densità relativa (%)	39	58	66	46	68
Mod. di deformazione (Kg/cm²)	57	99	126	60	105
Mod. taglio dinamico (Kg/cm²)	148	206	312	337	600
Stato di addensamento	S	М	М	S	М
PARAME	TRI GE	EOTEC	NICI T	ERRE	NI DI N
Coesione non dren. (Kg/cm²)	0.92	1.61	2.04	0.93	1.64
Modulo edometrico (Kg/cm²)	41.00	72.00	92.00	44.00	77.00
Grado di sovracons. OCR (-)	21.90	12.35	5.62	3.56	1.36
Mod. di taglio dinam. (t/m²)	4'913	9'087	10'968	6'387	11'574
Stato di consistenza	Med	С	С	Med	МC

LEGENDA

Terreni di natura granulare - Stato di addensamento

M S=Molto sciolto, S=Sciolto, M=Medio, D=Denso, M D=Molto Denso

Terreni di natura coesiva - Stato di consistenza

M=Molle, T=Tenero, Med=Medio, C=Compatto, M C=Molto Compatto, D=Duro

Standard utilizzato: Emilia (30) [peso maglio Kg 63.5, volata cm 75, area punta cmq 20, angolo di apertura della punta 60°]

Committente: I.A.C.P. Futura

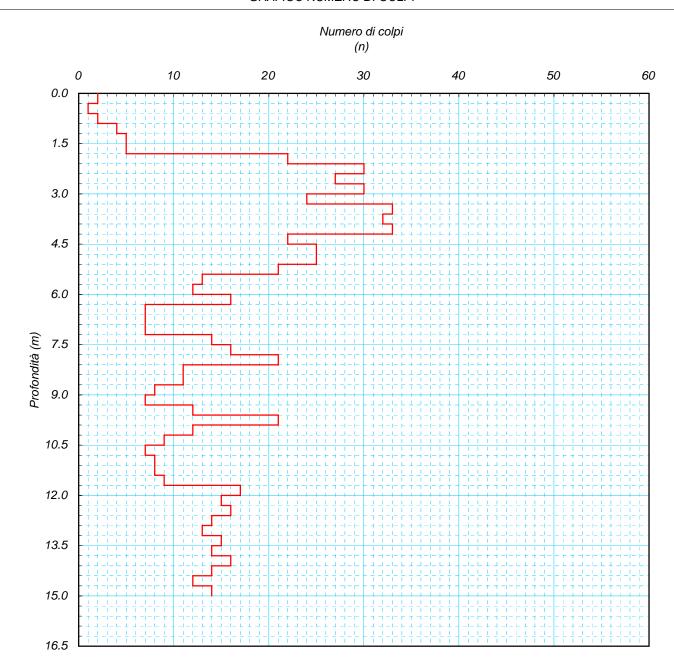
Cantiere: Loc. Casermette Bellizzi (SA)

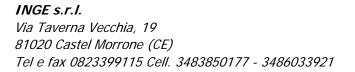
Data esecuz. prova: 26/05/2010

Prova (n): DPSH 02 Profondità della falda (m) n.d. Protocollo n.: 376/10

Prof.	ALORI MI Colpi	Prof.	Colpi	Prof.	Colpi	Prof.	Colpi	Prof.	Colp
(m)	(N)	(m)	(N)	(m)	(N)	(m)	(N)	(m)	(N)
0.30	2	9.30	7	()	(/	(,	()	()	(,
0.60	1	9.60	12						
0.90	2	9.90	21						
1.20	4	10.20	12						
1.50	5	10.50	9						
1.80	5	10.80	7						
2.10	22	11.10	8						
2.40	30	11.40	8						
2.70	27	11.70	9						
3.00	30	12.00	17						
3.30	24	12.30	15						
3.60	33	12.60	16						
3.90	32	12.90	14						
4.20	33	13.20	13						
4.50	22	13.50	15						
4.80	25	13.80	14						
5.10	25	14.10	16						
5.40	21	14.40	14						
5.70	13	14.70	12						
6.00	12	15.00	14						
6.30	16								
6.60	7								
6.90	7								
7.20	7								
7.50	14								
7.80	16								
8.10	21								
8.40	11								
8.70	11								
9.00	8								

Standard utilizzato: Emilia (30) [peso maglio Kg 63.5, volata cm 75, area punta cmq 20, angolo di apertura della punta 60°]


Committente: I.A.C.P. Futura


Cantiere: Loc. Casermette Bellizzi (SA)

Data esecuz. prova: 26/05/2010

Prova (n): DPSH 02 Profondità della falda (m) n.d. Protocollo n.: 376/10

GRAFICO NUMERO DI COLPI

Standard utilizzato: Emilia (30) [peso maglio Kg 63.5, volata cm 75, area punta cmq 20, angolo di apertura della punta 60°]

Committente: I.A.C.P. Futura

Cantiere: Loc. Casermette Bellizzi (SA)

Data esecuz. prova: 26/05/2010

Prova (n): DPSH 02 Profondità della falda (m) n.d. Protocollo n.: 376/10

	S	TRATI	GRAF	IA INT	ERPRI	ETATI	VA
			DAT	I GENI	ERALI		
Strato (n)	1	2	3	4	5	6	7
Profondità iniziale (m)	0.00	1.80	4.20	5.40	7.20	10.20	11.70
Profondità finale (m)	1.80	4.20	5.40	7.20	10.20	11.70	15.00
Potenza dello strato (m)	1.80	2.40	1.20	1.80	3.00	1.50	3.30
Peso di volume attribuito (g/cm³)	1.40	1.50	1.50	1.40	1.40	1.40	1.45
Pressione vert efficace (Kg/cm²)	0.25	0.63	0.81	1.01	1.43	1.64	2.18
Media numero colpi (N)	3	29	23	10	13	8	15
Media resist. alla Punta (Kg/cm²)	11.00	96.00	85.00	38.00	36.00	23.00	34.00
PARAMETI	RI GEO	TECNI	CI TEF	RRENI	DI NA	TURA	GRAN
Angolo di attrito (°)	29	38	36	32	33	31	34
Densità relativa (%)	31	95	84	56	63	50	68
Mod. di deformazione (Kg/cm²)	33	288	255	114	108	69	102
Mod. taglio dinamico (Kg/cm²)	57	188	229	253	369	398	580
Stato di addensamento	MS	Μ	Μ	Μ	Μ	S	М
PARAME	TRI GI	EOTEC	NICI T	ERRE	NI DI N	ATUR	A COE
Coesione non dren. (Kg/cm²)	0.54	4.77	4.21	1.85	1.73	1.07	1.59
Modulo edometrico (Kg/cm²)	24.00	211.00	187.00	83.00	79.00	50.00	74.00
Grado di sovracons. OCR (-)	1.33	24.34	13.11	7.21	3.33	2.48	1.41
Mod. di taglio dinam. (t/m²)	3'298	19'355	16'154	8'436	10'352	7'088	11'574
Stato di consistenza	T	МC	МC	С	С	С	МC

LEGENDA

Terreni di natura granulare - Stato di addensamento

M S=Molto sciolto, S=Sciolto, M=Medio, D=Denso, M D=Molto Denso

Terreni di natura coesiva - Stato di consistenza

M=Molle, T=Tenero, Med=Medio, C=Compatto, M C=Molto Compatto, D=Duro

Standard utilizzato: Emilia (30) [peso maglio Kg 63.5, volata cm 75, area punta cmq 20, angolo di apertura della punta 60°]

Committente: I.A.C.P. Futura

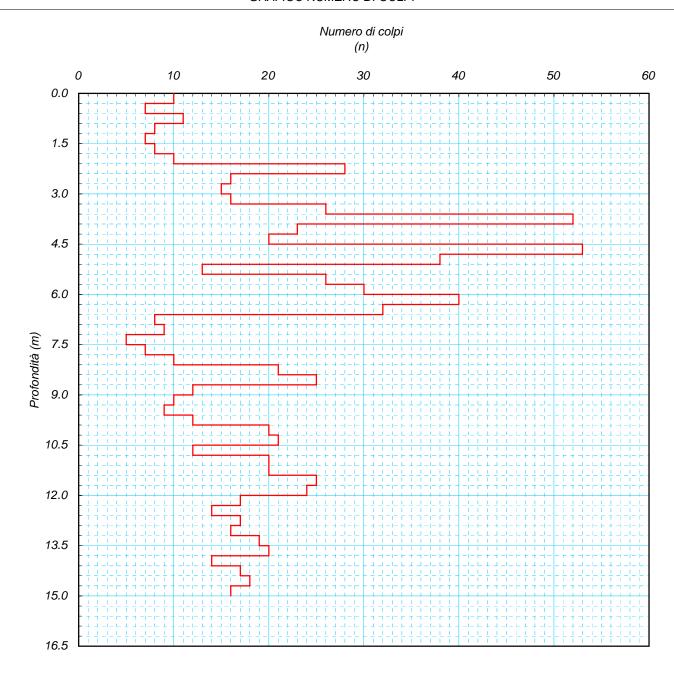
Cantiere: Loc. Casermette Bellizzi (SA)

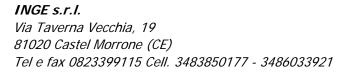
Data esecuz. prova: 26/05/2010

Prova (n): DPSH 03 Profondità della falda (m) n.d. Protocollo n.: 376/10

Prof.	Colpi	Prof.	Colpi	Prof.	Colpi	Prof.	Colpi	Prof.	Colpi
(m)	(N)	(m)	(N)	(m)	(N)	(m)	(N)	(m)	(N)
0.30	10	9.30	10						
0.60	7	9.60	9						
0.90	11	9.90	12						
1.20	8	10.20	20						
1.50	7	10.50	21						
1.80	8	10.80	12						
2.10	10	11.10	20						
2.40	28	11.40	20						
2.70	16	11.70	25						
3.00	15	12.00	24						
3.30	16	12.30	17						
3.60	26	12.60	14						
3.90	52	12.90	17						
4.20	23	13.20	16						
4.50	20	13.50	19						
4.80	53	13.80	20						
5.10	38	14.10	14						
5.40	13	14.40	17						
5.70	26	14.70	18						
6.00	30	15.00	16						
6.30	40								
6.60	32								
6.90	8								
7.20	9								
7.50	5								
7.80	7								
8.10	10								
8.40	21								
8.70	25								
9.00	12								

Standard utilizzato: Emilia (30) [peso maglio Kg 63.5, volata cm 75, area punta cmq 20, angolo di apertura della punta 60°]


Committente: I.A.C.P. Futura


Cantiere: Loc. Casermette Bellizzi (SA)

Data esecuz. prova: 26/05/2010

Prova (n): DPSH 03 Profondità della falda (m) n.d. Protocollo n.: 376/10

GRAFICO NUMERO DI COLPI

Standard utilizzato: Emilia (30) [peso maglio Kg 63.5, volata cm 75, area punta cmq 20, angolo di apertura della punta 60°]

Committente: I.A.C.P. Futura

Cantiere: Loc. Casermette Bellizzi (SA)

Data esecuz. prova: 26/05/2010

Prova (n): DPSH 03 Profondità della falda (m) n.d. Protocollo n.: 376/10

	S	TRATI	GRAF	IA INT	ERPR
			DAT	I GENE	ERALI
Strato (n)	1	2	3	4	5
Profondità iniziale (m)	0.00	2.10	6.60	8.10	12.00
Profondità finale (m)	2.10	6.60	8.10	12.00	15.00
Potenza dello strato (m)	2.10	4.50	1.50	3.90	3.00
Peso di volume attribuito (g/cm³)	1.40	1.70	1.50	1.60	1.65
Pressione vert efficace (Kg/cm²)	0.29	1.12	1.22	1.92	2.48
Media numero colpi (N)	9	29	12	18	17
Media resist. alla Punta (Kg/cm²)	31.00	94.00	36.00	47.00	42.00
PARAMETI	RI GEO	TECNI	CI TEI	RRENI	DI NA
Angolo di attrito (°)	32	38	33	35	35
Densità relativa (%)	53	95	61	74	72
Mod. di deformazione (Kg/cm²)	93	282	108	141	126
Mod. taglio dinamico (Kg/cm²)	74	334	314	527	679
Stato di addensamento	S	М	Μ	М	М
PARAME	TRI GI	EOTEC	NICI T	ERREN	NI DI N
Coesione non dren. (Kg/cm²)	1.54	4.64	1.74	2.25	1.98
Modulo edometrico (Kg/cm²)	68.00	206.00	79.00	103.00	92.00
Grado di sovracons. OCR (-)	2.68	7.23	5.16	2.05	1.24
Mod. di taglio dinam. (t/m²)	7'770	19'355	9'725	13'343	12'761
Stato di consistenza	С	МC	С	МC	МC

LEGENDA

Terreni di natura granulare - Stato di addensamento

M S=Molto sciolto, S=Sciolto, M=Medio, D=Denso, M D=Molto Denso

Terreni di natura coesiva - Stato di consistenza

M=Molle, T=Tenero, Med=Medio, C=Compatto, M C=Molto Compatto, D=Duro

SG-044

Standard utilizzato: Emilia (30) [peso maglio Kg 63.5, volata cm 75, area punta cmq 20, angolo di apertura della punta 60°]

Committente: I.A.C.P. Futura

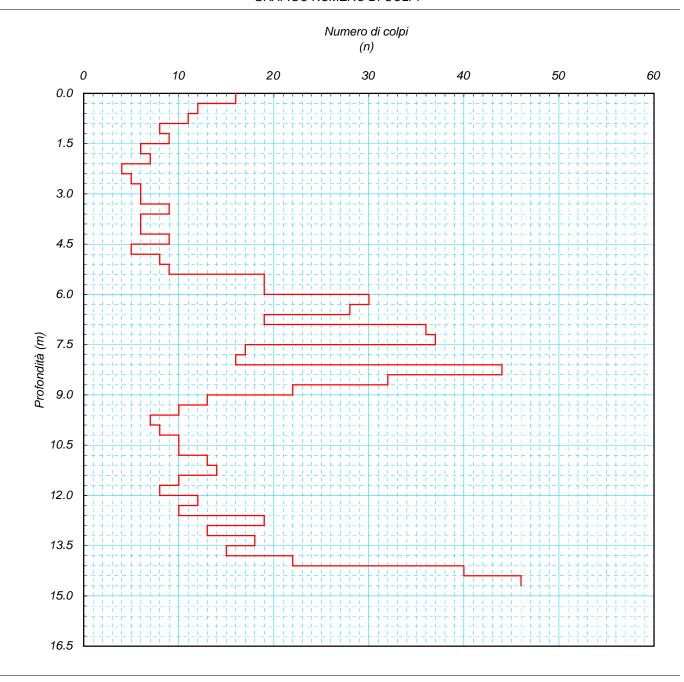
Cantiere: Loc. Casermette Bellizzi (SA)

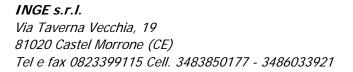
Data esecuz. prova: 26/05/2010

Prova (n): DPSH 04 Profondità della falda (m) n.d. Protocollo n.: 376/10

Prof.	Colpi	Prof.	Colpi	Prof.	Colpi	Prof.	Colpi	Prof.	Colp
(m)	(N)	(m)	(N)	(m)	(N)	(m)	(N)	(m)	(N)
0.30	16	9.30	13						
0.60	12	9.60	10						
0.90	11	9.90	7						
1.20	8	10.20	8						
1.50	9	10.50	10						
1.80	6	10.80	10						
2.10	7	11.10	13						
2.40	4	11.40	14						
2.70	5	11.70	10						
3.00	6	12.00	8						
3.30	6	12.30	12						
3.60	9	12.60	10						
3.90	6	12.90	19						
4.20	6	13.20	13						
4.50	9	13.50	18						
4.80	5	13.80	15						
5.10	8	14.10	22						
5.40	9	14.40	40						
5.70	19	14.70	46						
6.00	19								
6.30	30								
6.60	28								
6.90	19								
7.20	36								
7.50	37								
7.80	17								
8.10	16								
8.40	44								
8.70	32								
9.00	22								

Standard utilizzato: Emilia (30) [peso maglio Kg 63.5, volata cm 75, area punta cmq 20, angolo di apertura della punta 60°]


Committente: I.A.C.P. Futura


Cantiere: Loc. Casermette Bellizzi (SA)

Data esecuz. prova: 26/05/2010

Prova (n): DPSH 04 Profondità della falda (m) n.d. Protocollo n.: 376/10

GRAFICO NUMERO DI COLPI

Standard utilizzato: Emilia (30) [peso maglio Kg 63.5, volata cm 75, area punta cmq 20, angolo di apertura della punta 60°]

Committente: I.A.C.P. Futura

Cantiere: Loc. Casermette Bellizzi (SA)

Data esecuz. prova: 26/05/2010

Prova (n): DPSH 04 Profondità della falda (m) n.d. Protocollo n.: 376/10

STRATIGRAFIA INTERPRETATIVA										
DATI GENERALI										
Strato (n)	1	2	3	4	5	6	7			
Profondità iniziale (m)	0.00	1.50	5.40	6.90	9.00	12.60	14.10			
Profondità finale (m)	1.50	5.40	6.90	9.00	12.60	14.10	14.70			
Potenza dello strato (m)	1.50	3.90	1.50	2.10	3.60	1.50	0.60			
Peso di volume attribuito (g/cm³)	1.40	1.40	1.50	1.55	1.40	1.40	1.50			
Pressione vert efficace (Kg/cm²)	0.21	0.76	1.04	1.40	1.76	1.97	2.21			
Media numero colpi (N)	11	7	23	29	10	17	43			
Media resist. alla Punta (Kg/cm²)	38.00	24.00	66.00	83.00	30.00	39.00	85.00			
PARAMETI	RI GEO	TECNI	CI TEF	RRENI	DI NA	TURA	GRANU	JLARE		
ngolo di attrito (°)	33	31	36	38	32	35	>38			
Densità relativa (%)	59	47	84	95	55	72	100			
Mod. di deformazione (Kg/cm²)	114	72	198	249	90	117	255			
lod. taglio dinamico (Kg/cm²)	54	184	292	416	443	542	657			
tato di addensamento	М	S	Μ	М	М	Μ	D			
PARAME	TRI GE	EOTEC	NICI T	ERREN	II DI N	ATUR	A COES	SIVA		
Coesione non dren. (Kg/cm²)	1.89	1.16	3.25	4.08	1.41	1.85	4.14			
Modulo edometrico (Kg/cm²)	83.00	52.00	145.00	182.00	66.00	85.00	187.00			
Grado di sovracons. OCR (-)	7.20	14.04	7.41	3.96	2.11	1.66	1.42			
lod. di taglio dinam. (t/m²)	9'087	6'387	16'154	19'355	8'436	12'761	26'317			
tato di consistenza	С	Med	МC	МC	С	МC	D			

LEGENDA

Terreni di natura granulare - Stato di addensamento

M S=Molto sciolto, S=Sciolto, M=Medio, D=Denso, M D=Molto Denso

Terreni di natura coesiva - Stato di consistenza

M=Molle, T=Tenero, Med=Medio, C=Compatto, M C=Molto Compatto, D=Duro

SG-045

Standard utilizzato: Emilia (30) [peso maglio Kg 63.5, volata cm 75, area punta cmq 20, angolo di apertura della punta 60°]

Committente: I.A.C.P. Futura

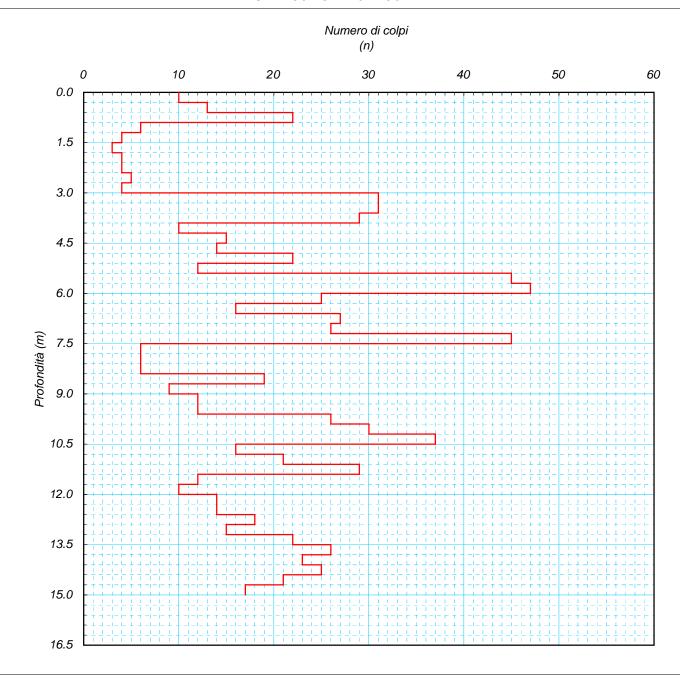
Cantiere: Loc. Casermette Bellizzi (SA)

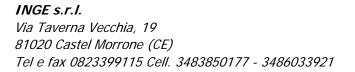
Data esecuz. prova: 26/05/2010

Prova (n): DPSH 05 Profondità della falda (m) n.d. Protocollo n.: 376/10

Prof.	Colpi	Prof.	Colpi	Prof.	Colpi	Prof.	Colpi	Prof.	Colpi
(m)	(N)	(m)	(N)	(m)	(N)	(m)	(N)	(m)	(N)
0.30	10	9.30	12						
0.60	13	9.60	12						
0.90	22	9.90	26						
1.20	6	10.20	30						
1.50	4	10.50	37						
1.80	3	10.80	16						
2.10	4	11.10	21						
2.40	4	11.40	29						
2.70	5	11.70	12						
3.00	4	12.00	10						
3.30	31	12.30	14						
3.60	31	12.60	14						
3.90	29	12.90	18						
4.20	10	13.20	15						
4.50	15	13.50	22						
4.80	14	13.80	26						
5.10	22	14.10	23						
5.40	12	14.40	25						
5.70	45	14.70	21						
6.00	47	15.00	17						
6.30	25								
6.60	16								
6.90	27								
7.20	26								
7.50	45								
7.80	6								
8.10	6								
8.40	6								
8.70	19								
9.00	9								

Standard utilizzato: Emilia (30) [peso maglio Kg 63.5, volata cm 75, area punta cmq 20, angolo di apertura della punta 60°]


Committente: I.A.C.P. Futura


Cantiere: Loc. Casermette Bellizzi (SA)

Data esecuz. prova: 26/05/2010

Prova (n): DPSH 05 Profondità della falda (m) n.d. Protocollo n.: 376/10

GRAFICO NUMERO DI COLPI

Standard utilizzato: Emilia (30) [peso maglio Kg 63.5, volata cm 75, area punta cmq 20, angolo di apertura della punta 60°]

Committente: I.A.C.P. Futura

Cantiere: Loc. Casermette Bellizzi (SA)

Data esecuz. prova: 26/05/2010

Prova (n): DPSH 05 Profondità della falda (m) n.d. Protocollo n.: 376/10

STRATIGRAFIA INTERPRETATIVA									
			DAT	I GENI	ERALI				
Strato (n)	1	2	3	4	5	6	7		
Profondità iniziale (m)	0.00	1.20	3.00	5.40	7.50	9.60	11.40		
Profondità finale (m)	1.20	3.00	5.40	7.50	9.60	11.40	15.00		
Potenza dello strato (m)	1.20	1.80	2.40	2.10	2.10	1.80	3.60		
Peso di volume attribuito (g/cm³)	1.50	1.40	1.60	1.70	1.55	1.65	1.60		
Pressione vert efficace (Kg/cm²)	0.18	0.42	0.86	1.28	1.49	1.88	2.40		
Media numero colpi (N)	13	4	21	33	10	27	18		
Media resist. alla Punta (Kg/cm²)	43.00	16.00	65.00	96.00	42.00	66.00	46.00		
PARAMETI	RI GEO	TECNI	ICI TEI	RRENI	DI NA	TURA	GRANU	JLARE	
Angolo di attrito (°)	33	29	36	>38	32	37	35		
Densità relativa (%)	64	35	81	100	56	91	74		
Mod. di deformazione (Kg/cm²)	129	48	195	288	126	198	138		
Mod. taglio dinamico (Kg/cm²)	47	95	244	380	373	546	659		
Stato di addensamento	М	S	М	D	М	М	М		
PARAME	TRI GE	OTEC	NICI T	ERREN	NI DI N	IATUR	A COES	SIVA	
Coesione non dren. (Kg/cm²)	2.14	0.78	3.21	4.74	2.03	3.21	2.18		
Modulo edometrico (Kg/cm²)	94.00	35.00	143.00	211.00	92.00	145.00	101.00		
Grado di sovracons. OCR (-)	13.22	0.62	12.29	5.41	3.43	2.22	1.28		
Mod. di taglio dinam. (t/m²)	10'352	4'128	15'047	21'408	8'436	18'306	13'343		
Stato di consistenza	С	Med	МC	D	С	МC	МC		

LEGENDA

Terreni di natura granulare - Stato di addensamento

M S=Molto sciolto, S=Sciolto, M=Medio, D=Denso, M D=Molto Denso

Terreni di natura coesiva - Stato di consistenza

M=Molle, T=Tenero, Med=Medio, C=Compatto, M C=Molto Compatto, D=Duro

SG-046

COMMITTENTE: Sig.ra De Chiara Rita Sig.ra Landi Maria Sig. De Chiara Felice LOCALITA': Via Napoli DITTA ESECUTRICE: VIGET srl Quota (m sul l. del m.): 65 PERCENTUALE STRATIGRAFIA PROFONDITA' (m dal p.c.) CAMPIONE SPESSORE (m) CAROTATA TIPO DI **DESCRIZIONE** Foto Cassette 25% 50% 75% RIPORTO 0,30 0,30 Terreno Vegetale 1,60 Argilla Marrone (.1 5,00 Argilla limosa sabbiosa con inclusi carboniosi.
Lenti ghiaiose tra 5,00 a 5,40 da 6,70 a 7,00 tra 8,00 e 8,20.
Tra 8,00 e 9,00 è presente uno strato di argilla terrosa piroclastica scarsamente consistente.
Tra 9,20 e 9,80 si rilevano elementi pomicei e ceneix. 6,70 Argilla nocciola consistente Argilla nocciola consistente debolmente ghiaiosa 3,50 Argilla verdastra compatta debolmente ghiaiosa Argilla marrone con ghiaia 5,00 DE dr. geol. PROGETTO: AMBITO DI TRASFORMAZIONE URBANA AT4 || Geologo Sondaggio S1 dr. Antonio Senese

AZIENDA CON SISTEMA BI GESTIONE DE ALATA UNTEN ISO-0001/2000 CERTIFICATO DA CERTITALIA Art. 59 DPR 180/2001. Circolare 7618/STC - Consiglio Superiore del Lavori Pubblici Certificazione ufficiale - Decreto 0000078-17/07/2013 SETTORE «A» Prove di laboratorio sulle TERRE * Prove Ciciole e Diusmiche (RC - TEC - TXC) * Prove di Carico sa Piastra * Deusità in sito SETTORE «R» Frave di laboratorio sa ROCCE e AGGREGATI

COMMITTENTE: Geologo Senese Antonio

RIFERIMENTO: P.U.A. AMBITO DI TRASFORMAZIONE URBANA AT4 - Via Napoli - Bellizzi (SA) - Sig.ri De Chiara Rita e Felice, Sig.ra Landi Maria

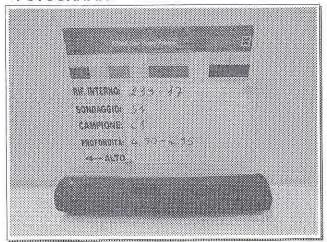
SONDAGGIO: S1

CAMPIONE: C1

PROFONDITA': m 4

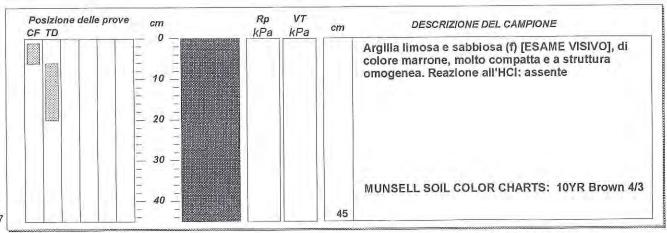
4,50-4,95

MODULO RIASSUNTIVO


CARATTERISTICHE FISICHE

Umidità naturale	32,4	%
Peso di volume	16,8	kN/m³
Peso di volume secco	12,7	kN/m³
Peso di volume saturo	17,8	kN/m³
Peso specifico	2,69	
Indice dei vuoti	1,079	
Porosità	51,9	%
Grado di saturazione	80,7	%

TAGLIO DIRETTO


			_
Coesione:	30,0	kPa	
Angolo di attrito interno:	22,5	0	

FOTOGRAFIA

OSSERVAZIONI

Qualità del campione: Q5

AZIENDA CON SISTEMA DI CESTIONE QUALITA UNIEN ISO 90012000 CERTIFICATO DA CERTITATIA Art. 59 DPR, 386/2083 - Circolare 7638/NTC - Consiglio Superiore del Lavori Pubblici Certificazione ufficiale - Decreto 080/078-17/07/2013 SETTORE «As Prove di laboratorio sulle TERRE * Prove Cidiche e Dinamiche (RC - TTC - TXC) * Prove di Carien su Plastra * Densità in sito SETTORE «R» Prove di laboratorio su ROCCE e ACCREGATI

CERTIFICATO DI PROVA N°: 02222 Pagina 1/1
VERBALE DI ACCETTAZIONE N°: 088 del 28/03/17

DATA DI EMISSIONE: 11/04/17 Inizio analisi: 29/03/17

Apertura campione: 29/03/17 Fine analisi: 30/03/17

COMMITTENTE: Geologo Senese Antonio

RIFERIMENTO: P.U.A. AMBITO DI TRASFORMAZIONE URBANA AT4 - Via Napoli - Bellizzi (SA) - Sig.ri De Chiara Rita e Felice, Sig.ra Landi Maria

SONDAGGIO: S1 CAMPIONE: C1 PROFONDITA': m 4,50-4,95

CONTENUTO D'ACQUA ALLO STATO NATURALE

Modalità di prova: Norma ASTM D 2216

Wn = contenuto d'acqua allo stato naturale (media delle tre misure) = 32,4 %

Omogeneo

Struttura del materiale:

☐ Caotico

Temperatura di essiccazione: 110 °C

Dimensione massima delle particelle: 5,00 mm

AZIENDA CON SISTEMA DI GESTIONE QUALITA' UNI EN ISO 9001:2808 CERTIFICATO DA CERTISLIA Art. 59 DPR 380/2001 - Circulare 7618/STC - Consiglio Superiore del Lavort Pubblici Certificazione utiliciale - Decreto 0806078-17/07/2013 SETT(SRE &A» Prove di laboratorio sulle TERRE * Prove Cicliche e Dinamiche (RC - TTC - TXC) * Prove di Carico su Piastra * Densità in sito SETT(SE &B» Prove di laboratorio su ROCCE e AGGREGATI

CERTIFICATO DI PROVA N°: 02223 Pagina 1/1
VERBALE DI ACCETTAZIONE N°: 088 del 28/03/17

DATA DI EMISSIONE: 11/04/17 Inizio analisi: 29/03/17

Apertura campione: 29/03/17 Fine analisi: 29/03/17

COMMITTENTE: Geologo Senese Antonio

RIFERIMENTO: P.U.A. AMBITO DI TRASFORMAZIONE URBANA AT4 - Via Napoli - Bellizzi (SA) - Sig.ri De Chiara Rita e Felice, Sig.ra Landi Maria

SONDAGGIO: S1 CAMPIONE: C1 PROFONDITA': m 4,50-4,95

PESO DI VOLUME ALLO STATO NATURALE

Modalità di prova: Norma BS 1377T 15/E

Determinazione eseguita mediante fustella tarata

Peso di volume allo stato naturale (media delle due misure) = 16,8 kN/m³

AZHENDA CON SISTEMA DI CESTIONE OLALITA UNI EN ISO 9001:2000 CERTIFICATO DA

Art. 59 DPR. 380/2001 - Circolare 7618/NTC - Consiglio Superiore del Lavori Pubblici Certificazione utiliciale - Decreto 0806078-17/07/2013 SETTORE «A» Prove di laboratorio sulle TERRE * Prove Cicliche e Dimentiche

(RC - TTC - TXC) * Preve di Carico su Piastra * Densità in sito SETTORE «B» Prove di laboratorio su ROCCE e ACCRECATI

CERTIFICATO DI PROVA Nº: 02224 Pagina 1/1 VERBALE DI ACCETTAZIONE Nº: 088 del 28/03/17 DATA DI EMISSIONE: 11/04/17 Apertura campione: 29/03/17 Fine analisi: 05/04/17

Inizio analisi: 04/04/17

COMMITTENTE: Geologo Senese Antonio

RIFERIMENTO: P.U.A. AMBITO DI TRASFORMAZIONE URBANA AT4 - Via Napoli - Bellizzi (SA) - Sig.ri De Chiara Rita e Felice, Sig.ra Landi Maria

SONDAGGIO:

CAMPIONE:

PROFONDITA': m 4,50-4,95

PESO SPECIFICO DEI GRANULI

Modalità di prova: Norma ASTM D 854

 γ_s = Peso specifico dei granuli (media delle due misure) = 2,69

γ_{sc} = Peso specifico dei granuli corretto a 20° = 2,69

Metodo: 0 A \square B

Capacità del picnometro: 100 ml

Temperatura di prova: 20,2 °C

Dimensione massima delle particelle: 5,00 mm

Disaerazione eseguita per bollitura e sotto vuoto

SGEO - Laboratorio 6.0 - 2017

AZIENDA CON SISTEMA DI GESTRONE QUALITAT UNI EN 180 9001 2008 CERTIFILATO DA CERTIFILIA Art. 59 DPR 380/2001 - Circolare 7618/STC - Consiglio Superiore del Lavori Pubblici Certificazione ufficiale - Decreto 0806078-17/07/2013

SETTORE aAs Prove di laboratorio sulle TERRE * Prove Cicliche e Dimuniche (MC - TTC - TXC) * Prove di Carico su Pisstra * Densità in sito SETTORE «R» Prove di laboratorio su ROCCE e AGCREGATI

CERTIFICATO DI PROVA N°: 02225 Pagina 1/4
VERBALE DI ACCETTAZIONE N°: 088 del 28/03/17

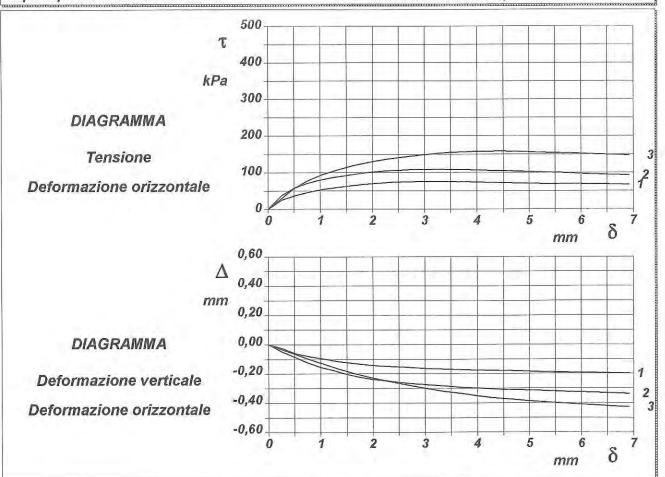
DATA DI EMISSIONE: 11/04/17 Inizio analisi: 30/03/17

Apertura campione: 29/03/17 Fine analisi: 05/04/17

COMMITTENTE: Geologo Senese Antonio

RIFERIMENTO: P.U.A. AMBITO DI TRASFORMAZIONE URBANA AT4 - Via Napoli - Bellizzi (SA) - Sig.ri De Chiara Rita e Felice, Sig.ra Landi Maria

SONDAGGIO: S1 CAMPIONE: C1


PROFONDITA': m 4,50-4,95

PROVA DI TAGLIO DIRETTO

Modalità di prova: Norma ASTM D 3080

Provino nº:	1			2	3	
Condizione del provino:	Indisturbato		Indisturbato		Indisturbate	
Tempo di consolidazione (ore):	24		24		24	
Pressione verticale (kPa):	100,0		200,0		300,0	
Umidità iniziale e umidità finale (%):	32,0	37,5	32,3	34,3	31,9	33,4
Peso di volume (kN/m³):	16,8		16,8		16,8	

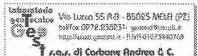
Tipo di prova: Consolidata - lenta Velocità di deformazione: 0,004 mm / min

AZIENDA CON SISTEMA DI GESTUNE QUALITA UNTEN ISO 9001-2008 CERTIFUATO DA CERTIFATA Art. 59 DPR 380/2001 - Circolare "618/STC - Consiglio Superiore del Lavori Pubblici Certificazione ufficiale - Decreto 0806078-17/07/2013 SETTORE «A» Prove di laboratorio sulle TERRE * Prove Cicliche e Dinamiche (RC - TTC - TXC) * Prove di Carico su Pissora * Densità in sito SETTORE «R» Prove di faboratorio su ROCCE e ACGREGATI

CERTIFICATO DI PROVA N°: 02225 Pagina 2/4
VERBALE DI ACCETTAZIONE N°: 088 del 28/03/17

DATA DI EMISSIONE: 11/04/17 Inizio analisi: 30/03/17
Apertura campione: 29/03/17 Fine analisi: 05/04/17

COMMITTENTE: Geologo Senese Antonio


RIFERIMENTO: P.U.A. AMBITO DI TRASFORMAZIONE URBANA AT4 - Via Napoli - Bellizzi (SA) - Sig.ri De Chiara Rita e Felice, Sig.ra Landi Maria

SONDAGGIO: S1 CAMPIONE: C1 PROFONDITA': m 4,50-4,95

PROVA DI TAGLIO DIRETTO

Modalità di prova: Norma ASTM D 3080

	Provino 1			Provino 2	?		Provino 3		
Spostam. mm	Tensione kPa	Deform. vert. mm	Spostam. mm	Tensione kPa	Deform. vert. mm	Spostam. mm	Tensione kPa	Deform, vert.	
0,267	25,7	-0,03	0,251	36,8	-0,05	0,245	28,0	-0,03	
0,534	38,1	-0,06	0,501	58,1	-0,09	0,490	56,0	-0,06	
0,802	47,5	-0,08	0,752	71,5	-0,12	0,745	77,0	-0,10	
1,069	54,5	-0,10	1,002	80,0	-0,16	1,023	93,3	-0,13	
1,336	60,0	-0,12	1,253	86,8	-0,18	1,344	108,0	-0,17	
1,603	64,4	-0,13	1,503	91,9	-0,20	1,637	118,9	-0,20	
1,870	67,9	-0,14	1,754	97,0	-0,22	1,929	127,7	-0,22	
2,138	71,1	-0,15	2,004	101,3	-0,24	2,251	135,5	-0,25	
2,405	73,2	-0,15	2,255	104,4	-0,25	2,529	141,1	-0,27	
2,672	74,1	-0,16	2,505	106,2	-0,26	2,785	145,6	-0,28	
2,939	75,3	-0,16	2,756	107,7	-0,27	3,031	149,0	-0,30	
3,206	75,4	-0,17	3,006	108,0	-0,27	3,273	152,0	-0,31	
3,474	74,9	-0,17	3,257	108,7	-0,28	3,507	154,9	-0,33	
3,741	74,3	-0,17	3,507	108,0	-0,29	3,741	155,9	-0,34	
4,008	73,4	-0,17	3,758	107,5	-0,29	3,975	157,4	-0,35	
4,275	72,5	-0,18	4,008	106,7	-0,30	4,208	157,8	-0,36	
4,542	71,7	-0,18	4,259	105,2	-0,30	4,442	158,2	-0,37	
4,810	70,9	-0,18	4,509	105,1	-0,31	4,676	157,8	-0,38	
5,077	70,6	-0,19	4,760	103,4	-0,31	4,930	156,5	-0,38	
5,344	69,4	-0,19	5,028	102,2	-0,31	5,185	155,2	-0,39	
5,611	69,4	-0,19	5,297	101,1	-0,32	5,460	154,0	-0,40	
5,878	68,9	-0,19	5,583	99,5	-0,32	5,747	152,8	-0,40	
6,146	68,5	-0,19	5,943	97,4	-0,32	6,043	151,5	-0,41	
6,413	67,9	-0,19	6,267	95,6	-0,33	6,322	150,1	-0,42	
6,680	67,5	-0,20	6,593	94,0	-0,33	6,605	148,5	-0,42	
6,923	66,9	-0,20	6,920	92,4	-0,34	6,917	146,8	-0,43	
						1			

VERBALE DI ACCETTAZIONE N°:

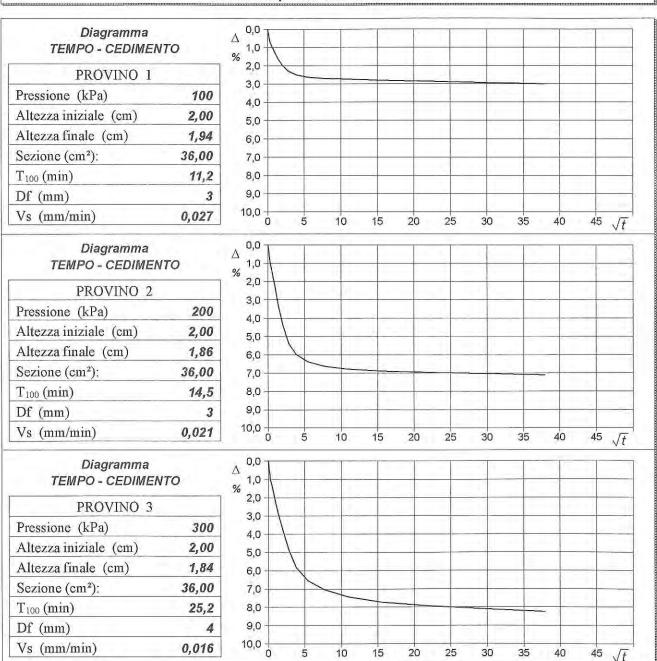
AZHENDA CON SISTEMA DI CESTIONE QUALITA UNIEN ISO 0001:2009 CERTIFICATO DA CERTIFICALIA

088 del 28/03/17

Art. 59 DPR 380/2001 - Circolare 7618/NTC - Consiglio Superiore del Lavori Pubblid Certificazione ufficiale - Decreto 0006078-17/07/2013 SETTORE «A» Prove di laboratorio sulle TERRE * Prove Cicliche e Dinamiche (RC - TTC - TXC) * Prove di Carion su Piastra * Densità in sito SETTORE 885 Prove di laboratoria su ROCCE e ACCRECATI

CERTIFICATO DI PROVA Nº: 02225 Pagina 3/4

11/04/17 DATA DI EMISSIONE: Inizio analisi: 30/03/17 Apertura campione: 29/03/17 Fine analisi: 05/04/17


COMMITTENTE: Geologo Senese Antonio

RIFERIMENTO: P.U.A. AMBITO DI TRASFORMAZIONE URBANA AT4 - Via Napoli - Bellizzi (SA) - Sig.ri De Chiara Rita e Felice, Sig.ra Landi Maria

SONDAGGIO: CAMPIONE: PROFONDITA': m 4,50-4,95

PROVA DI TAGLIO DIRETTO - FASE DI CONSOLIDAZIONE

Modalità di prova: Norma ASTM D 3080

Vs = Velocità stimata di prova Df = Deformazione a rottura stimata

LQ SPERIMENTATORE

IL DIRETTORE DEL L'ABORATORIO don Repl. CARBONE Raffaele

 $V_s = Df / tf$

 $tf = 10 \times T_{100}$

SGEO - Laboratorio 6.0 - 2017

19-17

AZJENDA CON SISTEMA DI GESTIONE QUALITA ENTEN ISO 4001: 2600 CERTIFICATO DA CERTITALIA Art. 59 DPR 389/2081 - Circolare 7618/STC - Consiglio Superiore del Lavori Pubblici
Certificazione utiliciale - Decreto 0806078-17/07/2013
SETTORE «A» Prove di laboratorio sulle TERRE « Prove Cicliche e Dimuniche
(RC - TTC - TXC) « Prove di Carica su Piastra » Densità in sito
SETTORE «8» Prove di laboratorio su ROCCE « AGGREGATI

CERTIFICATO DI PROVA N°: 02225 Pagina 4/4
VERBALE DI ACCETTAZIONE N°: 088 del 28/03/17

DATA DI EMISSIONE: 11/04/17 Inizio analisi: 30/03/17
Apertura campione: 29/03/17 Fine analisi: 05/04/17

COMMITTENTE: Geologo Senese Antonio

RIFERIMENTO: P.U.A. AMBITO DI TRASFORMAZIONE URBANA AT4 - Via Napoli - Bellizzi (SA) - Sig.ri De Chiara Rita e Felice, Sig.ra Landi Maria

SONDAGGIO: S1 CAMPIONE: C1 PROFONDITA': m 4,50-4,95

PROVA DI TAGLIO DIRETTO - FASE DI CONSOLIDAZIONE

Modalità di prova: Norma ASTM D 3080

Provino 1				Provino 2		Provino 3		
Тетро	Cedim.	Cedim.	Tempo	Cedim.	Cedim.	Tempo	Cedim.	Cedim.
minuti	mm/100	%	minuti	mm/100	%	minuti	mm/100	%
0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
0,10	14,00	0,70	0,10	20,30	1,02	0,10	21,10	1,06
0,25	17,00	0,85	0,25	25,80	1,29	0,25	25,80	1,29
0,50	20,80	1,04	0,50	34,80	1,74	0,50	33,40	1,67
1,00	26,00	1,30	1,00	47,70	2,39	1,00	45,20	2,26
2,00	32,30	1,62	2,00	66,30	3,32	2,00	58,90	2,95
4,00	39,50	1,98	4,00	87,10	4,36	4,00	76,20	3,81
8,00	45,90	2,30	8,00	107,90	5,40	8,00	97,90	4,90
15,00	50,00	2,50	15,00	119,70	5,99	15,00	116,80	5,84
30,00	52,50	2,63	30,00	127,50	6,38	30,00	131,20	6,56
60,00	54,00	2,70	60,00	132,50	6,63	60,00	140,80	7,04
120,00	54,80	2,74	120,00	135,70	6,79	120,00	148,70	7,44
240,00	56,20	2,81	240,00	137,80	6,89	240,00	154,50	7,73
480,00	57,10	2,86	480,00	139,20	6,96	480,00	158,60	7,93
960,00	58,90	2,95	960,00	140,60	7,03	960,00	162,50	8,13
1440,00	60,00	3,00	1440,00	142,00	7,10	1440,00	165,00	8,25

39-17

SG-047

COMMITTENTE: Sig.ra De Chiara Rita Sig.ra Landi Maria Sig. De Chiara Felice LOCALITA': Via Napoli DITTA ESECUTRICE: VIGET srl Quota (m sul l. del m.): 65 STRATIGRAFIA PERCENTUALE PROFONDITA' (m dal p.c.) CAMPIONE SPESSORE (m) CAROTATA DESCRIZIONE Foto Cassette 25% 50% 75% 0,30 RIPORTO 0,30 Terreno Vegetale 1,70 2,00 Argilla Marrone 0,50 Argilla Marrone e ghiaia Argilla debolmente sabbiosa scarsamente consistente con livelli sabbioso ghiaioso C1 5,00 - 70 - 6 3 9,50 Ghiaia in matrice Argillosa 0,70 4,80 Argilla marrone debolmente Argilla nocciola consistente debolmente ghiaiosa 4,00 Argilla verdastra compatta debolmente ghiaiosa 1,00 4,00 Argilla marrone con ghiaia Sabbia Argillosa con ghiala 6,00 PROGETTO: AMBITO DI TRASFORMAZIONE URBANA AT4 Il Geologo Sondaggio S2 dr. Antonio Senese

AZIENDA CON SISTEMA DI GESTIONE QE ALITAC UNI EN ISO 9881/2808 CERTIFICATO DA CERTITALIA Art. 59 DFR J8F2001 - Caroline 7618/STC - Consiglio Superiore del Lavori Pubblici Cerdifeazione utiliciale - Decreto 0006078-1707/2013 SETTORE «A» Prove di laboratorio sulle TERRE * Prove Cicliche e Dimaniche (RC - TTC - TXC) * Prove di Carien su Plastra * Densità in sito

SETTORE 835 Prove di Inhoratorio su ROCCE e ACCRECATI

COMMITTENTE: Geologo Senese Antonio

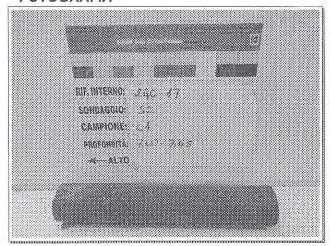
RIFERIMENTO: P.U.A. AMBITO DI TRASFORMAZIONE URBANA AT4 - Via Napoli - Bellizzi (SA) - Sig.ri De Chiara Rita e Felice, Sig.ra Landi Maria

SONDAGGIO: S2

CAMPIONE: C

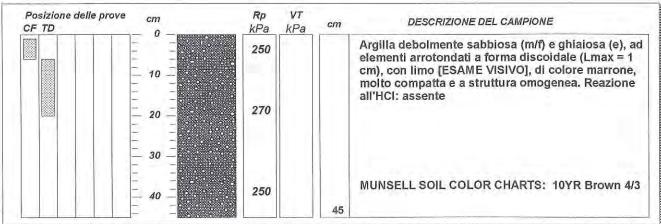
PROFONDITA': m 7,00-7,45

MODULO RIASSUNTIVO


CARATTERISTICHE FISICHE

Umidità naturale	23,3	%
Peso di volume	18,7	kN/m³
Peso di volume secco	15,2	kN/m³
Peso di volume saturo	19,3	kN/m³
Peso specifico	2,69	
Indice dei vuoti	0,740	
Porosità	42,5	%
Grado di saturazione	84.8	%

TAGLIO DIRETTO


Coesione:	14,0	kPa
Angolo di attrito interno:	28,2	•

FOTOGRAFIA

OSSERVAZIONI

Qualità del campione: Q5

AZIENDA CON SISTEMA DI GESTIONE QI ALETA UNLEN ISO 9001/2000 CERTIFICATO DA CERTIFICATO Art. 59 DPR 380-2001 - Circolare 7618/STC - Consiglio Superiore del Lavori Pubblici Certificazione ufficiale - Decreto 000/078-1707/2013

SETTORE aAs Prove di laboratorio sulle TERRE * Prove Cicliche e Diminiche (RC - TTC - TXC) * Prove di Carico su Pisstra * Densità in sito SETTORE «R» Prove di laboratorio su ROCCE e AGGREGATI

CERTIFICATO DI PROVA N°: 02226 Pagina 1/1
VERBALE DI ACCETTAZIONE N°: 088 del 28/03/17

DATA DI EMISSIONE: 11/04/17 Inizio analisi: 29/03/17

Apertura campione: 29/03/17 Fine analisi: 30/03/17

COMMITTENTE: Geologo Senese Antonio

RIFERIMENTO: P.U.A. AMBITO DI TRASFORMAZIONE URBANA AT4 - Via Napoli - Bellizzi (SA) - Sig.ri De Chiara Rita e Felice, Sig.ra Landi Maria

SONDAGGIO: S2 CAMPIONE: C1 PROFONDITA': m 7,00-7,45

CONTENUTO D'ACQUA ALLO STATO NATURALE

Modalità di prova: Norma ASTM D 2216

Wn = contenuto d'acqua allo stato naturale (media delle tre misure) = 23,3 %

Omogeneo

Struttura del materiale:

☐ Caotico

Temperatura di essiccazione: 110 °C

Dimensione massima delle particelle: 10,00 mm

AZIENDA CON SISTEMA BI GESTUNE QUALITAT ENTEN ISO 4001/2008 CERTIFICATO DA CERTIFICATA Art. 59 DPR 380-2081 - Circolare 7618/STC - Consiglio Superiore del Lavori Pubblici Certificazione ufficiale - Decreto 0806078-17/07/2013 SETTORE «A» Prove di laboratorio sulle TERRE « Prove Cicliche e Dinamiche (RC - TTC - TXC) « Prove di Carico su Piastra » Densità in sito SETTORE «R» Prove di laboratorio su ROCCE e ACCREGATI

CERTIFICATO DI PROVA N°: 02227 Pagina 1/1
VERBALE DI ACCETTAZIONE N°: 088 del 28/03/17

DATA DI EMISSIONE: 11/04/17 Inizio analisi: 29/03/17
Apertura campione: 29/03/17 Fine analisi: 29/03/17

COMMITTENTE: Geologo Senese Antonio

RIFERIMENTO: P.U.A. AMBITO DI TRASFORMAZIONE URBANA AT4 - Via Napoli - Bellizzi (SA) - Sig.ri De Chiara Rita e Felice, Sig.ra Landi Maria

SONDAGGIO: S2 CAMPIONE: C1 PROFONDITA': m 7,00-7,45

PESO DI VOLUME ALLO STATO NATURALE

Modalità di prova: Norma BS 1377T 15/E

Determinazione eseguita mediante fustella tarata

Peso di volume allo stato naturale (media delle due misure) = 18,7 kN/m3

AZIENDA CON SISTEMA DI GESTIONE QUALITA LNI'EN 18G 9001,2808 CERTIFICATO DA CERTITALIA Art. 59 DPR 389/2001. Circolars 7618/STC - Consiglio Superiors del Lavort Pubblid Certificazione utiliciale - Decreto 0000078-17/97/2013 SETTORE aAs Prove di laboratorio sulle TERRE * Prove Geliche a Dimaniche (RC - TTC - TXC) * Prove di Carien su Plastra * Densità in sito SETTORE sillo Prove di laboratorio su ROCCE e ACGREGATI

CERTIFICATO DI PROVA N°: 02228 Pagina 1/1
VERBALE DI ACCETTAZIONE N°: 088 del 28/03/17

DATA DI EMISSIONE: 11/04/17 Inizio analisi: 04/04/17 Apertura campione: 29/03/17 Fine analisi: 05/04/17

COMMITTENTE: Geologo Senese Antonio

RIFERIMENTO: P.U.A. AMBITO DI TRASFORMAZIONE URBANA AT4 - Vía Napoli - Bellizzi (SA) - Sig.ri De Chiara Rita e Felice, Sig.ra Landi Maria

SONDAGGIO: S2 CAMPIONE: C1 PROFONDITA': m 7,00-7,45

PESO SPECIFICO DEI GRANULI

Modalità di prova: Norma ASTM D 854

γ_s = Peso specifico dei granuli (media delle due misure) = 2,69

γ_{sc} = Peso specifico dei granuli corretto a 20° = 2,69

Metodo:

A B

Capacità del picnometro: 100 ml

Temperatura di prova: 20,2 °C

Dimensione massima delle particelle: 10,00 mm

Disaerazione eseguita per bollitura e sotto vuoto

40-17

CEQ SPERIMENTATORE

IL DIRETTORE DEL L'ABORATORIO
doil GEOL GARBANE Rattaele

AZIENDA CEN SISTEMA DI CESTIONE QUALIFA LNI EN ISO 9001;2008 CERTIFICATO DA CERTITATA Art. 59 DPR 380/2001 - Circolare 7618/NTC - Consiglio Superiore del Lavori Pubblici Certificazione ufficiale - Decreto 080/078-17/07/2013 SETTI 3848 AND Dropped Informacio colle TERRE e Proppe Coliche a Dimensione

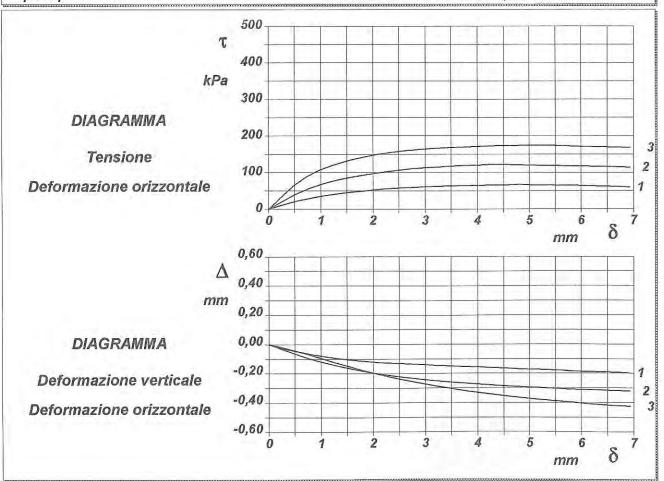
SETTORE AN Prove di laboratorio sulle TERRE * Prove Ciche e Dinamiche (RC - TTC - TXC) * Prove di Carien su Plastra * Densità in sito SETTORE silv Prove di laboratorio su ROCCE e ACCRECATI

CERTIFICATO DI PROVA N°: 02229 Pagina 1/4
VERBALE DI ACCETTAZIONE N°: 088 del 28/03/17

DATA DI EMISSIONE: 11/04/17 Inizio analisi: 30/03/17
Apertura campione: 29/03/17 Fine analisi: 05/04/17

COMMITTENTE: Geologo Senese Antonio

RIFERIMENTO: P.U.A. AMBITO DI TRASFORMAZIONE URBANA AT4 - Via Napoli - Bellizzi (SA) - Sig.ri De Chiara Rita e Felice, Sig.ra Landi Maria


SONDAGGIO: S2 CAMPIONE: C1 PROFONDITA': m 7,00-7,45

PROVA DI TAGLIO DIRETTO

Modalità di prova: Norma ASTM D 3080

Provino nº:	1			2	3	
Condizione del provino:	Indisturbato		Indisturbato		Indisturbato	
Tempo di consolidazione (ore):	24		24		24	
Pressione verticale (kPa):	100,0		200,0		300,0	
Umidità iniziale e umidità finale (%):	23,0	24,9	23,4	23,9	23,7	22,9
Peso di volume (kN/m³):	18,7		18,7		18,7	

Tipo di prova: Consolidata - lenta Velocità di deformazione: 0,004 mm / min

DECESTIONE OF ALTEX ENTEN ISCHMILION CERTIFICATO DA CERTESTIA

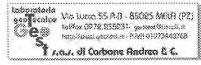
Art. 59 DER 380/2001 - Circolare 7618/STC - Consiglio Soperiore del Lavori Pubblici : Certificazione utiliciale - Decreto 0806078-1707/2013 SETTORE AA2 Prove di laboratorio sulle TERRE * Prove Cicliche e Dinamiche (RC - TTC - TXC) * Prove di Carico su Pissara * Densità in sito

SETTORE 1889 Prove di laboratorio sa ROCCE e ACERECATI

CERTIFICATO DI PROVA Nº: 02229 Pagina 2/4 088 del 28/03/17 VERBALE DI ACCETTAZIONE N°:

DATA DI EMISSIONE: 11/04/17 Inizio analisi: 30/03/17 29/03/17 Fine analisi: 05/04/17 Apertura campione:

COMMITTENTE: Geologo Senese Antonio


RIFERIMENTO: P.U.A. AMBITO DI TRASFORMAZIONE URBANA AT4 - Via Napoli - Bellizzi (SA) - Sig.ri De Chiara Rita e Felice, Sig.ra Landi Maria

PROFONDITA': m 7,00-7,45 SONDAGGIO: **CAMPIONE:**

PROVA DI TAGLIO DIRETTO

Modalità di prova: Norma ASTM D 3080

· · · · · · ·	Provino 1			Provino 2			Provino 3	
Spostam. mm	Tensione kPa	Deform. vert. mm	S po stam. mm	Tensione kPa	Deform. vert. mm	Spostam. mm	Tensione kPa	Deform. vert. mm
0,267	11,3	-0,03	0,254	20,1	-0,03	0,239	32,1	-0,02
0,534	22,1	-0,05	0,509	40,2	-0,07	0,478	64,2	-0,04
0,802	30,3	-0,07	0,767	56,2	-0,10	0,721	88,3	-0,07
1,069	37,2	-0,08	1,033	68,8	-0,12	0,975	106,5	-0,09
1,336	41,9	-0,09	1,315	79,3	-0,15	1,248	121,2	-0,12
1,603	46,4	-0,11	1,628	88,8	-0,17	1,561	134,0	-0,15
1,870	50,4	-0,12	1,941	95,9	-0,19	1,837	142,9	-0,18
2,138	54,3	-0,12	2,223	101,6	-0,21	2,096	149,5	-0,20
2,405	57,2	-0,13	2,489	106,3	-0,22	2,350	154,7	-0,22
2,672	59,0	-0,13	2,748	110,0	-0,23	2,611	159,1	-0,24
2,939	60,6	-0,14	3,002	113,0	-0,24	2,891	162,8	-0,26
3,206	62,1	-0,14	3,255	114,9	-0,25	3,214	166,1	-0,29
3,474	63,3	-0,15	3,506	117,2	-0,26	3,508	168,4	-0,30
3,741	64,0	-0,15	3,758	119,5	-0,27	3,802	170,3	-0,32
4,008	64,7	-0,16	4,008	120,3	-0,27	4,126	171,8	-0,34
4,275	65,4	-0,16	4,259	122,0	-0,28	4,409	172,8	-0,35
4,542	65,5	-0,16	4,509	121,5	-0,29	4,676	173,6	-0,36
4,810	67,0	-0,17	4,760	120,7	-0,29	4,910	174,2	-0,37
5,077	66,2	-0,17	5,010	119,8	-0,30	5,144	174,4	-0,38
5,344	65,8	-0,18	5,261	119,3	-0,30	5,377	174,2	-0,38
5,611	65,0	-0,18	5,511	118,6	-0,30	5,611	173,2	-0,39
5,878	64,5	-0,18	5,762	117,6	-0,31	5,845	172,0	-0,40
6,146	62,7	-0,19	6,012	117,1	-0,31	6,079	171,1	-0,41
6,413	62,3	-0,19	6,303	116,3	-0,31	6,351	169,7	-0,41
6,680	61,2	-0,19	6,595	115,4	-0,32	6,623	168,9	-0,42
6,930	59,8	-0,20	6,927	114,2	-0,32	6,934	167,7	-0,42
					M. A. Control of the			
April and the second second								
				1,077				
								V - 200 - 20
							1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
							<u></u>	
				1			J. 1 V. 1	-
								+
La.	ZINTERES CONTRACTOR CO	remarkation of the second	<u> </u>			I manana makan	50-00-00-00-00-00-00-00-00-00-00-00-00-0	

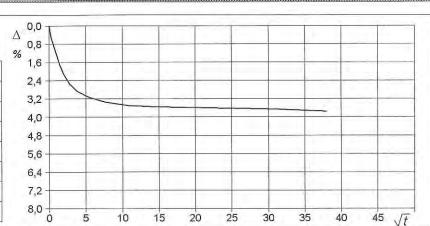
AZIENDA CEIN SISTEMA DI GESTIONE QUALITA UNI EN ISO 0001:1000 CERTIFICATO DA CERTITALIA Art. 59 DPR 389/2001. Circolare 7618/STC - Consiglio Superiore del Lavori Pubblici Certificazione ufficiale - Decreto 0006078-17/07/2013 SETTORE &As Prove di laboratorio sulle TERRE * Prove Ceffiche e Dinamiche (RC - TTC - TXC) * Prove di Carico su Piastra * Densità in sito SETTORE «8» Prove di laboratorio su ROCCE e ACGREGATI

CERTIFICATO DI PROVA N°: 02229 Pagina 3/4
VERBALE DI ACCETTAZIONE N°: 088 del 28/03/17

DATA DI EMISSIONE: 11/04/17 Inizio analisi: 30/03/17
Apertura campione: 29/03/17 Fine analisi: 05/04/17

COMMITTENTE: Geologo Senese Antonio

RIFERIMENTO: P.U.A. AMBITO DI TRASFORMAZIONE URBANA AT4 - Via Napoli - Bellizzi (SA) - Sig.ri De Chiara Rita e Felice, Sig.ra Landi Maria


SONDAGGIO: S2 CAMPIONE: C1 PROFONDITA': m 7,00-7,45

PROVA DI TAGLIO DIRETTO - FASE DI CONSOLIDAZIONE

Modalità di prova: Norma ASTM D 3080

Diagramma TEMPO - CEDIMENTO

100
2,00
1,93
36,00
13,9
5
0,036

Diagramma TEMPO - CEDIMENTO

PROVINO 2	
Pressione (kPa)	200
Altezza iniziale (cm)	2,00
Altezza finale (cm)	1,89
Sezione (cm²):	36,00
T ₁₀₀ (min)	16,1
Df (mm)	4
Vs (mm/min)	0,025

Diagramma TEMPO - CEDIMENTO

PROVINO 3	
Pressione (kPa)	300
Altezza iniziale (cm)	2,00
Altezza finale (cm)	1,85
Sezione (cm²):	36,00
T ₁₀₀ (min)	22,9
Df (mm)	5
Vs (mm/min)	0,022

Vs = Velocità stimata di prova Df = Deformazione a rottura stimata

 $tf = 10 \times T_{100}$

Vs = Df / tf

AZIENDA CON SISTEMA DI CESTIONE DI ALSTA UNI EN ISO 9001:2000 CERTIFICATO DA CERTITALIA Art. 59 DPR 380/2001 - Circolare 7618/NTC - Consiglio Superiore del Lavori Pubblici
Certificazione ufficiale - Decreto 0806078-17/07/2013
SETTORE «A» Prove di laboratorio sulle TERRE * Prove Cicliche e Dinamiche
(RC - TTC - TXC) * Prove di Carleo su Piastra * Densità in sito
SETTORE «R» Prove di laboratorio su ROCCE e AGGREGATI

CERTIFICATO DI PROVA N°: 02229 Pagina 4/4 | I
VERBALE DI ACCETTAZIONE N°: 088 del 28/03/17 |

DATA DI EMISSIONE: 11/04/17 Inizio analisi: 30/03/17
Apertura campione: 29/03/17 Fine analisi: 05/04/17

COMMITTENTE: Geologo Senese Antonio

RIFERIMENTO: P.U.A. AMBITO DI TRASFORMAZIONE URBANA AT4 - Via Napoli - Bellizzi (SA) - Sig.ri De Chiara Rita e Felice, Sig.ra Landi Maria

SONDAGGIO: S2

CAMPIONE: 01

PROFONDITA': m 7,00-7,45

PROVA DI TAGLIO DIRETTO - FASE DI CONSOLIDAZIONE

Modalità di prova: Norma ASTM D 3080

Cedim. mm/100 0,00 11,00 14,20 19,10 24,80 33,10 42,50 51,30 57,50 62,90 66,90 70,00 71,30 72,10 73,30 75,00	Cedim. % 0,00 0,55 0,71 0,96 1,24 1,66 2,13 2,57 2,88 3,15 3,35 3,50 3,57 3,61	Tempo minuti 0,00 0,10 0,25 0,50 1,00 2,00 4,00 8,00 15,00 30,00 60,00 120,00 240,00	Cedim. mm/100 0,00 14,70 19,10 25,40 33,50 44,10 56,80 67,30 77,40 85,00 91,80 96,70 100,40	Cedim. % 0,00 0,74 0,96 1,27 1,68 2,21 2,84 3,37 3,87 4,25 4,59 4,84	Tempo minuti 0,00 0,10 0,25 0,50 1,00 2,00 4,00 8,00 15,00 30,00 60,00 120,00	Cedim. mm/100 0,00 17,10 22,10 30,00 39,00 51,90 67,90 85,70 101,50 116,60 128,70	Cedim. % 0,00 0,86 1,11 1,50 1,95 2,60 3,40 4,29 5,08 5,83 6,44
0,00 11,00 14,20 19,10 24,80 33,10 42,50 51,30 57,50 62,90 66,90 70,00 71,30 72,10 73,30	0,00 0,55 0,71 0,96 1,24 1,66 2,13 2,57 2,88 3,15 3,35 3,50 3,57	0,00 0,10 0,25 0,50 1,00 2,00 4,00 8,00 15,00 30,00 60,00 120,00	0,00 14,70 19,10 25,40 33,50 44,10 56,80 67,30 77,40 85,00 91,80 96,70	0,00 0,74 0,96 1,27 1,68 2,21 2,84 3,37 3,87 4,25 4,59 4,84	0,00 0,10 0,25 0,50 1,00 2,00 4,00 8,00 15,00 30,00 60,00	0,00 17,10 22,10 30,00 39,00 51,90 67,90 85,70 101,50 116,60 128,70	0,00 0,86 1,11 1,50 1,95 2,60 3,40 4,29 5,08 5,83
11,00 14,20 19,10 24,80 33,10 42,50 51,30 57,50 62,90 66,90 70,00 71,30 72,10 73,30	0,55 0,71 0,96 1,24 1,66 2,13 2,57 2,88 3,15 3,35 3,50 3,57	0,10 0,25 0,50 1,00 2,00 4,00 8,00 15,00 30,00 60,00 120,00	14,70 19,10 25,40 33,50 44,10 56,80 67,30 77,40 85,00 91,80 96,70	0,74 0,96 1,27 1,68 2,21 2,84 3,37 3,87 4,25 4,59 4,84	0,10 0,25 0,50 1,00 2,00 4,00 8,00 15,00 30,00 60,00	17,10 22,10 30,00 39,00 51,90 67,90 85,70 101,50 116,60 128,70	0,86 1,11 1,50 1,95 2,60 3,40 4,29 5,08 5,83
14,20 19,10 24,80 33,10 42,50 51,30 57,50 62,90 66,90 70,00 71,30 72,10 73,30	0,71 0,96 1,24 1,66 2,13 2,57 2,88 3,15 3,35 3,50 3,57	0,25 0,50 1,00 2,00 4,00 8,00 15,00 30,00 60,00 120,00	19,10 25,40 33,50 44,10 56,80 67,30 77,40 85,00 91,80 96,70	0,96 1,27 1,68 2,21 2,84 3,37 3,87 4,25 4,59 4,84	0,25 0,50 1,00 2,00 4,00 8,00 15,00 30,00 60,00	22,10 30,00 39,00 51,90 67,90 85,70 101,50 116,60 128,70	1,11 1,50 1,95 2,60 3,40 4,29 5,08 5,83
19,10 24,80 33,10 42,50 51,30 57,50 62,90 66,90 70,00 71,30 72,10 73,30	0,96 1,24 1,66 2,13 2,57 2,88 3,15 3,35 3,50 3,57	0,50 1,00 2,00 4,00 8,00 15,00 30,00 60,00 120,00	25,40 33,50 44,10 56,80 67,30 77,40 85,00 91,80 96,70	1,27 1,68 2,21 2,84 3,37 3,87 4,25 4,59 4,84	0,50 1,00 2,00 4,00 8,00 15,00 30,00 60,00	30,00 39,00 51,90 67,90 85,70 101,50 116,60 128,70	1,50 1,98 2,60 3,40 4,29 5,08 5,83
24,80 33,10 42,50 51,30 57,50 62,90 66,90 70,00 71,30 72,10 73,30	1,24 1,66 2,13 2,57 2,88 3,15 3,35 3,50 3,57	1,00 2,00 4,00 8,00 15,00 30,00 60,00 120,00	33,50 44,10 56,80 67,30 77,40 85,00 91,80 96,70	1,68 2,21 2,84 3,37 3,87 4,25 4,59 4,84	1,00 2,00 4,00 8,00 15,00 30,00 60,00	39,00 51,90 67,90 85,70 101,50 116,60 128,70	1,98 2,60 3,40 4,29 5,08 5,83
33,10 42,50 51,30 57,50 62,90 66,90 70,00 71,30 72,10 73,30	1,66 2,13 2,57 2,88 3,15 3,35 3,50 3,50	2,00 4,00 8,00 15,00 30,00 60,00 120,00	44,10 56,80 67,30 77,40 85,00 91,80 96,70	2,21 2,84 3,37 3,87 4,25 4,59 4,84	2,00 4,00 8,00 15,00 30,00 60,00	51,90 67,90 85,70 101,50 116,60 128,70	2,60 3,40 4,29 5,08 5,83
42,50 51,30 57,50 62,90 66,90 70,00 71,30 72,10 73,30	2,13 2,57 2,88 3,15 3,35 3,50 3,57	4,00 8,00 15,00 30,00 60,00 120,00	56,80 67,30 77,40 85,00 91,80 96,70	2,84 3,37 3,87 4,25 4,59 4,84	4,00 8,00 15,00 30,00 60,00	67,90 85,70 101,50 116,60 128,70	3,40 4,29 5,08 5,83 6,44
51,30 57,50 62,90 66,90 70,00 71,30 72,10 73,30	2,57 2,88 3,15 3,35 3,50 3,57	8,00 15,00 30,00 60,00 120,00	67,30 77,40 85,00 91,80 96,70	3,37 3,87 4,25 4,59 4,84	8,00 15,00 30,00 60,00	85,70 101,50 116,60 128,70	4,29 5,08 5,83 6,44
57,50 62,90 66,90 70,00 71,30 72,10 73,30	2,88 3,15 3,35 3,50 3,57	15,00 30,00 60,00 120,00	77,40 85,00 91,80 96,70	3,87 4,25 4,59 4,84	15,00 30,00 60,00	101,50 116,60 128,70	5,08 5,83 6,44
62,90 66,90 70,00 71,30 72,10 73,30	3,15 3,35 3,50 3,57	30,00 60,00 120,00	85,00 91,80 96,70	4,25 4,59 4,84	30,00 60,00	116,60 128,70	5,83 6,44
66,90 70,00 71,30 72,10 73,30	3,35 3,50 3,57	60,00 120,00	91,80 96,70	4,59 4,84	60,00	128,70	6,44
70,00 71,30 72,10 73,30	3,50 3,57	120,00	96,70	4,84			
71,30 72,10 73,30	3,57				120.00	427 40	
72,10 73,30	- 6	240,00	100 40		,	137,10	6,86
73,30	3.61		100,70	5,02	240,00	142,30	7,12
		480,00	103,50	5,18	480,00	146,10	7,31
75.00	3,67	960,00	105,70	5,29	960,00	149,70	7,49
70,00	3,75	1440,00	107,00	5,35	1440,00	152,00	7,60

SGEO - Laboratorio 6.0 - 2017

STRATIGRAFIA SCALA 1:125 Riferimento: COOP. A R.L. GA.MA. - P.U.A. AMBITO AT 8 Sondaggio: S1 Località: PRATOLE, BELLIZZI (SA) Quota: + 50 MT SLM Impresa esecutrice: RI.A.S. SRL (ATTESTAZIONE SOA N.9124/45/01) Data: 07/10/2015 Redattore: DR.GEOL.L.FERRARO Coordinate: 40°37'21,53"N 14°56'1,46"E Perforazione: A CAROTAGGIO CONTINUO | Standard Penetration Test | RQD % | prof | Quota Spess | m | S.P.T. | N | Pt | 0 --- 100 | m | m | m | DESCRIZIONE terreno di copertura superficiale di natura agraria; 1,20 -1,20 1.20 - sabbia argillosa di media granulometria colore marrone scuro; 2 2-2-3 3.0 3,10 -3,10 1,90 - limo argilloso a matrice sabbiosa di fine granulometria di colore marrone, piuttosto plastico; 6 15-13-17 9 presenza FALDA ACQUIFERA (-9,60mt); 9.60 -9.60 6,50 - breccia calcarea di Ø 1/2-6cm max in 10 10,20-10,20 0.60 matrice sabbiosa; sabbia argillosa di media granulometria con inclusi lapidei di natura calcarea di Ø ½-10cm max di colore giallo-bruno; 12 13 23-23-21 44 C 15.0 15 15.40-15.40 5.20 argilla sabbiosa con inclusi ciottoli calcarei di Ø 2÷10cm di colore blu, 16.3 abbastanza compatta e molto addensata; 18 19 20 21-23-21 22 23 25 26 27 27,30-27,30 11.90 - ghiaia di natura calcarea di Ø 5÷15 cm in 33-34-32 28.0 matrice sabbiosa di colore giallo; 28

30,00-30.00 2.70

29

SG-049

STRATIGRAFIA - S2

SCALA 1:125 Riferimento: COOP. A R.L. GA.MA. - P.U.A. AMBITO AT 8 Sondaggio: S2 Quota: + 50 MT SLM Località: PRATOLE, BELLIZZI (SA) Data: 07/10/2015 Impresa esecutrice: RI.A.S. SRL (ATTESTAZIONE SOA N.9124/45/01) Coordinate: 40°37'21,53"N 14°56'1,46"E Redattore: DR.GEOL.L.FERRARO Perforazione: A CAROTAGGIO CONTINUO DESCRIZIONE - terreno di copertura superficiale di natura agraria; 4 1.50 -1.50 1.50 - sabbia argillosa di media granulometria 23 1) Ind < 2.00 2.50 colore marrone scuro; 3,0 3-2-3 5 C 3 3,30 -3,30 1,80 limo argilloso a matrice sabbiosa di fine granulometria di colore marrone, piuttosto plastico; 7 8 9 9 9 9 13-13-17 30 C 9.50 9.50 6.20 - presenza FALDA ACQUIFERA (-9,60mt); - breccia calcarea di Ø 1/2-6cm max in 10.3 matrice sabbiosa; 10,50-10,50 1,00 - sabbia argillosa di media granulometria con inclusi lapidei di natura calcarea di Ø ½-10cm max di colore giallo-bruno; 12 20-24-20 15 15.70-15,70 5,20 argilla sabbiosa con inclusi ciottoli calcarei di Ø 2÷10cm di colore blu, abbastanza compatta e molto addensata; 16 17 18 20 21-21-23 21 22 23 24 25 26 27 27,00-27,00 11.30 - ghiaia di natura calcarea di Ø 5÷15 cm in matrice sabbiosa di colore giallo; 33-32-34 66 C 28

30,00-30,00 3.00

29

Certificazione Ufficiale - Settore «A» - Prove di laboratorio sulle terre AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 0007474 del 27/07/2012 Art. 59 DPR 380/2001 - Circolare 7618/STC/2010

COMMITTENTE: 1

RI.A.S. SRL

RIFERIMENTO:

Indagini Geognostiche - P.U.A. AT 8 - Bellizzi (SA)

SONDAGGIO:

S2

CAMPIONE: C

PROFONDITA': 2,00 - 2,50

MODULO RIASSUNTIVO

CARATTERISTICHE FISICHE

Umidità naturale	26,3	%
Peso di volume	18,6	kN/m³
Peso di volume secco	14,7	kN/m³
Peso di volume saturo	18,8	kN/m³
Peso specifico	25,4	kN/m³
Indice dei vuoti	0,723	
Porosità	42,0	%
Grado di saturazione	94,2	%
Limite di liquidità		%
Limite di plasticità		%
Indice di plasticità		%
Indice di consistenza		
Passante al set. nº 40		
Limite di ritiro		%
Classif. CNR-UNI		

ANALISI GRANULOMETRICA

Ghiaia	12,9	%
Sabbia	13,8	%
Limo	46,2	%
Argilla	27,1	%
D 10		mm
D 50	0,066113	mm
D 60	0,069791	mm
D 90	4,682014	mm
Passante set. 10	87,1	%
Passante set. 40	82,4	%
Passante set. 200	73,3	%

PERMEABILITA'

Coefficiente k	cm/sec
	/

COMPRESSIONE

1			
σ	kPa	σ_{Rim}	kPa
h			

SCISSOMETRO

τ	kPa	τ	kPa

TAGLIO DIRETTO

Prova co	onsolidata	-lenta			
С	14,1	kPa	ф	24,4	o
c Res		kPa	φ Res		o

COMPRESSIONE TRIASSIALE

C.D.	c q	kPa	φd	o
C.U.	c'cu	kPa	φ' _{cu}	0
C.U. c _{cu}	kPa	фcu	o	
U.U.	C _u	kPa	φu	o

PROVA EDOMETRICA

σ kPa	E kPa	Cv cm ² /sec	k cm/sec
		-1	

Terreno vegetale di colore marrone scuro - brunastro, in cui si rinvengono resti di frustoli vegetali e litici eterogenici ed eterometrici (dmax = 2 cm), in matrice limo - argillosa.

Certificazione Ufficiale - Settore «A» - Prove di laboratorio sulle terre AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 0007474 del 27/07/2012 Art. 59 DPR 380/2001 - Circolare 7618/STC/2010

			Norma ASTM D2216		73 <u>DL</u>	
CONTEN	NUTO	D'ACOUA	ALLO STATO	NATUR	AIF	
SONDAGGIO: S2		CAMPIONE: C1			FONDITA':	2,00 - 2,50
RIFERIMENTO: Indagini C	eognosti	che – P.U.A. A	AT 8 – Bellizzi (SA)	- A		A LOUIS CONTRACTOR OF THE PARTY
COMMITTENTE: RI.A.S. S	SRL					
VERBALE DI ACCETTAZIONE N	°: 104/15	del 07/10/15	Apertura campione:	07/10/2015	Fine analisi:	13/10/2015
CERTIFICATO DI PROVA Nº:	0462	Pagina 1/1	DATA DI EMISSIONE:	13/10/2015	Inizio analisi:	07/10/2015

Wn = contenuto d'acqua allo stato naturale (media delle tre misure) = 26,3 %

Omogeneo

Struttura del materiale:

☐ Stratificato

□ Caotico


Temperatura di essiccazione:

110 °C

Dimensione massima delle particelle:

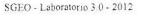
0,84 mm

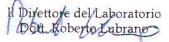
Terreno vegetale di colore marrone scuro - brunastro, in cui si rinvengono resti di frustoli vegetali e litici eterogenici ed eterometrici (dmax = 2 cm), in matrice limo - argillosa.

Certificazione Ufficiale - Settore «A» - Prove di laboratorio sulle terre AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 0007474 del 27/07/2012 Am. 59 DPR 380/2001 - Circolare 7618/STC/2010

CERTIFICATO DI PROVA Nº: 0462 Pagina 1/1 DATA DI EMISSIONE: 43/10/2015 07/10/2015 Inizio analisi: VERBALE DI ACCETTAZIONE N°: 104/15 del 07/10/15 07/10/2015 13/10/2015 Apertura campione: Fine analisi: COMMITTENTE: RI.A.S. SRL RIFERIMENTO: Indagini Geognostiche - P.U.A. AT 8 - Bellizzi (SA)

SONDAGGIO: S2 CAMPIONE: C1 PROFONDITA': 2,00 – 2,50


PESO DI VOLUME ALLO STATO NATURALE


Modalità di prova: Norma BS 1377

Determinazione eseguita mediante fustella tarata

Peso di volume allo stato naturale (media delle due misure) = 18,6 kN/m³

Terreno vegetale di colore marrone scuro - brunastro, in cui si rinvengono resti di frustoli vegetali e litici eterogenici ed eterometrici (dmax = 2 cm), in matrice limo - argillosa.

Certificazione Ufficiale - Settore «A» - Prove di laboratorio sulle terre AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 0007474 del 27/07/2012 Art. 59 DPR 380/2001 - Circolare 7618/STC/2010

CERTIFICATO DI PROVA Nº: 0462	Pagina 1/1	DATA DI EMISSIONE	13/10/2015	Inizio analisi:	07/10/2015
VERBALE DI ACCETTAZIONE N°: 10	4/15 del 07/10/15	Apertura campione:	07/10/2015	Fine analisi:	13/10/2015
COMMITTENTE: RI.A.S. SRL					
RIFERIMENTO: Indagini Geogr	nostiche – P.U.A.	AT 8 – Bellizzi (SA)			
SONDAGGIO: S2	NDAGGIO: S2 CAMPIONE: C1				
PI	ESO SPECIFIC	O DEI GRANU	LI		
	Modalità di prova	: Norma ASTM D854			

 γ_s = Peso specifico dei granuli (media delle due misure) (kN/m³) = 25,35

 γ_{SC} = Peso specifico dei granuli corretto a 20° (kN/m³) = 25,31

Metodo: ■ A □ B

Capacità del picnometro: 50 ml

Temperatura di prova: 27,0 °C

Dimensione massima delle particelle: 0,84 mm

Disaerazione eseguita per bollitura

Terreno vegetale di colore marrone scuro - brunastro, in cui si rinvengono resti di frustoli vegetali e litici eterogenici ed eterometrici (dmax = 2 cm), in matrice limo - argillosa.

Certificazione Ufficiale - Settore «A» - Prove di laboratorio sulle terre AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 0007474 del 27/07/2012 Art. 59 DPR 380/2001 - Circolare 7618/STC/2010

CERTIFICATO DI PROVA Nº:

0462

Pagina 1/1

DATA DI EMISSIONE: 13/10/2015

Inizio analisi:

07/10/2015

VERBALE DI ACCETTAZIONE N°: 104/15 del 07/10/15

Apertura campione:

07/10/2015

13/10/2015 Fine analisi:

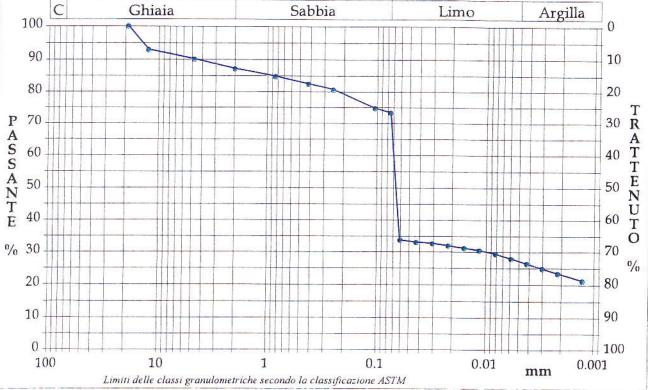
COMMITTENTE

RI.A.S. SRL

RIFERIMENTO:

Indagini Geognostiche - P.U.A. AT 8 - Bellizzi (SA)

SONDAGGIO:


CAMPIONE:

PROFONDITA: 2,00 - 2,50

ANALISI GRANULOMETRICA

Modalità di prova: Norma ASTM D2217 - D422

Ghiaia Sabbia Limo Argilla	12,9 % 13,8 % 46,2 % 27,1 %	Passante s	setaccio 10 (2 mm) setaccio 40 (0.42 mm) setaccio 200 (0.075 mm)	87,1 82,4 73,3	D ₁₀ D ₃₀ D ₅₀ D ₆₀	0,01027 0,06611 0,06979	
Coefficiente	di uniformit	à	Coefficiente di curvatura		 D90	4,68201	mm

Diametro mm	Passante %	Diametro mm	Passante %	Diametro mm	Passante %	Diametro mm	Passante %	Diametro mm	Passante %
19,0000	100,00	0,4200	82,40	0,0431	32,95	0,0082	29,25	0,0013	21,13
12,5000	92,91	0,2500	80,65	0,0306	32,58	0,0059	27,78		
4,7500	90,05	0,1050	74,68	0,0218	31,84	0,0042	26,30		
2,0000	87,11	0,0750	73,30	0,0156	31,10	0,0030	24,82		
0,8410	84,71	0,0605	33,68	0,0115	30,36	0,0022	23,35		

Terreno vegetale di colore marrone scuro - brunastro, in cui si rinvengono resti di frustoli vegetali e litici eterogenici ed eterometrici (dmax = 2 cm), in matrice limo - argillosa.

Certificazione Ufficiale - Settore «A» - Prove di laboratorio sulle terre AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 0007474 del 27/07/2012 Art. 59 DPR 380/2001 - Circolare 7618/STC/2010

 CERTIFICATO DI PROVA N°:
 0462
 Pagina 1/2
 DATA DI EMISSIONE:
 13/10/2015
 Inizio analisi:
 07/10/2015

 VERBALE DI ACCETTAZIONE N°:
 104/15
 del 07/10/15
 Apertura campione:
 07/10/2015
 Fine analisi:
 13/10/2015

COMMITTENTE: RI.A.S. SRL

RIFERIMENTO: Indagini Geognostiche - P.U.A. AT 8 - Bellizzi (SA)

SONDAGGIO: S2

CAMPIONE: C

PROFONDITA': 2,00 - 2,50

PROVA DI TAGLIO DIRETTO

Modalità di prova: Norma ASTM D3080

Provino n°:		1		2	3	
Condizione del provino:	Indisturbato Indisturbato		turbato	Indist	urbato	
Pressione verticale (kPa):	100 200		00	300		
Tensione a rottura (kPa):	(0 104		151		
Deformazione orizzontale e verticale a rottura (mm):	3,76	-0,56	3,29	-0,47	3,42	-0,40
Umidità iniziale e umidità finale (%):	26,3	32,9	26,3	31.8	26.3	30,2
Peso di volume iniziale e finale (kN/m³):	18,5	19,5	18,3	19,1	18,3	18,8
Grado di saturazione iniziale e finale (%):	93,5	116,8	90,6	109,5	90.5	103.7

DIAGRAMMA

Tensione - Pressione verticale

Coesione: 14,1 kPa Angolo di attrito interno: 24,4 °

Tipo di prova:	Consolidata - lenta
Velocità di deformazione:	0,004 mm / min
Tempo di consolidazione (ore): 24

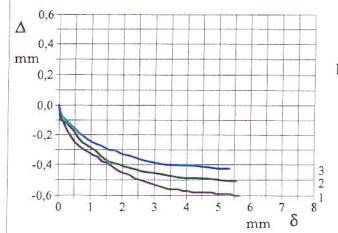
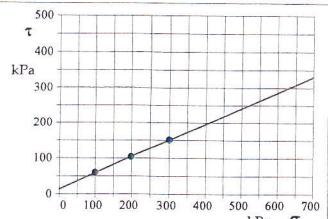



DIAGRAMMA Deform. vert. - Deform. orizz.

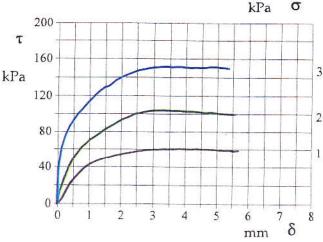


DIAGRAMMA Tensione - Deformaz. orizz.

Terreno vegetale di colore marrone scuro - brunastro, in cui si rinvengono resti di frustoli vegetali e litici eterogenici ed eterometrici (dmax = 2 cm), in matrice limo - argillosa.

Certificazione Ufficiale - Settore «A» - Prove di laboratorio sulle terre AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 0007474 del 27/07/2012 Art. 59 DPR 380/2001 - Circolare 7618/STC/2010

CERTIFICATO DI PROVA Nº:

0462

Pagina 2/2

DATA DI EMISSIONE: 13/10/2015

Inizio analisi:

07/10/2015

VERBALE DI ACCETTAZIONE N°:

104/15 del 07/10/15

Apertura campione:

07/10/2015

Fine analisi:

13/10/2015

COMMITTENTE: RI.A.S. SRL

RIFERIMENTO:

Indagini Geognostiche - P.U.A. AT 8 - Bellizzi (SA)

SONDAGGIO:

CAMPIONE:

PROFONDITA': 2,00 - 2,50

PROVA DI TAGLIO DIRETTO

Modalità di prova: Norma ASTM D3080

	Provino 1	l .		Provino 2	2		Provino 3	3
Spostam. mm	Tensione kPa	Deform. vert. mm	Spostam. mm	Tensione kPa	Deform. vert.	Spostam.	Tensione kPa	Deform, ver
0,140	5	-0,11	0,059	12	-0,10	0,033	39	-0,05
0,260	13	-0,17	0,203	27	-0,12	0,127	61	-0,08
0,370	20	-0,21	0,345	40	-0,15	0,251	76	-0,11
0,510	26	-0,25	0,484	49	-0,18	0,381	86	-0,13
0,660	32	-0,28	0,617	55	-0,22	0,518	94	-0,16
0,800	38	-0,30	0,730	61	-0,25	0.659	101	-0,19
0,940	41	-0,32	0,885	66	-0,27	0,800	106	-0,21
1,090	44	-0,34	1,024	70	-0,29	0,932	111	-0,24
1,230	46	-0,35	1,171	74	-0,31	1,062	116	-0,25
1,370	48	-0,38	1,319	78	-0,34	1,201	121	-0,26
1,520	50	-0,39	1,458	81	-0,37	1,342	126	-0,27
1,670	51	-0,41	1,605	85	-0,39	1,487	129	-0,29
1,810	53	-0,43	1,763	88	-0,39	1,608	130	-0,30
1,960	53	-0,45	1,891	91	-0,40	1,700	133	-0,30
2,100	55	-0,46	2,035	94	-0,41	1,823	136	-0,31
2,250	56	-0,47	2,169	95	-0,42	1,965	139	-0,33
2,400	56	-0,49	2,303	98	-0,43	2,115	141	-0,34
2,550	58	-0,50	2,437	100	-0,43	2,263	143	-0,35
2,700	58	-0,51	2,580	101	-0,44	2,406	145	-0,35
2,850	59	-0,52	2,711	102	-0,45	2,565	147	-0,37
3,000	59	-0,53	2,850	103	-0,45	2,715	148	-0,38
3,150	59	-0,54	3,005	104	-0,46	2,862	149	-0,38
3,310	60	-0,55	3,143	104	-0,46	2,999	150	-0,39
3,460	60	-0,56	3,291	104	-0,47	3,141	150	-0,39
3,610	60	-0,56	3,443	104	-0,47	3,278	151	-0,40
3,760	60	-0,56	3,602	104	-0,48	3,420	151	-0,40
3,910	60	-0,57	3,750	104	-0,48	3,562	150	-0,40
4,060	60	-0,57	3,892	103	-0,49	3,719	151	-0,40
4,210	60	-0,58	4,050	103	-0,49	3,870	151	-0,40
4,360	60	-0,58	4,195	103	-0,49	4,014	150	-0,41
4,510	60	-0,58	4,336	102	-0,49	4,181	150	-0.41
4,660	60	-0,58	4,489	102	-0,49	4,328	150	-0,41
4,810	60	-0,58	4,632	101	-0,49	4,485	150	-0,41
4,960	59	-0,59	4,792	102	-0,50	4,636	150	-0,42
5,100	59	-0,59	4,943	101	-0,50	4,791	151	-0,42
5,250	59	-0,59	5,098	100	-0,50	4,944	151	-0,42
5,400	59	-0.59	5,263	100	-0,51	5,081	150	-0,43
5,540	58	-0,60	5,412	100	-0,51	5,233	150	-0,43
5,700	59	-0,60	5,565	100	-0,51	5,371	149	-0,43

SG-050

STRATIGRAFIA - S3

SCALA 1:125 Pagina 1/1 Sondaggio: S3 Riferimento: COOP. A R.L. GA.MA. - P.U.A. AMBITO AT 8 Quota: + 50 MT SLM Località: PRATOLE, BELLIZZI (SA) Data: 08/10/2015 Impresa esecutrice: RI.A.S. SRL (ATTESTAZIONE SOA N.9124/45/01) Redattore: DR.GEOL.L.FERRARO Coordinate: 40°37'21,53"N 14°56'1,46"E Perforazione: A CAROTAGGIO CONTINUO DESCRIZIONE - terreno di copertura superficiale di natura agraria; 1.00 -1,00 1,00 sabbia argillosa di media granulometria colore marrone scuro; 2 3.00 -3.00 2,00 limo argilloso a matrice sabbiosa di fine granulometria di colore marrone, piuttosto plastico; 3 6 C 4.0 4-3-3 13-12-12 presenza FALDA ACQUIFERA (-9,60mt); 9.70 -9.70 6.70 - breccia calcarea di Ø 1/2-6cm max in 10,40-10,40 0.70 matrice sabbiosa; - sabbia argillosa di media granulometria con inclusi lapidei di natura calcarea di Ø ½-10cm max di colore giallo-bruno; 12 13 20-22-20 13,5 15 16,00-16,00 5,60 16 - argilla sabbiosa con inclusi ciottoli calcarei di Ø 2÷10cm di colore blu, abbastanza compatta e molto addensata; 173 18 24-20-18 38 C 19 20 21 22 34-36-32 23 24 25 26 26,90-26,90 10.90 27 ghiaia di natura calcarea di Ø 5÷15 cm in matrice sabbiosa di colore giallo; 28 29

SG-051

STRATIGRAFIA - S4

SCALA 1:125 Pagina 1/1 Sondaggio: S4 Riferimento: COOP. A R.L. GA.MA. - P.U.A. AMBITO AT 8 Quota: + 50 MT SLM Località: PRATOLE, BELLIZZI (SA) Impresa esecutrice: RI.A.S. SRL (ATTESTAZIONE SOA N.9124/45/01) Data: 08/10/2015 Redattore: DR.GEOL.L.FERRARO Coordinate: 40°37'21,53"N 14°56'1,46"E Perforazione: A CAROTAGGIO CONTINUO DESCRIZIONE terreno di copertura superficiale di natura agraria; 4 1.40 -1.40 1.40 - sabbia argillosa di media granulometria colore marrone scuro; 3 3,5 2-1-1 2 C 3.50 -3.50 2,10 - limo argilloso a matrice sabbiosa di fine granulometria di colore marrone, piuttosto plastico; 1) Ind < 6.50 7.0 6-8-12 20 C 9 - presenza FALDA ACQUIFERA (-9,60mt); 9.40 -9.40 5.90 - breccia calcarea di Ø 1/2-6cm max in 12-14-14 28 C 10 matrice sabbiosa; 10,60-10,60 1,20 sabbia argillosa di media granulometria con inclusi lapidei di natura calcarea di Ø ½-10cm max di colore giallo-bruno; 12 13.0 18-16-18 13 15. 15,90-15,90 5,30 16 argilla sabbiosa con inclusi ciottoli calcarei di Ø 2÷10cm di colore blu, 26-28-30 58 C 16.5 abbastanza compatta e molto addensata; 17 18 19 20 21 22 23 25 26 26,80-26,80 10,90 ghiaia di natura calcarea di Ø 5÷15 cm in matrice sabbiosa di colore giallo; 27 28 29 30.00-30,00 3,20

Certificazione Ufficiale - Settore «A» - Prove di laboratorio sulle terre AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 0007474 del 27//07//2012 Art. 59 DPR 380/2001 - Circolare 7618/STC//2010

COMMITTENTE:

RI.A.S. SRL

RIFERIMENTO:

Indagini Geognostiche – P.U.A. AT 8 – Bellizzi (SA)

SONDAGGIO:

CAMPIONE: C1

PROFONDITA': m 6,50 - 7,00

MODULO RIASSUNTIVO

CARATTERISTICHE FISICHE

Umidità naturale	39,5	%
Peso di volume	17,5	kN/m³
Peso di volume secco	12,5	kN/m³
Peso di volume saturo	17,5	kN/m³
Peso specifico	25,4	kN/m³
Indice dei vuoti	1,028	
Porosità	50,7	%
Grado di saturazione	99,4	%
Limite di liquidità		%
Limite di plasticità		%
Indice di plasticità		%
Indice di consistenza		
Passante al set. nº 40		
Limite di ritiro		%
Classif. CNR-UNI		

ANALISI GRANULOMETRICA

C1 : 1		6/
Ghiaia	3,8	%
Sabbia	56,2	%
Limo	36,7	%
Argilla	3,3	%
D 10	0,026276	mm
D 50	0,114584	mm
D 60	0,175483	mm
D 90	0,907957	mm
Passante set. 10	96,2	%
Passante set. 40	78,3	%
Passante set. 200	40,0	%

PERMEABILITA'

Coefficiente k	cm/sec

COMPRESSIONE

		1	
~	kPa	C	1.10
U	NI G	O Rim	kľa
		ACAMIL	

SCISSOMETRO

τ	kPa	τ	kPa

TAGLIO DIRETTO

Prova co	onsolidata	-lenta			
С	3,5	kPa	ф	28,8	0
c Res		kPa	φ Res		o

COMPRESSIONE TRIASSIALE

C.D.	c q	kPa	φ _d	0
C.U.	c'cu	kPa	φ' _{cu}	0
C.U.	c cu	kPa	ф cu	0
U.U.	C _u	kPa	фu	o

PROVA EDOMETRICA

σ kPa	E kPa	Cv cm ² /sec	k cm/sec

Certificazione Ufficiale - Settore «A» - Prove di laboratorio sulle terre AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 0007474 del 27/07/2012 Art. 59 DPR 380/2001 - Circolare 7618/STC/2010

CERTIFICATO DI	PROVA N°: 0678	Pagina 1/1	DATA DI EMISSIONE	14/10/2015	Inizio analisi: 08/10/2015
VERBALE DI ACCI	ETTAZIONE N°: 107/15	del 08/10/15	Apertura campione:	08/10/2015	Fine analisi: 14/10/2015
COMMITTENTE	E: RI.A.S. SRL				
RIFERIMENTO:	Indagini Geognost	iche – P.U.A.	AT 8 – Bellizzi (SA)		
SONDAGGIO:	S4	CAMPIONE:	C1	PROFON	DITA': m 6,50 - 7,00
	CONTENUTO	D'ACQUA	ALLO STATO	NATUR	ALE
	Mod	dalità di prova:	Norma ASTM D221	6	

Wn = contenuto d'acqua allo stato naturale (media delle tre misure) = 39,5 %

Omogeneo

Struttura del materiale:

☐ Stratificato

☐ Caotico

Temperatura di essiccazione:

110 °C

Dimensione massima delle particelle:

0,84 mm

Certificazione Ufficiale - Settore «A». - Prove di laboratorio sulle terre AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 0007474 del 27/07/2012 Art. 59 DPR 380/2001 - Circolare 7618/STC/2010

 CERTIFICATO DI PROVA N°:
 0678
 Pagina 1/1
 DATA DI EMISSIONE:
 14/10/2015
 Inizio analisi:
 08/10/2015

 VERBALE DI ACCETTAZIONE N°:
 107/15
 del 08/10/15
 Apertura campione:
 08/10/2015
 Fine analisi:
 14/10/2015

COMMITTENTI RI.A.S. SRL

RIFERIMENTO: Indagini Geognostiche – P.U.A. AT 8 – Bellizzi (SA)

SONDAGGIO: \$4

CAMPIONE: C1

PROFONDITA': m 6,50 - 7,00

PESO DI VOLUME ALLO STATO NATURALE

Modalità di prova: Norma BS 1377

Determinazione eseguita mediante fustella tarata

Peso di volume allo stato naturale (media delle due misure) = 17,5 kN/m³

Certificazione Ufficiale - Settore «A» - Prove di laboratorio sulle terre AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 0007474 del 27//07/2012 Art. 59 DPR 380/2001 - Circolare 7618/STC/2010

CERTIFICATO DI	PROVA N°: 0678	Pagina 1/1	DATA DI EMISSIONE:	14/10/2015	Inizio analisi:	08/10/2015
VERBALE DI ACCE	TTAZIONE N°: 107/15	del 08/10/15	Apertura campione:	08/10/2015	Fine analisi:	14/10/2015
COMMITTENTE	: RI.A.S. SRL					
RIFERIMENTO:	Indagini Geognosti	che – P.U.A.	AT 8 – Bellizzi (SA)			
SONDAGGIO: S4 CAMPIONE: C1 PROFONDITA': m 6,50 - 7						
V	PESO	SPECIFIC	O DEI GRANU	<u>LI</u>		
	Mod	alità di prova	Norma ASTM D854			

 γ_s = Peso specifico dei granuli (media delle due misure) (kN/m³) = 25,39

 γ_{SC} = Peso specifico dei granuli corretto a 20° (kN/m³) = 25,39

Metodo: ● A □ B

Capacità del picnometro: 100 ml

Temperatura di prova: 20,0 °C

Dimensione massima delle particelle: 0,84 mm

Disaerazione eseguita per bollitura

Certificazione Ufficiale - Settore «A». - Prove di laboratorio sulle terre AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 0007474 del 27/07/2012 Art. 59 DPR 380/2001 - Circolare 7618/STC/2010

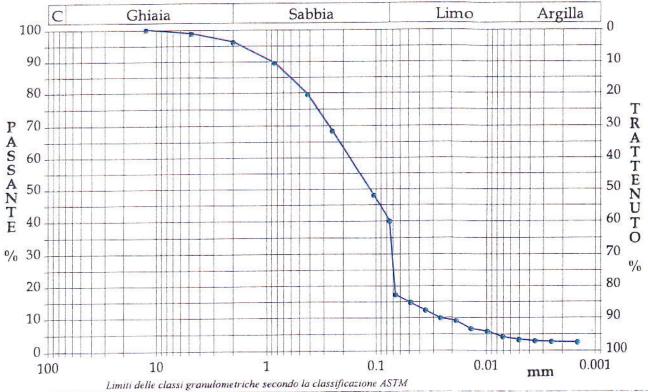
CERTIFICATO DI PROVA Nº: 0678	Pagina 1/1	DATA DI EMISSIONE:	14/10/2015	Inizio analisi:	08/10/2015
VERBALE DI ACCETTAZIONE N°: 10	07/15 del 08/10/15	Apertura campione:	08/10/2015	Fine analisi:	14/10/2015

COMMITTENTE: RI.A.S. SRL

RIFERIMENTO: Indagini Geognostiche – P.U.A. AT 8 – Bellizzi (SA)

SONDAGGIO: \$4

CAMPIONE: C1


PROFONDITA': m

6,50 - 7,00

ANALISI GRANULOMETRICA

Modalità di prova: Norma ASTM D2217 - D422

Ghiaia Sabbia Limo	bbia 56,2 % Passante setaccio 40 (0.42 mm)				96,2 78,3 40,0	%	D ₁₀ D ₃₀ D ₅₀	0,02628 mm 0,07095 mm 0,11458 mm
Argilla	3,3	%	Passante se	Passante setaccio 200 (0.075 mm)			D60	0,17548 mm
Coefficiente	di unifo	rmit	à 6,68	Coefficiente di curvatura		1,09	D90	0,90796 mm

Diametro mm	Passante %	Diametro mm	Passante %	Diametro mm	Passante %	Diametro mm	Passante %	Diametro mm	Passante %
12.5000	100.00	0,2500	68,30	0,0352	12,24	0,0070	4,08		
4.7500	98.80	0,1050	47,95	0,0256	9,80	0,0050	3,27		
2.0000	96,16	0,0750	39,97	0,0183	8,98	0,0036	2,86		
0.8410	89.40	0,0660	17,14	0,0137	6,53	0,0025	2,61		
0.4200	79.39	0,0482	14,69	0,0098	5,71	0,0015	2,45		

Materiale di colore marrone scuro, costituito da frequenti litici millimetrici, di forma arrotondata e di colore brunastro, in abbondante matrice sabbiosa - limosa. Definizione granulometrica: Sabbia con limo.

SGEO - Laboratorio 4.0 - 2013

Il responsabile della sperimentazione Dott.ssa Lucia Occorsio I Direttore del Laboratorio Dott Roberto Lubrano

Certificazione Ufficiale - Settore «A» - Prove di laboratorio sulle terre AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 0007474 del 27/07/2012 Art. 59 DPR 380/2001 - Circolare 7618/STC/2010

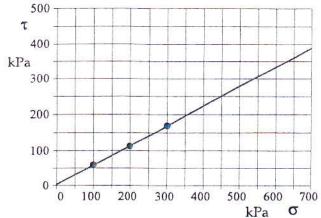
CERTIFICATO DI PROVA Nº: 0678 Pagina 1/2 DATA DI EMISSIONE: 14/10/2015 Inizio analisi: 08/10/2015 VERBALE DI ACCETTAZIONE Nº: 107/15 del 08/10/15 Apertura campione: 08/10/2015 Fine analisi: 14/10/2015 COMMITTENTE: RI.A.S. SRL

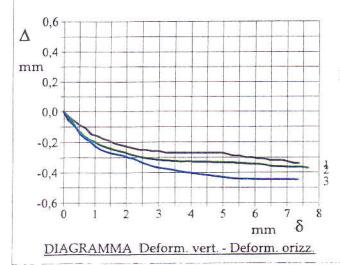
RIFERIMENTO: Indagini Geognostiche – P.U.A. AT 8 – Bellizzi (SA)
SONDAGGIO: S4 CAMPIONE: C1

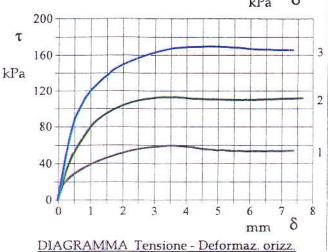
CAMPIONE: C1 PROFONDITA': m 6,50 - 7,00

PROVA DI TAGLIO DIRETTO

Modalità di prova: Norma ASTM D3080


Provino n°:		1	4	2	3	
Condizione del provino:	Indisturbato		Indis	turbato	Indisturbato	
Pressione verticale (kPa):	1	00	2	00	300	
Tensione a rottura (kPa):	59		113		169	
Deformazione orizzontale e verticale a rottura (mm):	3,43	-0,27	3,28	-0,32	4,80	-0,43
Umidità iniziale e umidità finale (%):	39,5	38,5	39,5	38,3	39,5	39,4
Peso di volume iniziale e finale (kN/m³):	17,4	17,3	17,4	17,2	17,4	17,4
Grado di saturazione iniziale e finale (%):	98,5	96,1	98,5	95,7	98,6	98,6


DIAGRAMMA


Tensione - Pressione verticale

Coesione: 3,5 kPa
Angolo di attrito interno: 28,8 °

Tipo di prova:	Consolidata - lenta		
Velocità di deformazione:	0,010 mm / min		
Tempo di consolidazione (ore): 24		

Materiale di colore marrone scuro, costituito da frequenti litici millimetrici, di forma arrotondata e di colore brunastro, in abbondante matrice sabbiosa - limosa.

Definizione granulometrica: Sabbia con limo.

Certificazione Ufficiale - Settore «A». - Prove di laboratorio sulle terre AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 0007474 del 27/07/2012 Art. 59 DPR 380/2001 - Circolare 7618/STC/2010

 CERTIFICATO DI PROVA N°:
 0678
 Pagina 2/2
 DATA DI EMISSIONE:
 14/10/2015
 Inizio analisi:
 08/10/2015

 VERBALE DI ACCETTAZIONE N°:
 107/15
 del 08/10/15
 Apertura campione:
 08/10/2015
 Fine analisi:
 14/10/2015

COMMITTENTE: RI.A.S. SRL

RIFERIMENTO. Indagini Geognostiche – P.U.A. AT 8 – Bellizzi (SA)

SONDAGGIO: \$4 CAMPIONE: C1 PROFONDITA': m 6,50 - 7,00

PROVA DI TAGLIO DIRETTO

Modalità di prova: Norma ASTM D3080

Provino 1				Provino 2	2		Provino 3	3
Spostam. mm	Tensione kPa	Deform, vert.	Spostam. mm	Tensione kPa	Deform. vert. mm	Spostam.	Tensione kPa	Deform. ver
0,150	17	-0,03	0,124	17	-0.06	0,104	20	-0.04
0,330	24	-0,06	0,269	34	-0,08	0,240	47	-0,06
0,520	29	-0,09	0,443	49	-0,12	0,386	71	-0,10
0,710	33	-0,11	0,645	61	-0,16	0,535	90	-0,15
0,900	37	-0,15	0,822	71	-0,19	0,703	102	-0,18
1,090	40	-0,16	0,978	79	-0,20	0,841	112	-0,20
1,280	43	-0,18	1,143	85	-0,22	1,022	120	-0,23
1,470	46	-0,19	1,333	91	-0,23	1,213	127	-0,25
1,670	48	-0,21	1,536	95	-0,25	1,374	133	-0,26
1,860	50	-0,22	1,728	99	-0,26	1,537	138	-0,27
2,050	52	-0,23	1,926	102	-0,27	1,686	143	-0,28
2,240	54	-0,24	2,113	105	-0,28	1,881	147	-0,29
2,430	55	-0,25	2,318	107	-0,29	2,074	150	-0,30
2,620	56	-0,25	2,509	109	-0,30	2,259	153	-0,31
2,820	57	-0.26	2,709	111	-0,31	2,454	156	-0,33
3,030	58	-0,26	2,899	111	-0,31	2,651	158	
3,230	59	-0,27	3,092	112	-0,32	2,841	161	-0,35 -0,36
3,430	59	-0,27	3,283	113	-0,32	3,040	163	
3,630	59	-0,27	3,478	113	-0,33	3,234	165	-0,37 -0,38
3,830	59	-0,27	3,686	113	-0,33	3,419	166	A A CONTRACTOR OF THE PARTY OF
4,010	58	-0,27	3,885	112	-0,33	3,605	167	-0,38 -0,39
4,210	58	-0,27	4,075	111	-0,33	3,806	168	
4,390	57	-0,27	4,283	111	-0,33	3,997	169	-0,40
4,580	56	-0,27	4,483	111	-0,33	4,199		-0,40
4,780	55	-0,27	4,681	110	-0,33	4,199	169	-0,41
4,970	54	-0,27	4,886	110	-0,33	4,598	169	-0,42
5,160	55	-0,28	5,074	110	-0,34	The state of the s	169	-0,42
5,340	54	-0,29	5,291	110	-0,34	4,796 4,990	169	-0,43
5,530	54	-0,29	5,493	110	-0,34		169	-0,43
5,720	54	-0,30	5,703	110	-0,34	5,185	169	-0,44
5,910	53	-0,30	5,907	110	-0,34	5,382	168	-0,44
6,100	54	-0,31	6,098	110	-0,35	5,580	168	-0,44
6,300	54	-0,31	6,295	110		5,785	167	-0,44
6,490	53	-0,32	6,510	110	-0,35	5,972	166	-0,45
6,690	54	-0,32	6,743		-0,36	6,171	166	-0,45
6,870	53	-0,32	6,931	111	-0,36	6,380	166	-0,45
7,050	53	-0,32	7,086	111	-0,36	6,571	166	-0,45
7,230	54	-0,34		111	-0,37	6,772	165	-0,45
7,390	54	-0,34	7,286	111	-0,37	6,970	165	-0,45
7,370	J4	-0,34	7,474	111	-0,37	7,163	165	-0,45
			7,670	112	-0,37	7,359	165	-0,45

STRATIGRAFIA - S5

SCALA 1:125 Pagina 1/1 Sondaggio: S5 Riferimento: COOP. A R.L. GA.MA. - P.U.A. AMBITO AT 8 Quota: + 50 MT SLM Località: PRATOLE, BELLIZZI (SA) Data: 08/10/2015 Impresa esecutrice: RI.A.S. SRL (ATTESTAZIONE SOA N.9124/45/01) Redattore: DR.GEOL.L.FERRARO Coordinate: 40°37'21,53"N 14°56'1,46"E Perforazione: A CAROTAGGIO CONTINUO DESCRIZIONE terreno di copertura superficiale di natura agraria; d 1,70 -1,70 1,70 sabbia argillosa di media granulometria 2 colore marrone scuro; 3 10 C 3-4-6 33 4,00 -4,00 2.30 - limo argilloso a matrice sabbiosa di fine granulometria di colore marrone, piuttosto plastico; 14-16-18 6.5 8_8 - presenza FALDA ACQUIFERA (-9,60mt); 9 9,00 -9,00 5,00 - breccia calcarea di Ø 1/2-6cm max in matrice sabbiosa; 10,50-10,50 1,50 sabbia argillosa di media granulometria con inclusi lapidei di natura calcarea di Ø ½-10cm max di colore giallo-bruno; 11.0 18-22-24 46 C 11 12 13 15 16,0 26-28-32 60 C 16,00-16,00 5,50 16 - argilla sabbiosa con inclusi ciottoli calcarei di Ø 2÷10cm di colore blu, abbastanza compatta e molto addensata; 17 18 19 20 21 22 23 80 C 24.0 36-38-42 24 25 26.00-26,00 10.00 26 ghiaia di natura calcarea di Ø 5÷15 cm in matrice sabbiosa di colore giallo; 27 28 29 30.00-30.00 4.00