

COMUNE DI BELLIZZI

(Provincia di Salerno)

PIANO URBANISTICO COMUNALE

STUDIO GEOLOGICO TECNICO

(Legge Regione Campania n° 9/1983 e Legge Regione Campania n° 16/2004)

G 02.2

Documentazione delle indagini geognostiche disponibili - Indagini indirette

AMMINISTRAZIONE COMUNALE

IL GEOLOGO

Dott.ssa Mariateresa BASSI

GIUGNO 2017

Via Comone dello Statuto, 4 84090 Montecorvino Pugliano (SA) Tel: 393 9446236 Mail: mtbassi@alice.it - Pec: mariateresabassi@epap.sicurezzapostale.it

SS-001

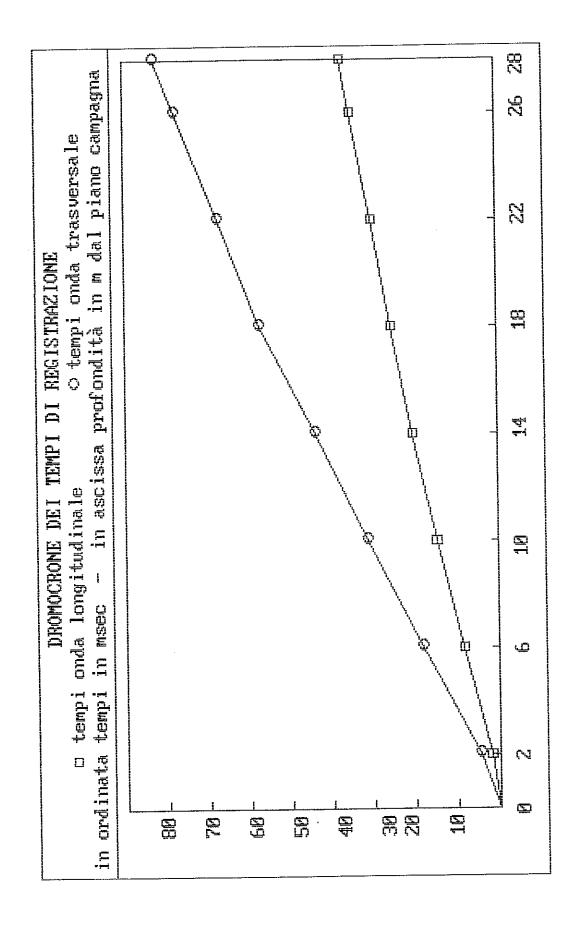
PROSPEZIONE SISMICA DOWNHOLE dati generali Prospezione sismica n° Olmo Località Bellizzi (SA) Comune Amministrazione Comunale Committente legenda profondità di registrazione in foro dal piano campagna - 7 in m distanza fra due registrazioni successive - H in m tempo di arrivo onda sismica longitudinale - Tp in msec tempo di arrivo onda sismica trasversale ĭs in msec tempo corretto onda sismica longitudinale - Tpc in msec tempo corretto onda sismica trasversale - Tsc in msec velocità onda sismica longitudinale in m/sec - Vp velocità onda sismica trasversale in m/sec - Vs densità secca - r in t/mc coefficiente di Poisson и modulo di Young di elasticità longitudinale E in kg/cmq modulo di Coulomb di elasticità trasversale in kg/cmq - G modulo di Bulk di incompressibilità volumetrica in kg/cmq - 8 frequenza di vibrazione - f in sec periodo di vibrazione in 1/sec - T

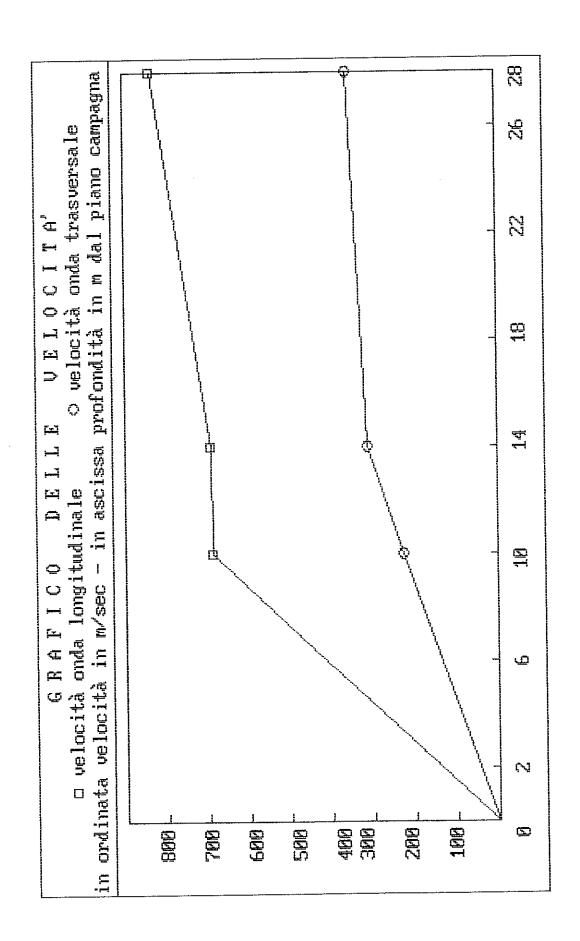
tempi di registrazione e tempi corretti

Z	H	Тp	Ts	Tpc	Tsc
2 6 10 14 18 22 26	2 4 4 4 4 4	3.0 9.0 14.9 20.6 25.4 30.2 35.0	6.3 19.0 31.7 44.3 57.5 67.5	2.1 8.5 14.6 20.4 25.2 30.1 34.9	4.5 18.0 31.0 43.9 57.1 67.3 77.4
28	2	37.4	82.6	37.3	82.4

velocità onda sismica longitudinale e trasversale

Z	Н	Vp	٧s
2 6 10 14 18 22 26	2 4 4 4 4 4	952.4 625.0 655.7 689.7 833.3 816.3 833.3	444.4 296.3 307.7 310.1 303.0 392.2 396.0
28	2	833.3	400.0


moduli dinamoelastici ·f G E. Γ Z H 3.49 0.29 11292.28 3465.48 0.361 9431.62 2 2 1.72 0.86 1353.82 1.16 0.355 3669.00 4218.69 1.51 б 4 0.83 4747.61 1479.72 1.21 0.359 4021.37 1.53 10 4 1.22 0.82 4137.78 5443.65 1506.49 0.373 14 4 1.54 1428.23 1.19 0.84 4067.06 8896.69 18 4 1.52 0.424 1.54 0.65 2615.61 1.67 0.350 7062.11 7846.47 22 7251.59 8284.98 2677.60 1.55 0.64 26 1.67 0.354 8244.34 2741.76 3.14 0.32 7404.46 28 2 1.68 0.350

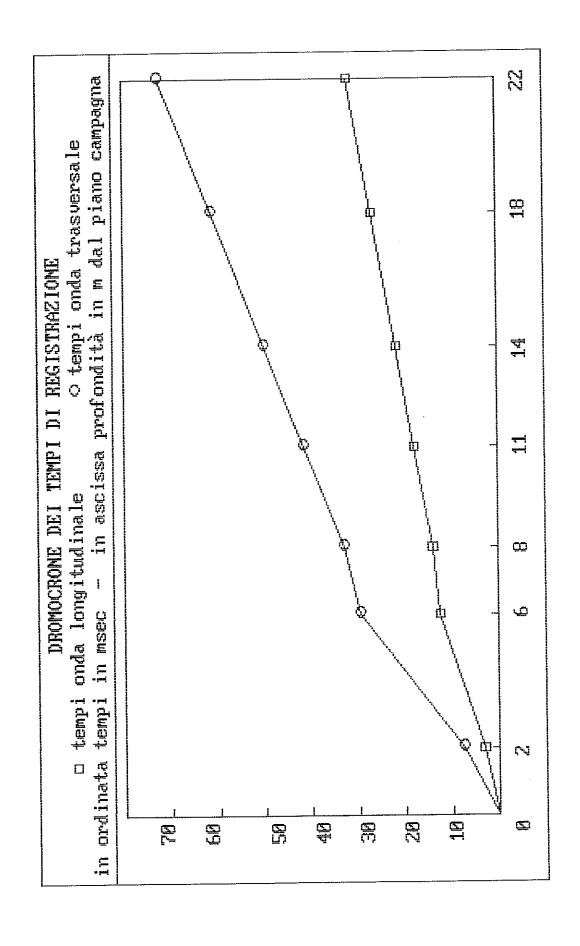

REST	===== ITUZIC ======	DNE SISMOSTRATI	= = = = G R A F = = = =	: = = = = = = = = = = = = = = = = = = =	
strato n° 1					
	onda	longitudinale trasversale	Z h Vp Vs	m m/sec m/sec	10.0 10.0 636.8 224.8
strato n° 2					
	onda	longitudinale trasversale		m m/sec m/sec	14.0 4.0 689.7 310.1
strato n° 3					
	onda	longitudinale trasversale	-	m m/sec m/sec	28.0 14.0 831.6 358.5

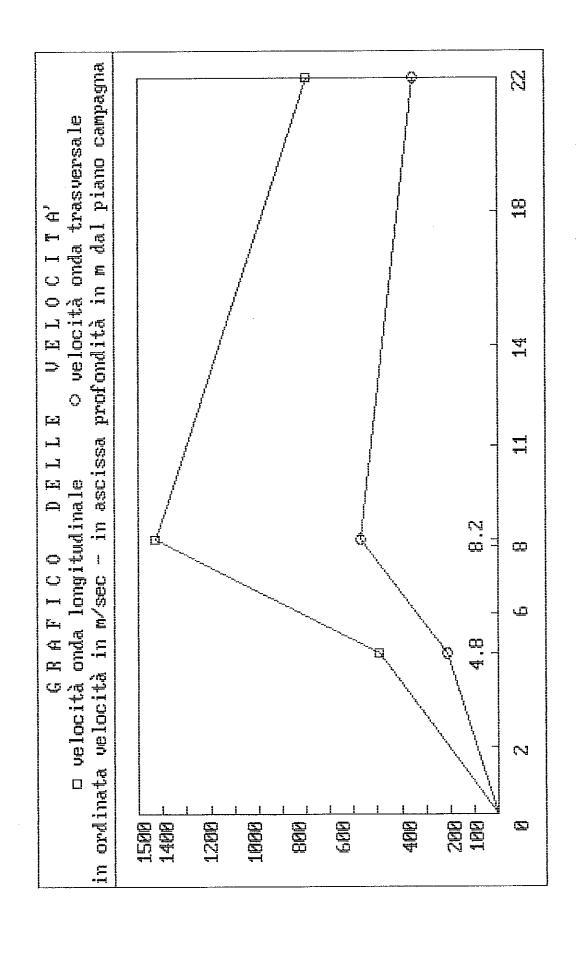
	====	. = = = = = = :	_ = = = = = = = = =
PARAMETRI DINAMOELASTICI MEDI DEL SISMOS DALL'ELABORAZIONE DELLA PROSPEZIONE SI	STRAI	DOIVIONE OF	JATO F
DAFF.EFURNATIONS DEFEN LEGISLES ON 2			
strato n° 1			
- densità secca	Γd	t/mc	1.543
- coefficiente di Poisson	μ		0.360
- modulo di Young	E	kg/cmq	4444.729
- modulo di Bulk	8	kg/cmq	5329.718
- modulo di Coulomb	G	kg/cmq	1633.290
- frequenza di oscillazione	f	sec	1.420
- periodo di oscillazione	T	1/sec	0.704
	====	=======	=======
strato n° 2			
- densità secca	Γd	t/mc	1.520
- coefficiente di Poisson	u		0.424
- modulo di Young	μ E	kg/cmq	4067.060
- modulo di Bulk .	В	kg/cmq	8896.691
- modulo di Coulomb	G	kg/cmq	1428.230
- frequenza di oscillazione	f	sec	1.190
- periodo di oscillazione	T	1/sec	0.840
***************************************	====	=======	======
strato n° 3			
- densità secca	Γd	t/mc	1.672
- coefficiente di Poisson	μ		0.351
- modulo di Young	E.	kg/cmq	7182.328
- modulo di Bulk	8	kg/cmq	8058.952
- modulo di Coulomb	G	kg/cmq	2657.298
- frequenza di oscillazione	f	sec	1.810
- periodo di oscillazione	T	1/sec	0.552

prospezione sismica down hole eseguita nel foro del sondaggio meccanico n° 8

a) condizioni di calcolo			
- prospezione sismica	n °		1
- sismostrato	n°		1
- profondità dal piano campagna della falda	h	m In the	$\begin{array}{c} 15.5 \\ 41.4 \end{array}$
- distanza epicentrale dell'area in esame	D	km	41.4
b) risultati			
- rigidità	\mathbf{R}	t∕sec*mq	
- incremento sismico	n		1.415
- accelerazione sismica max in superficie	A	cm/sec^2	2.761
=======================================	====	:=======	
a) condizioni di calcolo			
- prospezione sismica	n°		1
- sismostrato	n °		$\begin{smallmatrix}2\\15.5\end{smallmatrix}$
- profondità dal piano campagna della falda	h D	m km	$\frac{1}{41.4}$
- distanza epicentrale dell'area in esame	D	KIII	11.1
b) risultati			
- rigidità	\mathbf{R}	t∕sec*mq	
- incremento sismico	n		1.459
- accelerazione sismica max in superficie	Α	cm/sec^2	2.761
=======================================	====	=======================================	:======
a) condizioni di calcolo			
- prospezione sismica	n ª		1
- sismostrato	n °		3
- profondità dal piano campagna della falda	h D	m km	15.5 41.4
- distanza epicentrale dell'area in esame	1)	KIII	11.1
b) risultati			
- rigidità	\mathbf{R}	t∕sec*mq	
- incremento sismico	n	/ ^^	1.27
- accelerazione sismica max in superficie	A.	cm∕sec^2	2.76


```
PROSPEZIONE SISMICA DOWNHOLE
dati generali
 Prospezione sismica n°
                      Azienda Elia
 Località
                      Bellizzi (SA)
 Comune
                      Amministrazione Comunale
 Committente
 legenda
                profondità di registrazione in foro dal piano campagna
 - Z
      in M
                distanza fra due registrazioni successive
 - H
      in m
                tempo di arrivo onda sismica longitudinale
       in msec
               tempo di arrivo onda sismica trasversale
 - Ts
       in msec
               tempo corretto onda sismica longitudinale
 - Tpc in msec
 - Isc in msec tempo corretto onda sismica trasversale
               velocità onda sismica longitudinale
       in m/sec
 - Vp
                velocità onda sismica trasversale
 - Vs
       in m/sec
 - ľ
                densità secca
      in t/mc
                coefficiente di Poisson
 - μ
                modulo di Young di elasticità longitudinale
 -- E
       in kg/cmq
                modulo di Coulomb di elasticità trasversale
 - G
       in kg/cmq
                modulo di Bulk di incompressibilità volumetrica
 - 8
       in kg/cmg
                frequenza di vibrazione
  - F
      in sec
      in 1/sec
                periodo di vibrazione
            tempi di registrazione e tempi corretti
                                         Tpc
                                                 Tsc
                          Τp
                               Τs
            Z
                  -
                             10.4
31.1
                                         3.2
                                                7.4
            2
                         4.5
                   2
                                         12.7
                                                29.5
                         13.4
                  4
                  2
                                         14.1
                                               33.0
                         14.5
                               34.0
            8
                   3
                               42.3
                                         18.0
                                                41.6
                         18.3
           11
                                                50.1
                   3
                               50.6
                                         21.9
                         22.1
           14
                               61.6
                         27.1
                                         26.9
                                                61.2
           18
                   4
           22
                   4
                         32.2
                                72.6
                                         32.1
          velocità onda sismica longitudinale e trasversale
                                              Vs
           Z
                         H
                                     ۷p
                                     625.0
                                             270.3
           2
                                    421.1
                                             181.0
           б
                         2
                                             571.4
           8
                                    1428.6
                         3
                                    769.2
                                             348.8
          11
                         3
                                    769.2
                                             352.9
          14
                                    800.0
                                             360.4
          18
                         4
                                     769.2
                                             360.4
          22
```


moduli dinamoelastici Ţ Γ Z Н μ 1.45 3002.04 4350.62 1083.77 2.12 0.47 2 0.385 0.71 1.41 0.387 1187.09 1745.72 428.04 6 1.28 29803.40 0.22 4.49 6061.72 8 2 1.82 0.405 17030.53 1.60 0.371 5437.34 7000.74 1983.63 1.83 1.60 0.367 5573.07 6966.65 2038.92 1.85 1.62 0.373 5878.72 7697.99 2141.26 1.41 1.62 0.359 5821.74 6901.84 2141.26 1.41 3 0.55 11 0.54 14 0.71 18 0.71 22 4


RESTITUZI	ONE SISMOSTRATIONE	= = = = G R A F = = = =	======================================	
strato n° 1				
profonditàspessorevelocità ondavelocità onda	longitudinale trasversale		m m m/sec m/sec	4.8 4.8 489.1 210.8
strato n°2				
- profondità - spessore - velocità onda - velocità onda		Z h Vp Vs	m m/sec	8.2 3.4 1428.6 571.4
strato n° 3				
profonditàspessorevelocità ondavelocità onda	longitudinale trasversale		m m m/sec m/sec	22.0 13.8 796.6 353.5
	. = = = = = = = = = = = = = = = = = = =	===:	======	======

	====	========	*****				
PARAMETRI DINAMOELASTICI MEDI DEL SISMOSTRATO INDIVIDUATO							
DALL'ELABORAZIONE DELLA PROSPEZIONE SISMICA DOWN HOLE							
	====	=======	*******				
strato n° 1							
	Γd	t/mc	1.337				
- densità secca		L/IIIC	0.386				
- coefficiente di Poisson	μ E	1 1					
- modulo di Young		kg/cmq	1792.073				
- modulo di Bulk	8	kg/cmq	2614.020				
- modulo di Coulomb	G	kg/cmq	631.617				
- frequenza di oscillazione	f	sec	1.180				
- periodo di oscillazione	T	1/sec	0.847				
	~ ~ ~ ~	=======================================	*****				
strato n° 2							
•							
- densità secca	Γd	t/mc	1.820				
- coefficiente di Poisson	μ		0.405				
- modulo di Young	Ë	kg/cmq	17030.530				
- modulo di Bulk	В	kg/cmq	29803.400				
- modulo di Coulomb	G	kg/cmq	6061.720				
	f	sec	4.490				
- frequenza di oscillazione	T		0.223				
- periodo di oscillazione	ı	1/sec	0.223				
	====		=========				
strato n° 3							
			4 606				
- densità secca	Γd	t/mc	1.606				
- coefficiente di Poisson	μ		0.369				
- modulo di Young	Ē	kg/cmq	5618.348				
- modulo di Bulk [®]	В	kg/cmq	7116.664				
- modulo di Coulomb	G	kg/cmq	2053.035				
- frequenza di oscillazione	f	sec	1.712				
- periodo di oscillazione	Ť	1/sec	0.584				
portono at ocorriamiono	•	,					

prospezione sismica down hole eseguita nel foro del sondaggio meccanico n° 11

TABELLA DELLE RIGIDITA', INCREMENTI SISMICI E	ACCI	ELERAZIONI	LOCALI
**************************************	=====	: = = = = = = = = = = = = = = = = = = =	
a) condizioni di calcolo			
- prospezione sismica	n°		2
- sismostrato - profondità dal piano campagna della falda	n ° h	m	$1 \\ 12.5$
- distanza epicentrale dell'area in esame	D	km	37.1
b) risultati			
- rigidità	R	t/sec*mq	0.892
- incremento sismico	n	/ ^ 0	$\frac{1.683}{2.978}$
- accelerazione sismica max in superficie	A	cm/sec^2	2.9(0
	====	= = = = = = = = = = = = = = = = = = =	
a) condizioni di calcolo			
- prospezione sismica	n °		2
- sismostrato	n°	173	$\begin{array}{c} 2 \\ 12.5 \end{array}$
- profondità dal piano campagna della falda - distanza epicentrale dell'area in esame	h D	m km	37.1
b) risultati			
- rigidità	R	t∕sec*mq	2.794
- incremento sismico	n		0.853
- accelerazione sismica max in superficie	A	cm/sec^2	2.978
	====:	========	=======
a) condizioni di calcolo			
- prospezione sismica	n °		2
- sismostrato	n°	m	3
- profondità dal piano campagna della falda - distanza epicentrale dell'area in esame	h D	m km	$\begin{array}{c} 12.5 \\ 37.1 \end{array}$
b) risultati			
- rigidità	R	t∕sec*mq	1.502
- incremento sismico	n	cm/sec^2	$\begin{smallmatrix}1.304\\2.978\end{smallmatrix}$
- accelerazione sismica max in superficie	A	CHV Sec Z	4.010

PROSPEZIONE SISMICA DOWNHOLE dati generali

Prospezione sismica n° 3
Località Via Caserta
Comune Bellizzi (SA)
Committente Amministrazione Comunale

legenda

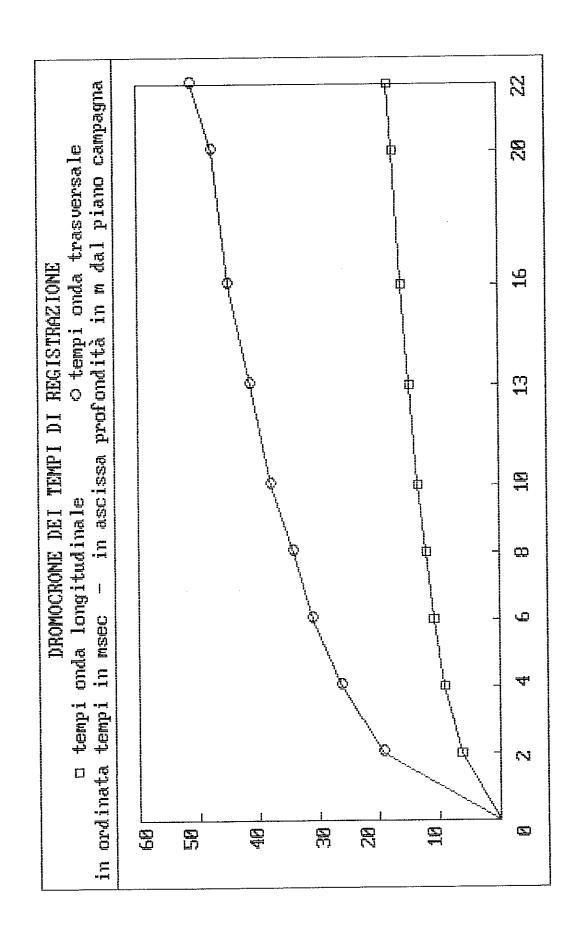
in m profondità di registrazione in foro dal piano campagna distanza fra due registrazioni successive - H in m tempo di arrivo onda sismica longitudinale tempo di arrivo onda sismica trasversale in msec - Tpc in msec tempo corretto onda sismica longitudinale
- Tsc in msec tempo corretto onda sismica traeversale in m/sec velocità onda sismica longitudinale velocità onda sismica trasversale in m/sec - Vs - r in t/mc densità secca coefficiente di Poisson modulo di Young di elasticità longitudinale in kg/cmq in kg/cmq modulo di Coulomb di elasticità trasversale in kg/cmq modulo di Bulk di incompressibilità volumetrica - B in sec frequenza di vibrazione - f in 1/sec periodo di vibrazione

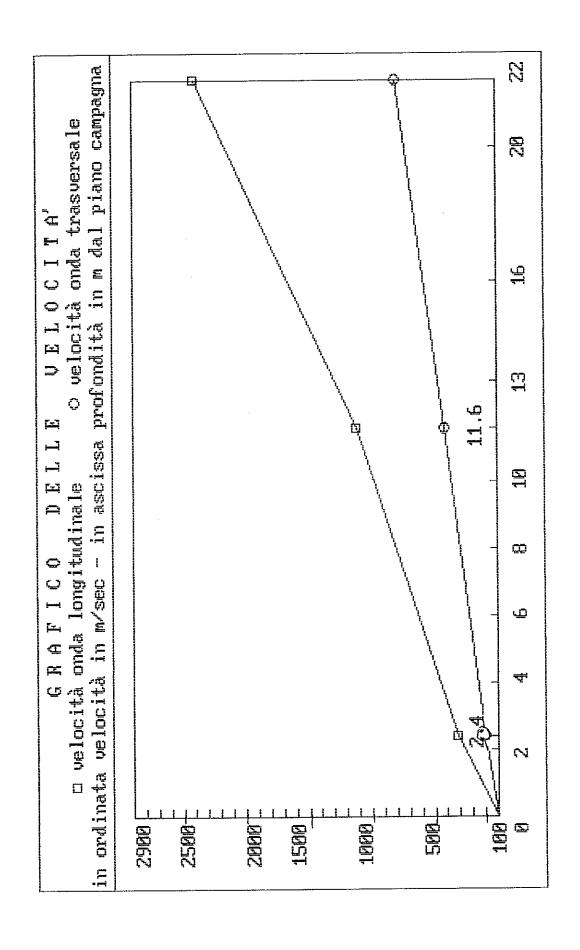
tempi di registrazione e tempi corretti

Z	Н	Тp	Ts	Tpc	ĭsc
2 4 6 8 10 13 16 20	2 2 2 2 2 2 3 3 4	9.1 10.3 11.5 12.6 13.7 14.9 16.2 17.6	27.4 29.4 32.6 35.3 38.7 41.8 45.4 47.9	6.4 9.2 10.9 12.2 13.4 14.7 16.1	19.4 26.3 30.9 34.2 37.9 41.3 45.0 47.7
22	2	18.3	51.3	18.2	51.1

velocità onda sismica longitudinale e trasversale

Z	Н	Vр	Vs
2 4 6 8 10 13 16 20 22	2 2 2 2 2 3 3 4 2	312.5 714.3 1176.5 1538.5 1666.7 2307.7 2142.9 2857.1 2857.1	103.1 289.9 434.8 606.1 540.5 882.4 810.8 1481.5 588.2


MAN TO THE THE	moduli dinamoelastici							
						المائد والمال المالة		age Array badar badar mayang at to
Z	Н	٣	μ	Ε	В	G	f	T
2 4 6 8 10 13 16 20 22	2 2 2 2 2 3 3 4 2	1.20 1.50 1.71 1.84 1.80 1.95 1.93 2.06 1.83	0.439 0.401 0.421 0.408 0.441 0.414 0.416 0.316 0.478	375.34 3597.36 9377.09 19453.01 15448.96 43705.36 36619.42 121217.40 19109.02	1024.49 6082.78 19760.02 35299.36 43807.87 85083.09 73051.96 109879.20 143901.90	130.42 1283.46 3299.68 6907.28 5359.66 15450.28 12926.45 46050.52 6465.06	0.81 2.28 3.41 4.76 4.24 4.62 4.24 5.81 4.62	1.24 0.44 0.29 0.21 0.24 0.22 0.24 0.17 0.22


	*****	****
RESTITUZIONE SISMOSTRATI	GRAFICA	
	****	=======================================
strato n° 1		
	Z m	2.4
- profondità	h m	2.4
- spessore - velocità onda longitudinale	Vp m/sec	312.5
 velocità onda rongitudinale velocità onda trasversale 	Vs m/sec	105.1
- A610Cifa Olida frazzerzare	V3 111/300	100.1
strato n° 2		
Stidtu II 2		
- profondità	Z m	11.6
- spessore	h m	9.2
- velocità onda longitudinale	Vp m/sec	1113.0
- velocità onda trasversale	Vs m/sec	421.7
strato n° 3		
- profondità	Z m	22.0
- spessore	h m	12.8
- velocità onda longitudinale	Vp m∕sec	2406.6
- velocità onda trasversale	Vs m/sec	803.1
	. = = = = = = = :	

** ** ** ** ** ** ** ** ** ** ** ** **	: = = = =		And the same per per per per per per per per per pe
PARAMETRI DINAMOELASTICI MEDI DEL SISMOSTE	OTAS	INDIVIDU	ATO
DALL'ELABORAZIONE DELLA PROSPEZIONE SISM	IICA	DOMN HOL	E
	: = = = :		========
strato n° 1			
- densità secca	Γd	t/mc	1.200
- coefficiente di Poisson	μ		0.439
- modulo di Young	Ē	kg/cmq	375.340
- modulo di Bulk	8	kg/cmq	1024.490
- modulo di Coulomb	G	kg/cmq	130,420
- frequenza di oscillazione	f	sec	0.810
- periodo di oscillazione	T	1/sec	1.235
strato n° 2			
Strato n 2			
- densità secca	Γd	t/mc	1.657
- coefficiente di Poisson	μ	•	0.416
- modulo di Young	Ë	kg/cmq	9287.164
- modulo di Bulk	В	kg/cmq	20652.630
- modulo di Coulomb	G	kg/cmq	3265.948
- frequenza di oscillazione	f	sec	3.259
- periodo di oscillazione	T	1/sec	0.307
'			
	====	=========	
strato n° 3			
2 flato II 2			
- densità secca	Γd	t/mc	1.907
- coefficiente di Poisson	μ		0.430
- modulo di Young	Ē.	kg/cmq	39492.250
- modulo di Bulk	В	kg/cmq	107480.900
- modulo di Coulomb	G	kg/cmq	14159.070
- frequenza di oscillazione	f	sec	4.625
- periodo di oscillazione	Ť	1/sec	0.216
por round or a source, some source	-	•	

prospezione sismica down hole eseguita nel foro del sondaggio meccanico n° 12

TABELLA DELLE RIGIDITA', INCREMENTI SISMICI E	ACCI	ELERAZIONI	LOCALI
			
a) condizioni di calcolo			
- prospezione sismica	n °		3
- sismostrato	n°		1 0
- profondità dal piano campagna della falda - distanza epicentrale dell'area in esame	h D	m km	7.2 38.8
urstanza epitentiare deri area in esame	_		
b) risultati			
- rigidità	R	t∕sec*mq	0.548
- incremento sismico	n		2.162
- accelerazione sismica max in superficie	A	em∕sec^2	2.889
	====	========	=======
a) condizioni di calcolo			
a) condizioni di carcolo			
- prospezione sismica	n °		3
- sismostrato	n °	m	$\begin{smallmatrix}2\\7 \cdot 2\end{smallmatrix}$
- profondità dal piano campagna della falda - distanza epicentrale dell'area in esame	h D	m km	38.8
b) risultati			
- rigidità	R	t/sec*mq	2.131
- incremento sismico	n	. • • •	1.174
- accelerazione sismica max in superficie	A	cm∕sec^2	5.947
	====	=======	=======
a) condizioni di calcolo			
a) condizioni di carcoro			
- prospezione sismica	n°		3
- sismostrato - profondità dal piano campagna della falda	n * h	m	3 7.2
- distanza epicentrale dell'area in esame	D	km	38.8
- b\			
b) risultati			
- rigidità	\mathbf{R}	t∕sec*mq	4.706
- incremento sismico	n ^	cm/sec^2	$\begin{smallmatrix}0.597\\2.889\end{smallmatrix}$
- accelerazione sismica max in superficie	Α	CHV Sec 2	4.000

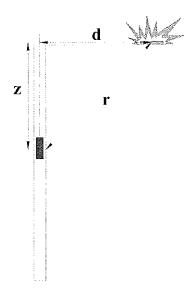


Figura 3 – Schema di down hole con metodo diretto

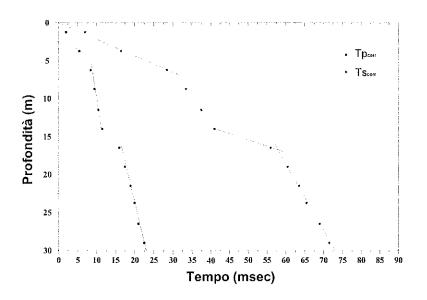


Figura 4 – Dromocrone

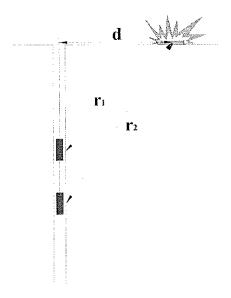


Figura 5 – Schema di down hole con metodo intervallo

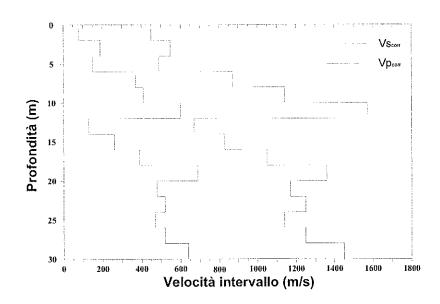


Figura 6 – Profilo delle velocità sismiche con metodo intervallo

Ambedue le procedure d'interpretazione sopra descritte sono comunque suscettibili di una critica fondamentale, cioè si basano sull'ipotesi che i percorsi delle onde siano rettilinei e coincidenti con quelli che collegano la sorgente ai ricevitori. Di solito ciò non è esatto, dato che, prima di giungere ai ricevitori, le onde subiscono fenomeni di rifrazione che ne modificano il percorso.

INTERPRETAZIONE DELLE MISURE

Dati iniziali

	Offset scoppio	Numero di ricezioni	Posizione primo	Interdistanza
1	(m)		geofono	(m)
	,		(m)	
	2	15	2	2

Dati misure down hole

Registrazione	Z	Тр	Ts
Nr.	(m)	(msec)	(msec)
1	2,00	5,20	11,10
2	4,00	7,20	15,40
3	6,00	9,50	19,70
4	8,00	12,40	25,10
5	10,00	14,40	29,70
6	12,00	16,20	33,10
7	14,00	17,80	35,00
8	16,00	18,70	38,00
9	18,00	19,50	39,00
10	20,00	20,40	41,00
11	22,00	23,70	47,00
12	24,00	25,40	51,70
13	26,00	27,50	54,80
14	28,00	29,70	57,20
15	30,00	30,00	61,00

Risultati

SR	Tpcorr	Tscorr
(m)	(msec)	(msec)
2,8284	3,677	7,8489
4,4721	6,4399	13,7742
6,3246	9,0125	18,6891
8,2462	12,0298	24,3506
10,198	14,1204	29,1233
12,1655	15,9796	32,6496
14,1421	17,6211	34,6482
16,1245	18,5556	37,7066
18,1108	19,3807	38,7615
20,0998	20,2988	40,7965
22,0907	23,6027	46,807
24,0832	25,3123	51,5214

26,0768	27,419	54,6386
28,0713	29,6245	57,0546
30,0666	29,9336	60,8649

Metodo diretto

Profondità di riferimento:

30 m

VS30:

537,73 m/s

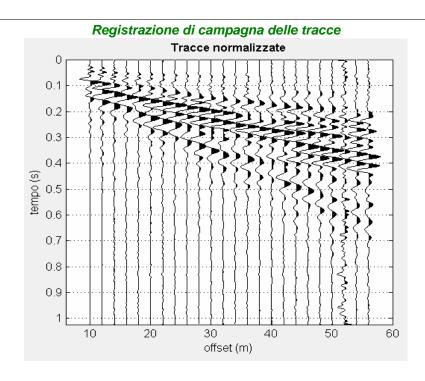
Sismostrati con metodo diretto

Descrizione	Profondità
(-)	(m)
limi argillosi e sabbie	22
ghiaie e ciottoli	30,0

Valori medi

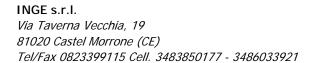
Valori III	, aı						
Vp medio	Vs medio	g medio	ni medio	G medio	Ed medio	E medio	Ev medio
(m/s)	(m/s)	(kN/mc)		(MPa)	(MPa)	(MPa)	(MPa)
687,29	343,64	19,96	0,33	240,36	961,42	640,95	640,95
921,66	426,89	19,67	0,36	365,53	1703,82	996,76	1216,45
1510,87	777,87	0	0,32				

SS-005


Data esecuzione prova:

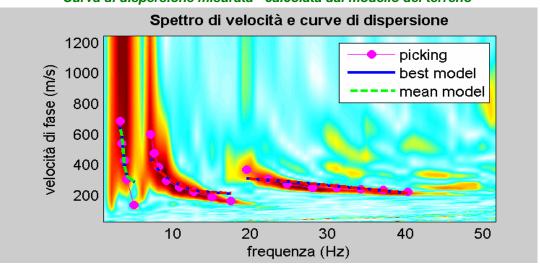
PROVA SISMICA Vs30 METODO MASW

Dott.ssa. Bassi per c/o del Sig. De Chiara Bruno CA/227/2010 **Committente:** Protocollo n.: Cantiere: Via Olmo, Bellizzi (SA) 23/03/2010

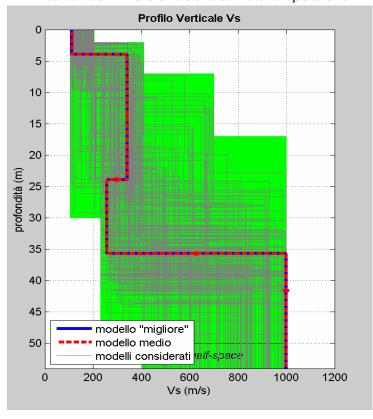

Prova MASW: M1 26/03/2010 Data emissione certificato:

Analisi delle frequenze ed individuazione della curva di dispersione Spettro di Velocità 1600 1400 1200 velocità di fase (m/s) 1000 800 600 400 200 30 50 10 20 40 frequenza (Hz)

IL RESPONSABILE DEL SETTORE



Committente: Dott.ssa. Bassi per c/o del Sig. De Chiara Bruno Protocollo n.: CA/227/2010


Cantiere: Via Olmo, Bellizzi (SA) Data esecuzione prova: 23/03/2010

Prova MASW: M1 Data emissione certificato: 26/03/2010

Curva di dispersione misurata - calcolata dal modello del terreno

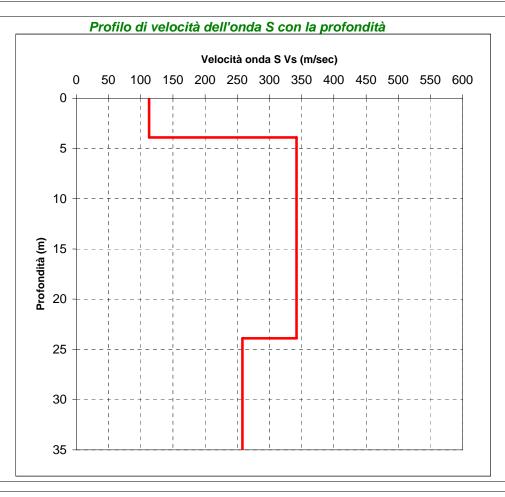
Risultati dell'inversione della curva di dispersione

IL RESPONSABILE DEL SETTORE

Dott. Geol. Carmencita Ventrone

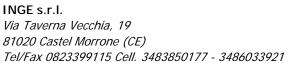
INGE s.r.l.

Via Taverna Vecchia, 19
81020 Castel Morrone (CE)
Tel/Fax 0823399115 Cell. 3483850177 - 3486033921



Dott.ssa. Bassi per c/o del Sig. De Chiara Bruno **Committente:** Protocollo n.: CA/227/2010 **Cantiere:** Via Olmo, Bellizzi (SA) Data esecuzione prova: 23/03/2010

Prova MASW: M1 26/03/2010 Data emissione certificato:

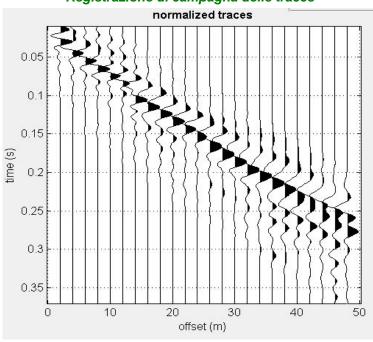

Calcolo del Vs30

Profon	Profondità (m)		Spess/Veloc
Da	а	(m/sec)	Hi/Vi
0.00	3.90	113	0.0345
3.90	23.90	342	0.0585
23.90	35.70	258	0.0457
35.70	45.00	999	0.0093

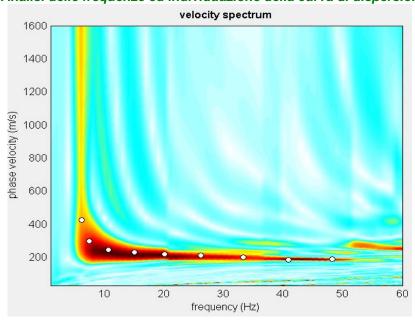
VALORE DI Vs30 CALCOLATO (m/sec) 257

Categoria di sottosuolo

IL RESPONSABILE DEL SETTORE



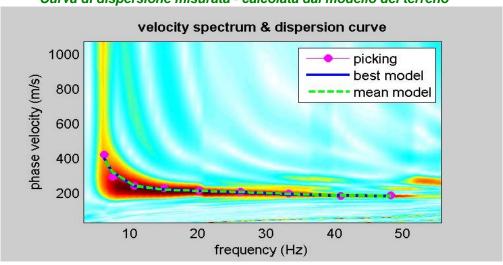
SS-006

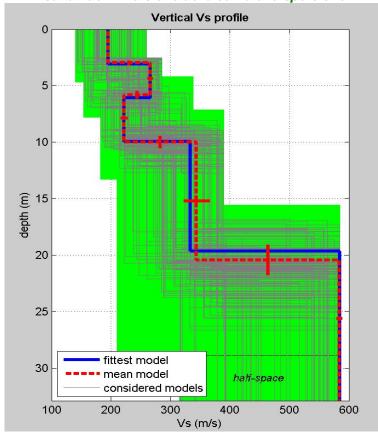


Committente:Sig. De Rosa SergioProtocollo n.:621/2010Cantiere:Via Ferrari - Bellizzi (SA)Data esecuzione prova:11/11/2010Prova MASW:M1Data emissione certificato:15/11/2010

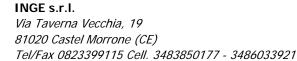
Registrazione di campagna delle tracce

Analisi delle frequenze ed individuazione della curva di dispersione

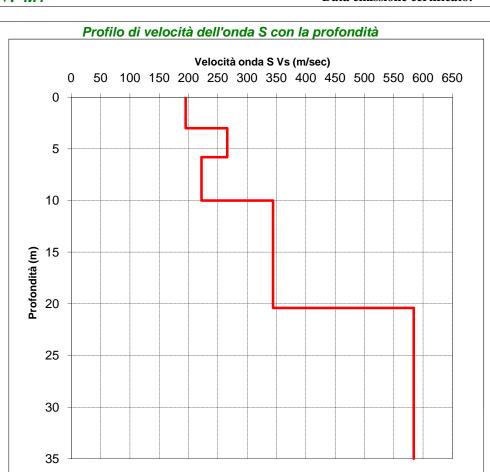

IL RESPONSABILE DEL SETTORE



Committente: Sig. De Rosa Sergio Protocollo n.: 621/2010 Via Ferrari - Bellizzi (SA) Cantiere: Data esecuzione prova: 11/11/2010 Prova MASW: M1 Data emissione certificato: 15/11/2010


Curva di dispersione misurata - calcolata dal modello del terreno

Risultati dell'inversione della curva di dispersione


IL RESPONSABILE DEL SETTORE

Committente:Sig. De Rosa SergioProtocollo n.:621/2010Cantiere:Via Ferrari - Bellizzi (SA)Data esecuzione prova:11/11/2010Prova MASW:M1Data emissione certificato:15/11/2010

Calcolo del Vs30

Profondità (m)		Velocità	Spess/Veloc
Da	Da a		Hi/Vi
0.00	3.00	195	0.0154
3.00	5.80	266	0.0105
5.80	10.00	222	0.0189
10.00	20.40	344	0.0302
20.40	35.00	584	0.0250

VALORE DI Vs30 CALCOLATO (m/sec) 328

Categoria di sottosuolo

IL RESPONSABILE DEL SETTORE

PROSPEZIONE SISMICA CON METODOLOGIA MASW

Commitente Ortofrutticola Del Ponte s.r.l.

Cantiere Lavori di ristrutturazione edilizia con adeguamento strutturale di un

complesso produttivo Via olmo, 3 Bellizzi (SA)

Data Febbraio 2017

Caratteristiche tecniche-strumentali

Sismografo MAE A 6000 S

Risoluzione 24 bit

Sorgente sismica Massa battente 10 kg
Trigger/Starter Geofono Geospace 14 Hz

Geospace 4,5 Hz

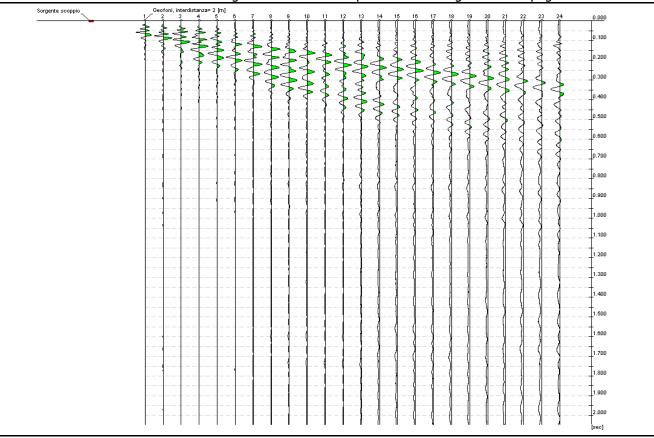
Software Easy MASW - Geostru Software

Caratteristiche indagine

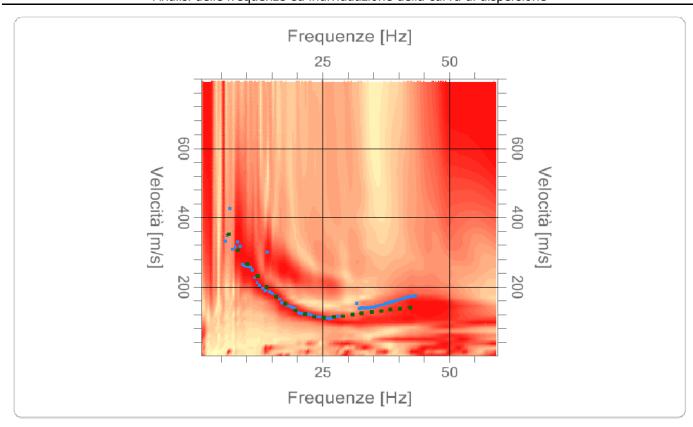
Sigla stendimento MASW-01 Lunghezza stendimento (m) 46 Offset - Spacing (m) 2

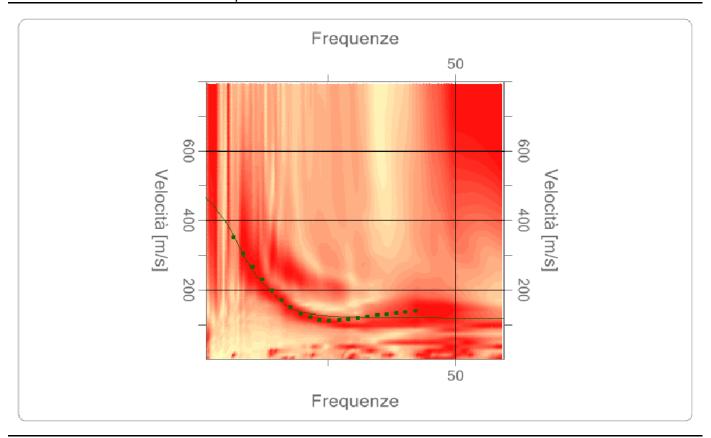
Ubicazione sito Lat. 40,6214 - Long 14,9292

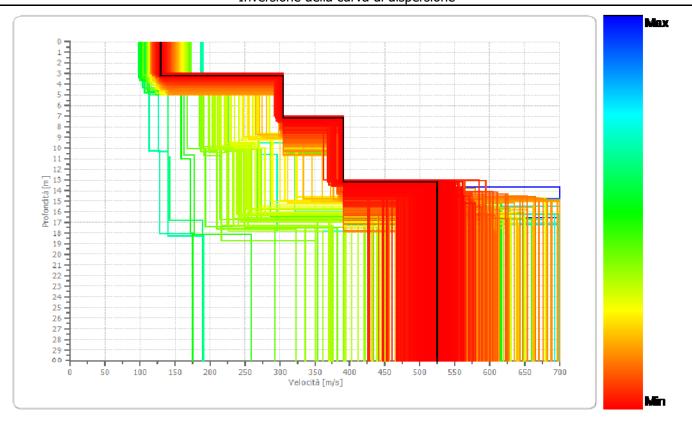
Ubicazione planimetrica

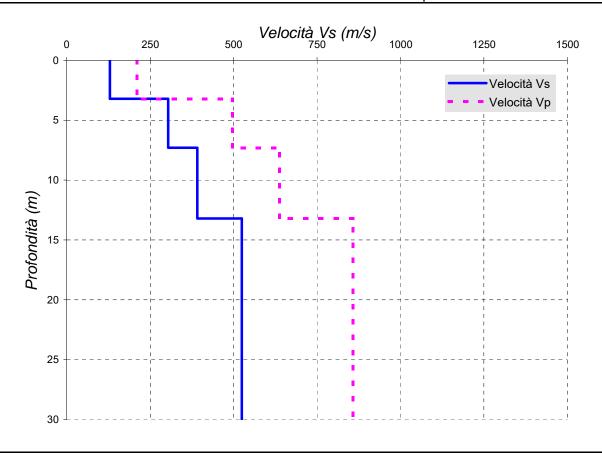

Località

Documentazione fotografica




Grafico delle tracce registrate in fase di acquisiszione del segnale in campagna


Analisi delle frequenze ed individuazione della curva di dispersione



Curva di dispersione misurata - calcolata dal modello del terreno

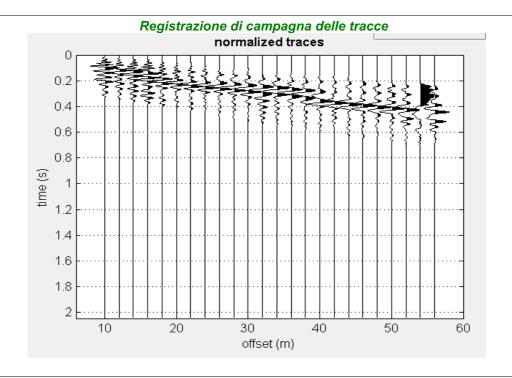
Inversione della curva di dispersione

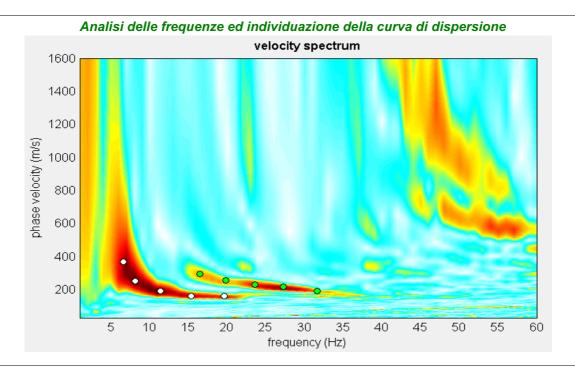
Determinazione del valore di Vs30

Profondità (m)		Spessore (m)	Velocità (m/s)	Rapporto Spessore/Velocità
0,00	3,20	3,20	129	0,024806
3,20	7,30	4,10	304	0,013487
7,30	13,20	5,90	391	0,015090
13,20	30,00	16,80	525	0,032000

VALORE DI Vs30 DETERMINATO	(m/s)	351

CATEGORIA DI SOTTOSUOLO

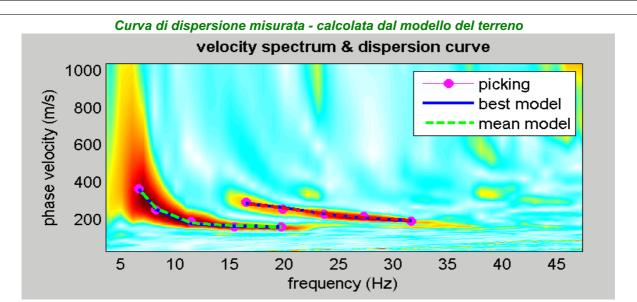


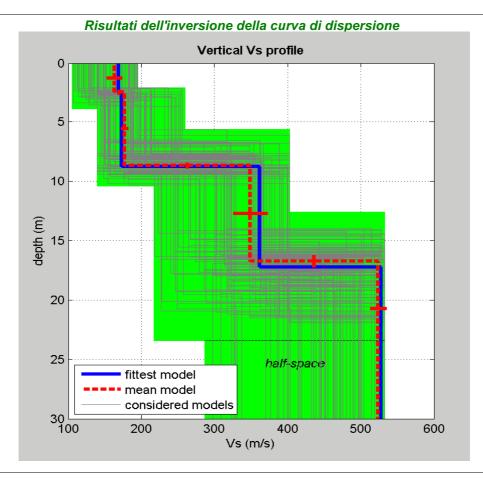

С

SS-008

Committente:Dott.ssa Geol. Bassi MariateresaProtocollo n.:261/2011Cantiere:Sig. D'Onofrio Pasquale - Loc. Rapaciceri, Bellizzi (SA)Data esecuzione prova:16/06/2011Prova MASW:M1Data emissione certificato:20/06/2011

IL RESPONSABILE DEL SETTORE



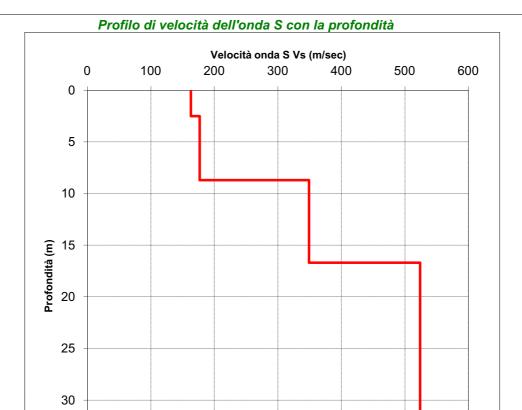


Committente: Dott.ssa Geol. Bassi Mariateresa Protocollo n.: 261/2011

Cantiere: Sig. D'Onofrio Pasquale - Loc. Rapaciceri, Bellizzi (SA) Data esecuzione prova: 16/06/2011

Prova MASW: M1 Data emissione certificato: 20/06/2011

IL RESPONSABILE DEL SETTORE


Dott. Geol. Carmencita Ventrone

INGE s.r.l.

Committente:Dott.ssa Geol. Bassi MariateresaProtocollo n.:261/2011Cantiere:Sig. D'Onofrio Pasquale - Loc. Rapaciceri, Bellizzi (SA)Data esecuzione prova:16/06/2011Prova MASW:M1Data emissione certificato:20/06/2011

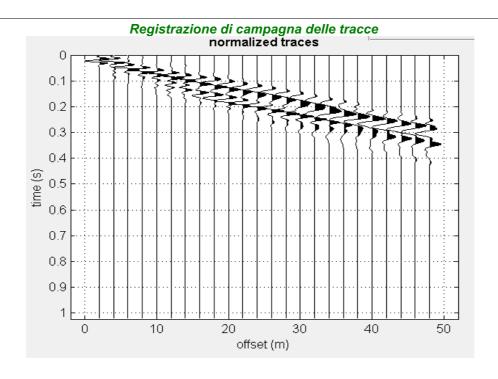
Calcolo del Vs30

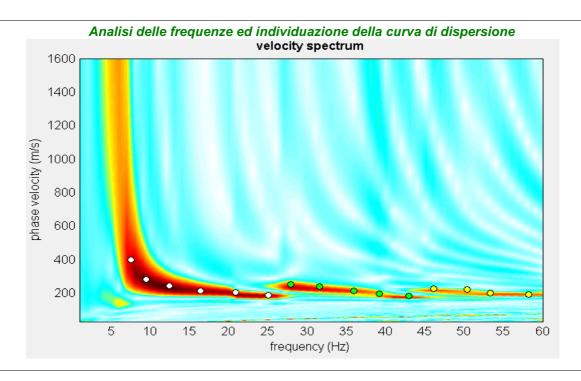
Profondità (m)		Velocità	Spess/Veloc	
Da	а	(m/sec)	Hi/Vi	
0.00	2.50	163	0.0153	
2.50	8.70	177	0.0350	
8.70	16.70	349	0.0229	
16.70	35.00	524	0.0349	

35

VALORE DI Vs30 CALCOLATO (m/sec) 304

Categoria di sottosuolo

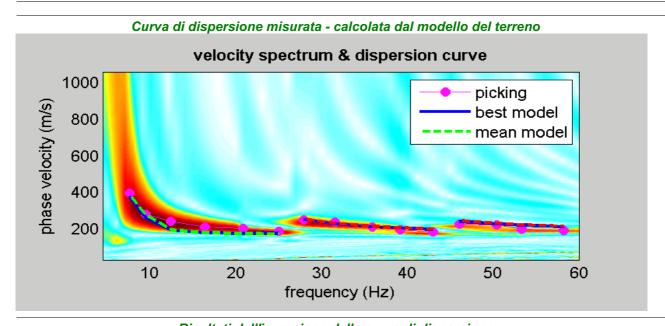

IL RESPONSABILE DEL SETTORE

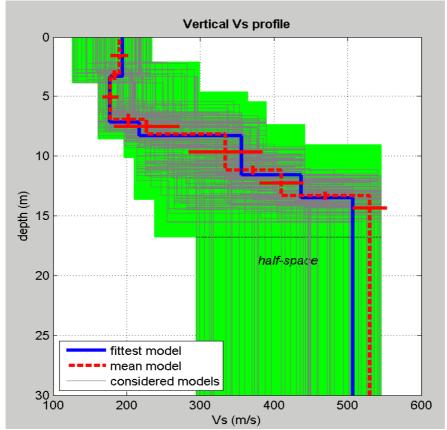


SS-009

Committente:Dott.ssa Geol. Bassi MariateresaProtocollo n.:263/2011Cantiere:Sig. D'Aiutolo - Via Campo Eminente, Bellizzi (SA)Data esecuzione prova:16/06/2011Prova MASW:M1Data emissione certificato:20/06/2011

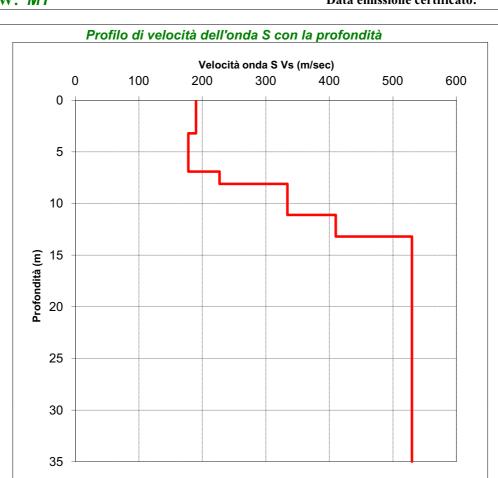
IL RESPONSABILE DEL SETTORE




Committente: Dott.ssa Geol. Bassi Mariateresa Protocollo n.: 263/2011

Cantiere: Sig. D'Aiutolo - Via Campo Eminente, Bellizzi (SA) Data esecuzione prova: 16/06/2011

Prova MASW: M1 Data emissione certificato: 20/06/2011

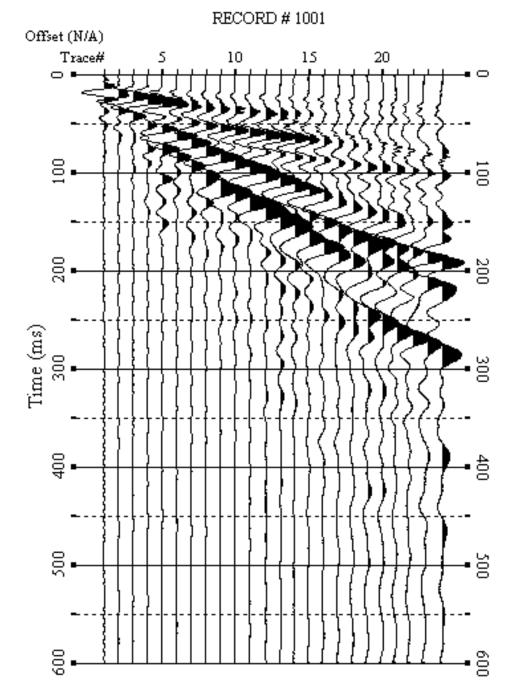

IL RESPONSABILE DEL SETTORE

Committente:Dott.ssa Geol. Bassi MariateresaProtocollo n.:263/2011Cantiere:Sig. D'Aiutolo - Via Campo Eminente, Bellizzi (SA)Data esecuzione prova:16/06/2011Prova MASW:M1Data emissione certificato:20/06/2011

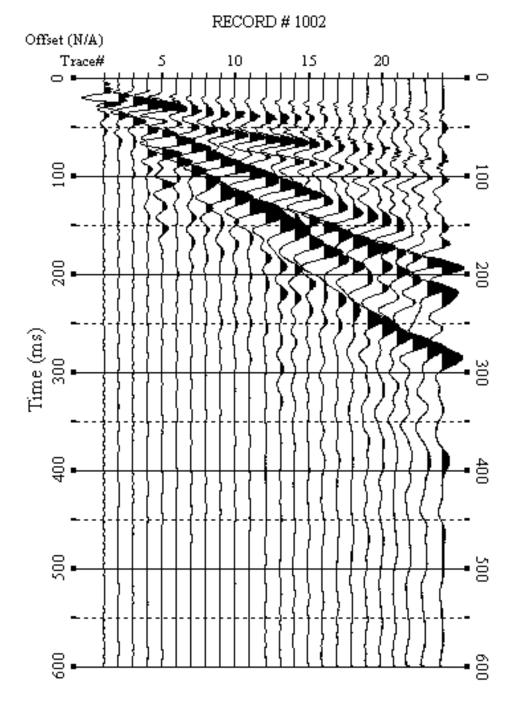
Calcolo del Vs30

Profondità (m)		Velocità	Spess/Veloc
Da	а	(m/sec)	Hi/Vi
0.00	3.20	190	0.0168
3.20	6.90	178	0.0208
6.90	8.10	227	0.0053
8.10	11.10	334	0.0090
11.10	13.20	410	0.0051
13.20	35.00	530	0.0411
			·

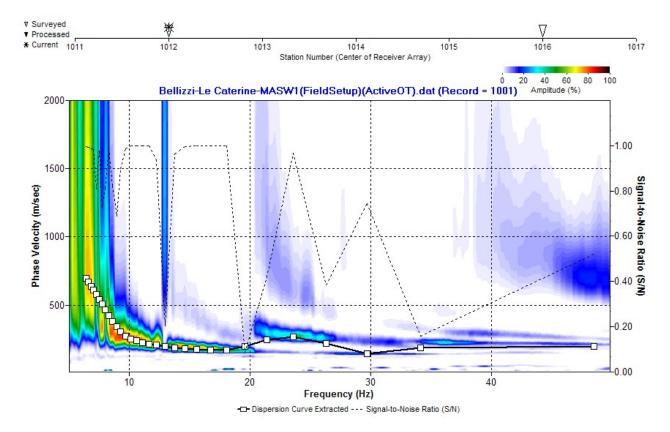
VALORE DI Vs30 CALCOLATO (m/sec) 337

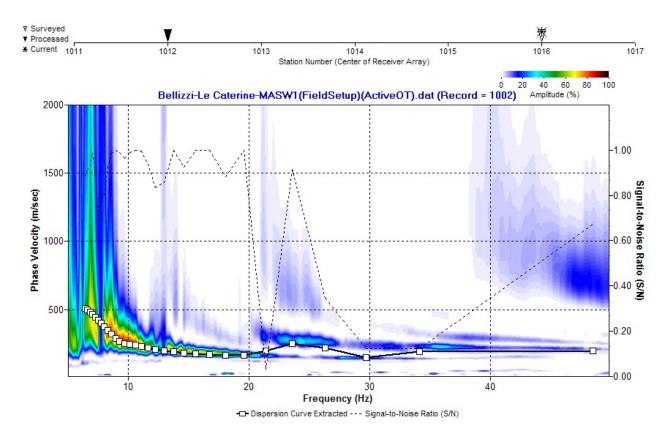

Categoria di sottosuolo

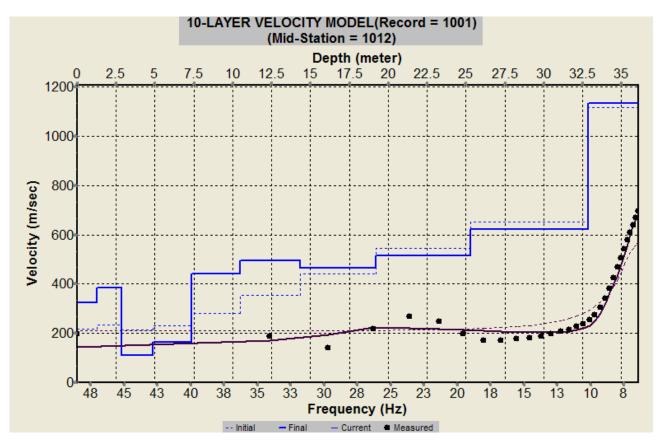
IL RESPONSABILE DEL SETTORE

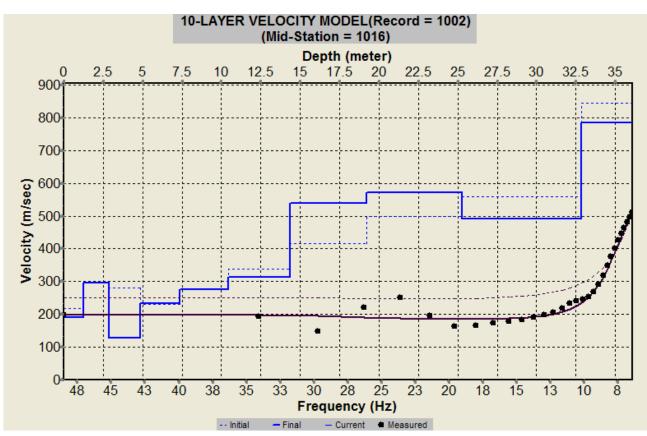


SS-010

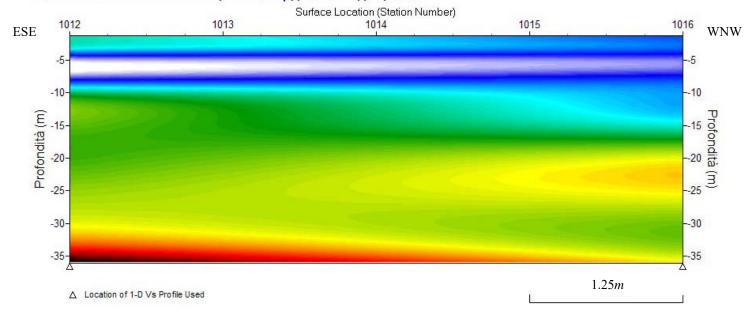



Sismogrammi relativi all'indagine Sismica MASW n. 1: acquisizione n. 1. Finestra temporale [0-600]ms.

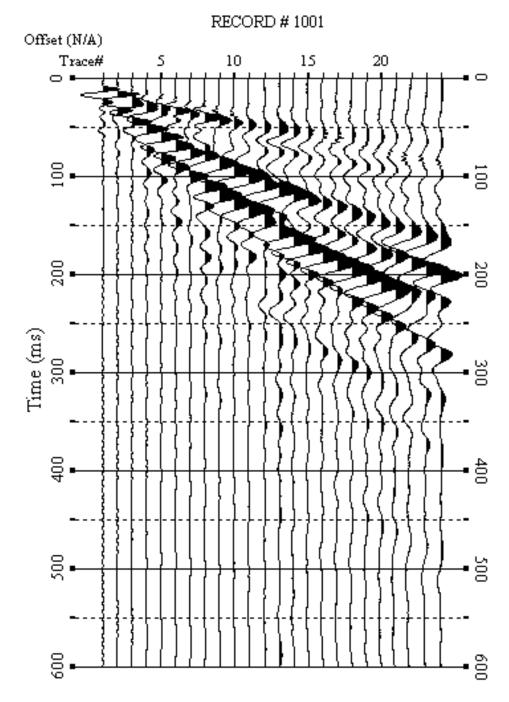

Sismogrammi relativi all'indagine Sismica MASW n. 1: acquisizione n. 2. Finestra temporale [0-600]ms.

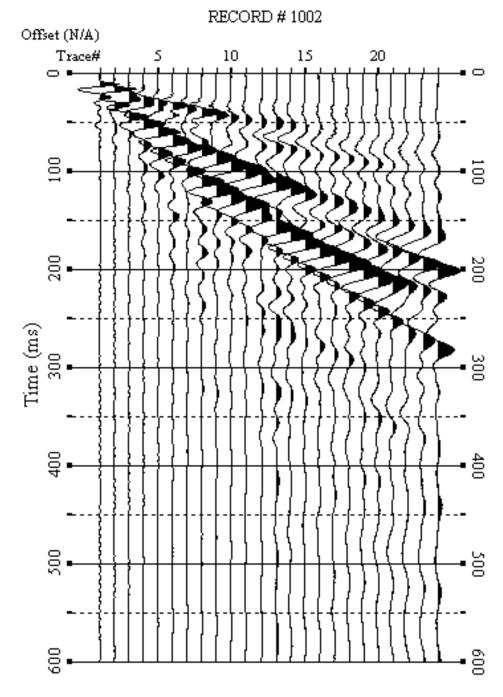

Curva di dispersione della velocità di fase delle onde superficiali di Rayleigh ottenuta dall'indagine Sismica MASW n. 1: acquisizione n. 1.

Curva di dispersione della velocità di fase delle onde superficiali di Rayleigh ottenuta dall'indagine Sismica MASW n. 1: acquisizione n. 2.

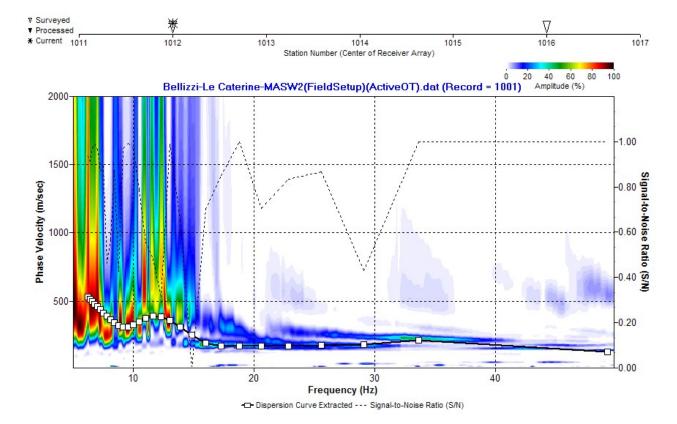

Profilo verticale 1D delle V_S ottenuto dall'inversione della curva di dispersione della velocità di fase delle onde superficiali di Rayleigh: MASW n. 1 - acquisizione n. 1.

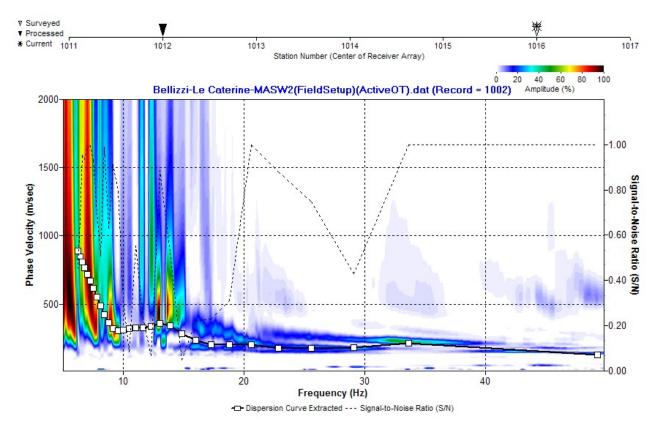
Profilo verticale 1D delle V_S ottenuto dall'inversione della curva di dispersione della velocità di fase delle onde superficiali di Rayleigh: MASW n. 1 - acquisizione n. 2.

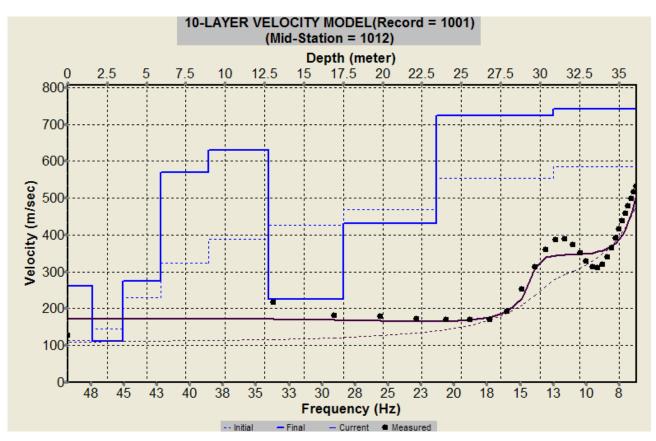


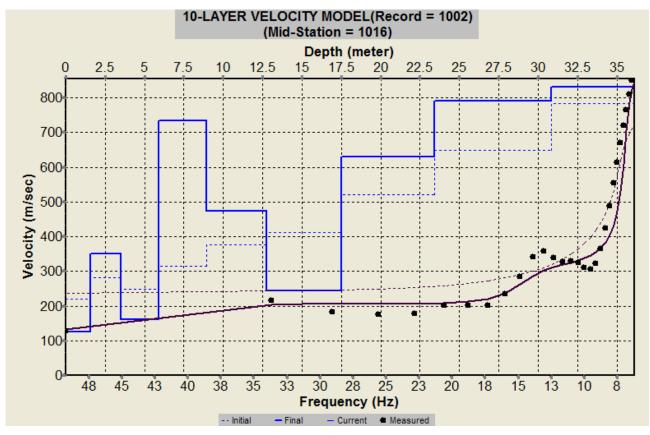


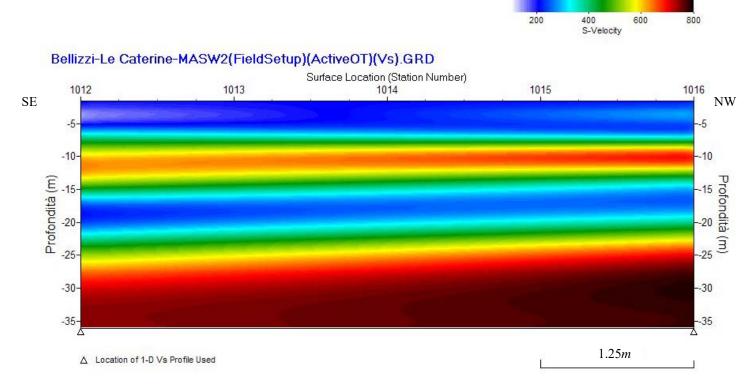
Modello sismostratigrafico 2D delle V_S ottenuto dall'indagine Sismica MASW n. 1.




Sismogrammi relativi all'indagine Sismica MASW n. 2: acquisizione n. 1. Finestra temporale [0-600]ms.


Sismogrammi relativi all'indagine Sismica MASW n. 2: acquisizione n. 2. Finestra temporale [0-600]ms.


Curva di dispersione della velocità di fase delle onde superficiali di Rayleigh ottenuta dall'indagine Sismica MASW n. 2: acquisizione n. 1.


Curva di dispersione della velocità di fase delle onde superficiali di Rayleigh ottenuta dall'indagine Sismica MASW n. 2: acquisizione n. 2.

Profilo verticale 1D delle V_S ottenuto dall'inversione della curva di dispersione della velocità di fase delle onde superficiali di Rayleigh: MASW n. 2 - acquisizione n. 1.

Profilo verticale 1D delle V_S ottenuto dall'inversione della curva di dispersione della velocità di fase delle onde superficiali di Rayleigh: MASW n. 2 - acquisizione n. 2.

Modello sismostratigrafico 2D delle V_S ottenuto dall'indagine Sismica MASW n. 2.

SS-011

PROSPEZIONE SISMICA CON METODOLOGIA MASW

Commitente Sig. Vincenzo FERRARA

Cantiere Sostituzione tetto del fabbricato ai fini della realizzazione di pertineneze e

installazione di un impianto fotovoltaico e solar termico

Località Via Mameli, 6 - BELLIZZI

Data Giugno 2016

Caratteristiche tecniche-strumentali

Sismografo MAE A 6000 S

Risoluzione 24 bit

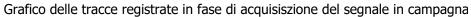
Sorgente sismica Massa battente 10 kg
Trigger/Starter Geofono Geospace 14 Hz

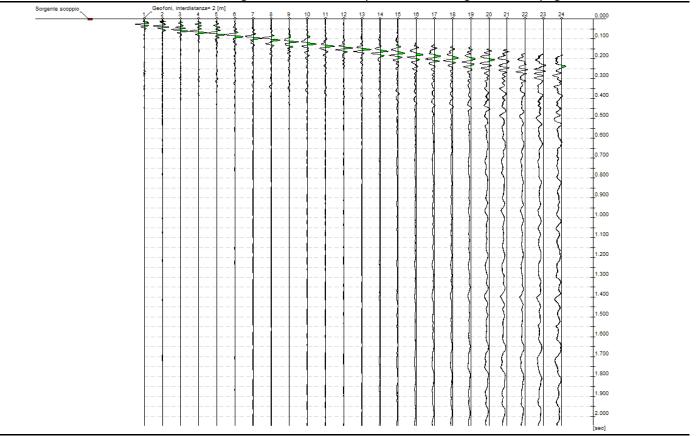
Geospace 4,5 Hz

Software Easy MASW - Geostru Software

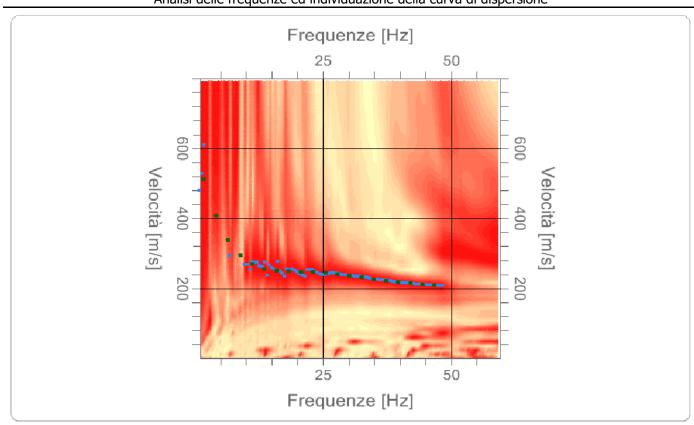
Caratteristiche indagine

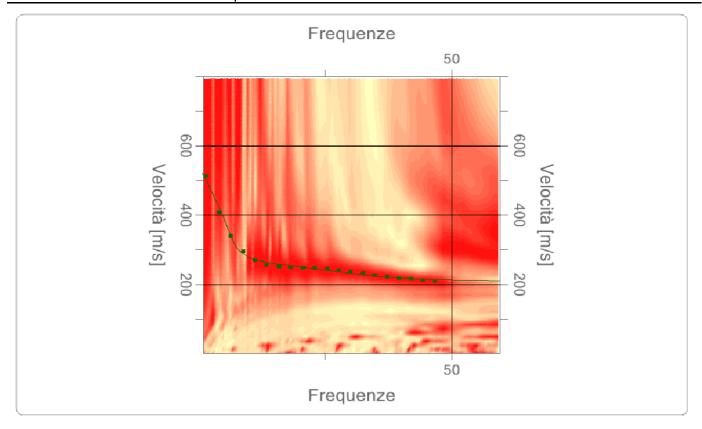
Sigla stendimento MASW-01 Lunghezza stendimento (m) 46 Offset - Spacing (m) 2

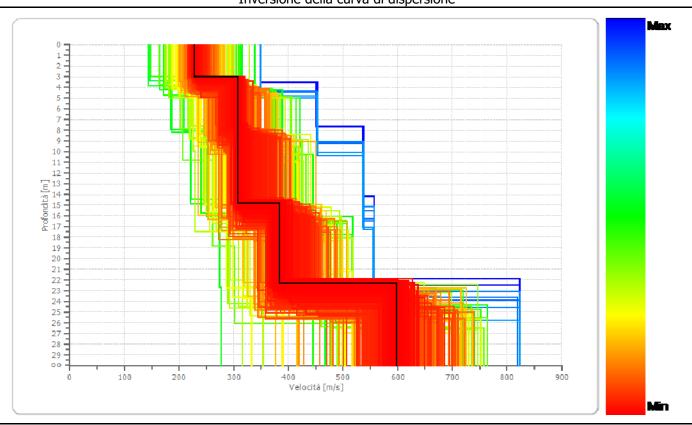

Ubicazione sito Lat. 40,6170 - Long 14,9480

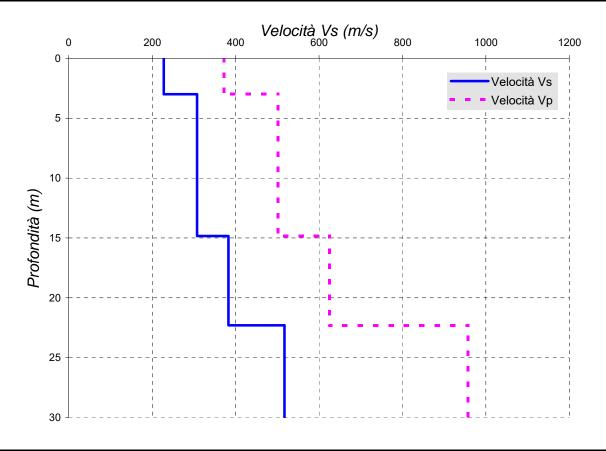

Ubicazione planimetrica

Documentazione fotografica






Analisi delle frequenze ed individuazione della curva di dispersione



Curva di dispersione misurata - calcolata dal modello del terreno

Inversione della curva di dispersione

Determinazione del valore di Vs30

Profondità (m)		Spessore (m)	Velocità (m/s)	Rapporto Spessore/Velocità
0,00	3,00	3,00	228	0,013158
3,00	14,85	11,85	308	0,038474
14,85	22,30	7,45	383	0,019452
22,30	30,00	7,70	517	0,014894
		·		

(m/s)	349
	<u> </u>
	(m/s)

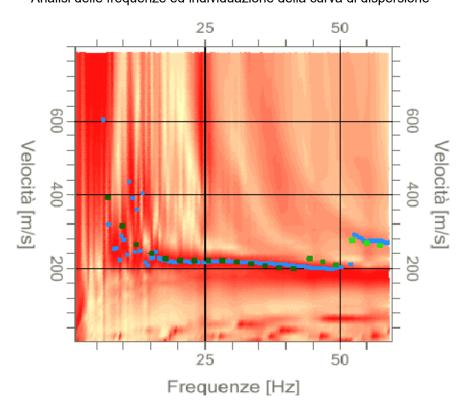
LOCALITA':

SISMICA DI SUPERFICIE CON METODOLOGIA MASW

MASW-01

DATA: Marzo 2012

COMMITTENTE: Sig.ra MUCCIOLO Rosa


Bellizzi (SA) - Via Genova - Via dei Mille

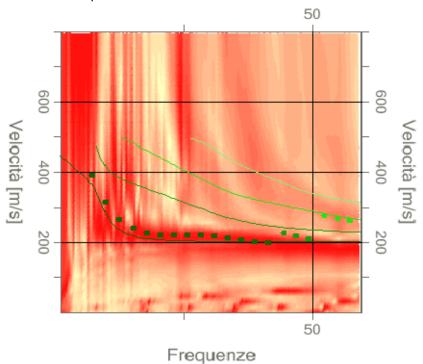
LAVORO: Lavori di ristrutturazione di una copertura a tetto del fabbricato sito alla via dei Mille, 35

Grafico delle tracce registrate in fase di acquisiszione del segnale in campagna

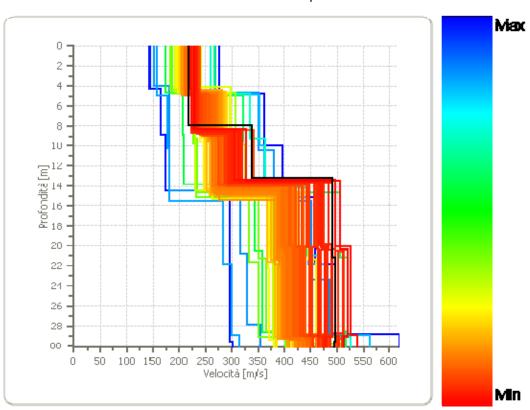
Analisi delle frequenze ed individuazione della curva di dispersione

SISMICA DI SUPERFICIE CON METODOLOGIA MASW

MASW-01


DATA: Marzo 2012

COMMITTENTE: Sig.ra MUCCIOLO Rosa


LOCALITA': Bellizzi (SA) - Via Genova - Via dei Mille

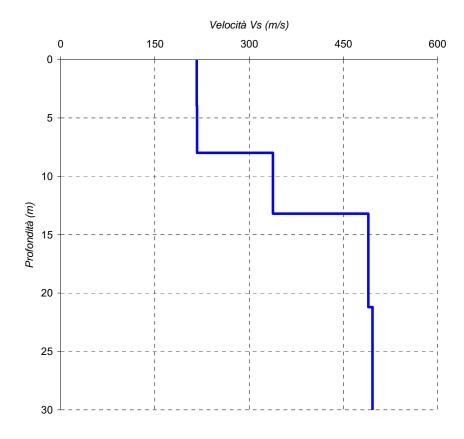
LAVORO: Lavori di ristrutturazione di una copertura a tetto del fabbricato sito alla via dei Mille, 35

Curva di dispersione misurata - calcolata dal modello del terreno

Inversione della curva di dispersione

SISMICA DI SUPERFICIE CON METODOLOGIA MASW

MASW-01


DATA: Marzo 2012

COMMITTENTE: Sig.ra MUCCIOLO Rosa

LOCALITA': Bellizzi (SA) - Via Genova - Via dei Mille

LAVORO: Lavori di ristrutturazione di una copertura a tetto del fabbricato sito alla via dei Mille, 35

Variazione della velocità delle onde S con la profondità

Determinazione del valore di Vs30

Profondità (m)		Spessore (m)	Velocità (m/s)	Rapporto Spessore/Velocità
0,00	3,95	3,95	216,87	0,018214
3,95	7,98	4,03	217,41	0,018536
7,98	13,19	5,21	338,05	0,015412
13,19	21,19	8,00	490,10	0,016323
21,19	30,00	8,81	496,44	0,017746

VALORE DI Vs30 DETERMINATO	(m/s)	348
----------------------------	-------	-----

CATEGORIA DI SOTTOSUOLO	С
-------------------------	---

PROSPEZIONE SISMICA CON METODOLOGIA MASW

Commitente Impresa TERRALAVORO Srl

Cantiere Progetto di realizzazione di una tettoia

Località Via Nino Bixio - Piazza Antonio De Curtis (Edificio Scuola Elementare)

Data Ottobre 2014

Caratteristiche tecniche-strumentali

Sismografo MAE A 6000 S

Risoluzione 24 bit

Sorgente sismica Massa battente 10 kg
Trigger/Starter Geofono Geospace 14 Hz

Geospace 4,5 Hz

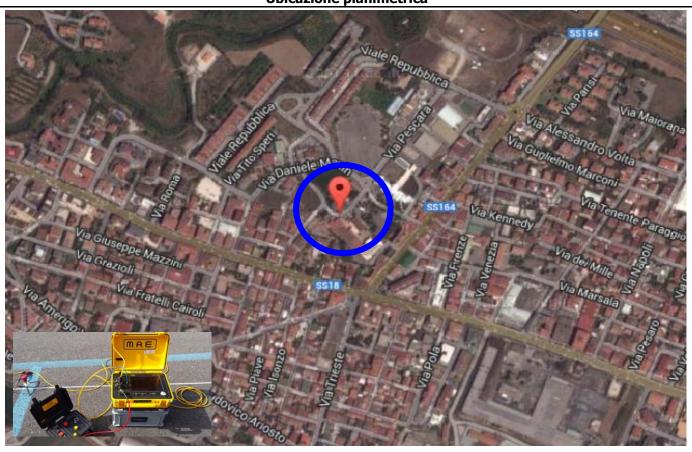
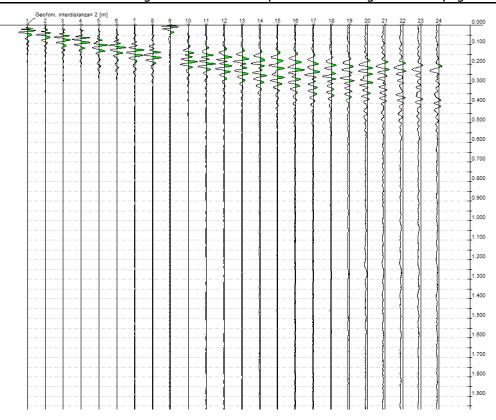
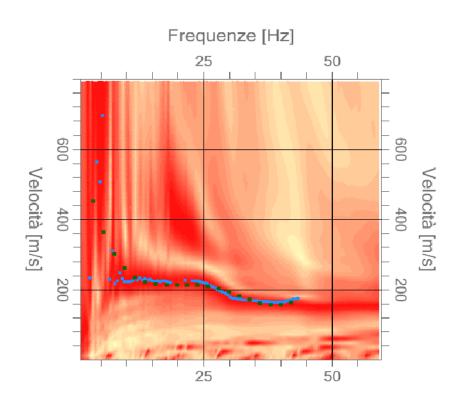
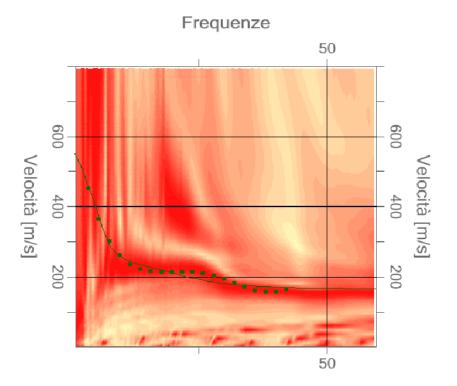
Software Easy MASW - Geostru Software

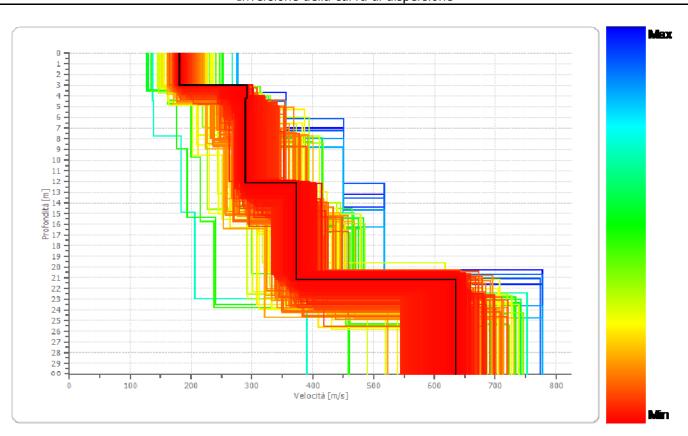
Caratteristiche indagine

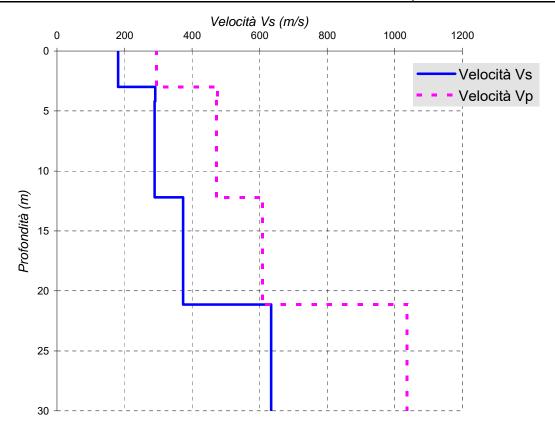
Sigla stendimento MASW-01 Lunghezza stendimento (m) 46 Offset - Spacing (m) 2

Ubicazione sito Lat. 40,621329 - Long 14,947792

Ubicazione planimetrica

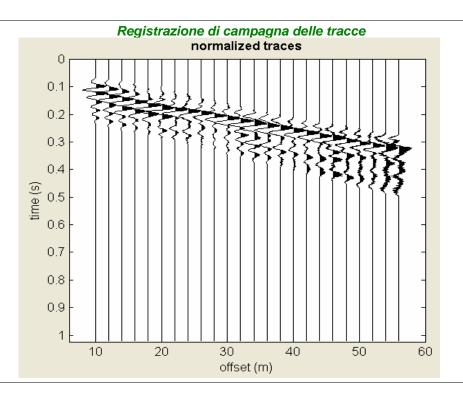

Grafico delle tracce registrate in fase di acquisiszione del segnale in campagna


Analisi delle frequenze ed individuazione della curva di dispersione

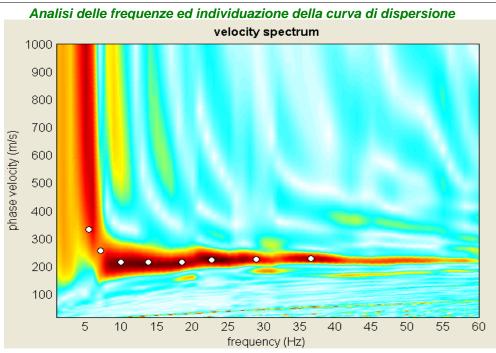
Variazione della velocità delle onde S e delle onde P con la profondità

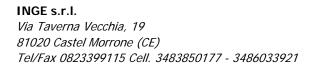
Determinazione del valore di Vs30

Profondità (m)		Spessore (m)	Velocità (m/s)	Rapporto Spessore/Velocità
0,00	3,00	3,00	181,00	0,016575
3,00	4,20	1,20	291,00	0,004124
4,20	12,20	8,00	289,00	0,027682
12,20	21,15	8,95	373,00	0,023995
21,15	30,00	8,85	634,00	0,013959

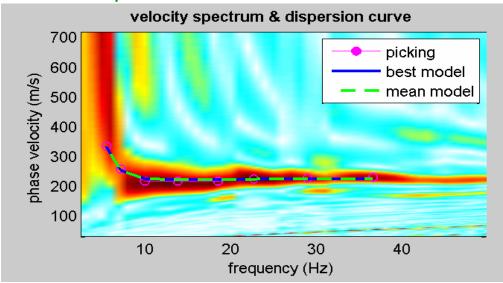

VALORE DI Vs30 DETERMINATO	(m/s)	347

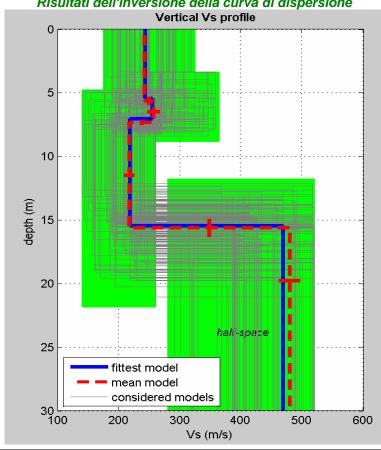
CATEGORIA DI SOTTOSUOLO	С
-------------------------	---




Committente:NICAROS s.r.l.Protocollo n.:168/10Cantiere:Via Trento Bellizzi SalernoData esecuzione prova:25/02/2010Prova MASW:M1Data emissione certificato:02/03/2010

IL RESPONSABILE DEL SETTORE





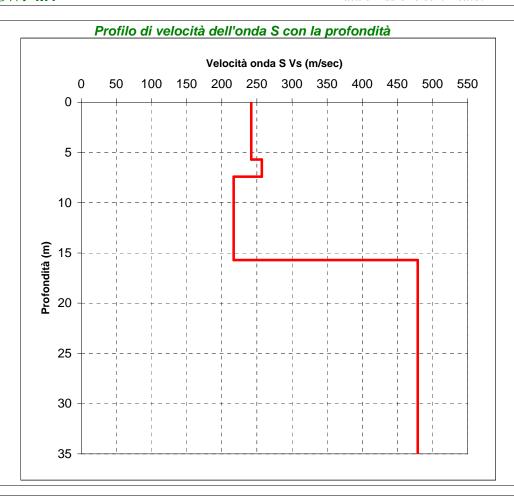
NICAROS s.r.l. **Committente:** Protocollo n.: 168/10 **Cantiere:** Via Trento Bellizzi Salerno 25/02/2010 Data esecuzione prova: Prova MASW: M1 Data emissione certificato: 02/03/2010

Curva di dispersione misurata - calcolata dal modello del terreno

Risultati dell'inversione della curva di dispersione

IL RESPONSABILE DEL SETTORE

Dott. Geol. Carmencita Ventrone


INGE s.r.l. Via Taverna Vecchia, 19 81020 Castel Morrone (CE) Tel/Fax 0823399115 Cell. 3483850177 - 3486033921

NICAROS s.r.l. **Committente:** Protocollo n.: 168/10 Via Trento Bellizzi Salerno Cantiere: Data esecuzione prova: 25/02/2010 Prova MASW: M1 02/03/2010 Data emissione certificato:

Calcolo del Vs30

Profon	dità (m)	Velocità	Spess/Veloc
Da	а	(m/sec)	Hi/Vi
0.00	5.70	242	0.0236
5.70	7.40	257	0.0066
7.40	15.70	217	0.0382
15.70	35.00	479	0.0403

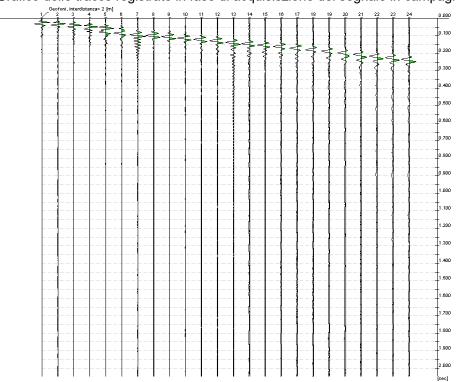
VALORE DI Vs30 CALCOLATO (m/sec) 306

Categoria di sottosuolo

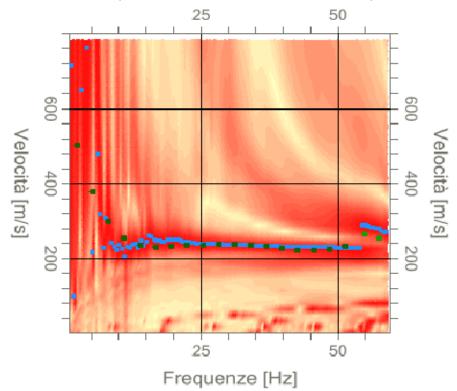
IL RESPONSABILE DEL SETTORE

MASW-01

DATA: Marzo 2012


COMMITTENTE: Sig. ROMANO Cosimo - Sig.ra ROMANO Giovanna

LOCALITA': Bellizzi (SA) - Corso Garibaldi

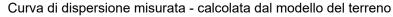

LAVORO: Intervento straordinario di ampliamento (L.R. Campania 01/2011) del fabbricato sito al corso Garibaldi angolo

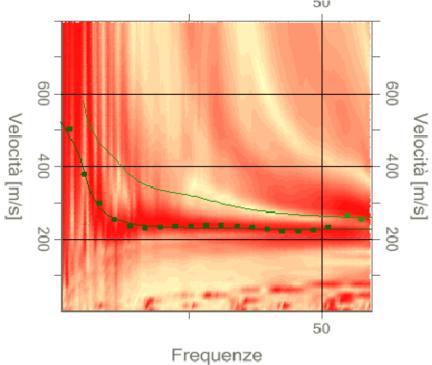
via Isonzo, 14

Grafico delle tracce registrate in fase di acquisiszione del segnale in campagna

Analisi delle frequenze ed individuazione della curva di dispersione

MASW-01


DATA: Marzo 2012


COMMITTENTE: Sig. ROMANO Cosimo - Sig.ra ROMANO Giovanna

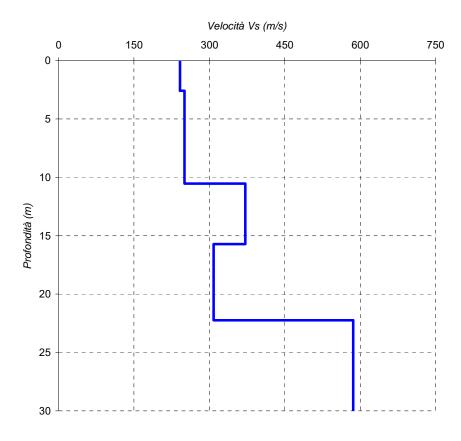
LOCALITA': Bellizzi (SA) - Corso Garibaldi

LAVORO: Intervento straordinario di ampliamento (L.R. Campania 01/2011) del fabbricato sito al corso Garibaldi angolo

via Isonzo, 14

MASW-01

DATA: Marzo 2012


COMMITTENTE: Sig. ROMANO Cosimo - Sig.ra ROMANO Giovanna

LOCALITA': Bellizzi (SA) - Corso Garibaldi

LAVORO: Intervento straordinario di ampliamento (L.R. Campania 01/2011) del fabbricato sito al corso Garibaldi angolo

via Isonzo, 14

Variazione della velocità delle onde S con la profondità

Determinazione del valore di Vs30

Profondità (m)		Spessore (m)	Velocità (m/s)	Rapporto Spessore/Velocità
0,00	2,57	2,57	241,29	0,010651
2,57	10,52	7,95	250,17	0,031778
10,52	15,70	5,18	371,43	0,013946
15,70	22,25	6,55	308,20	0,021252
22,25	30,00	7,75	586,44	0,013215

VALORE DI Vs30 DETERMINATO	(m/s)	330
----------------------------	-------	-----

CATEGORIA DI SOTTOSUOLO

PROSPEZIONE SISMICA CON METODOLOGIA MASW

Commitente Sig. Martungello PISCITIELLO

Cantiere Rimozione vecchio impianto serricolo e realizzazione di nuovo con

avanserre su appezzamento di terreno

Località via Rapaciceri - Bellizzi (SA)

Data Dicembre 2016

Caratteristiche tecniche-strumentali

Sismografo MAE A 6000 S

Risoluzione 24 bit

Sorgente sismica Massa battente 10 kg
Trigger/Starter Geofono Geospace 14 Hz

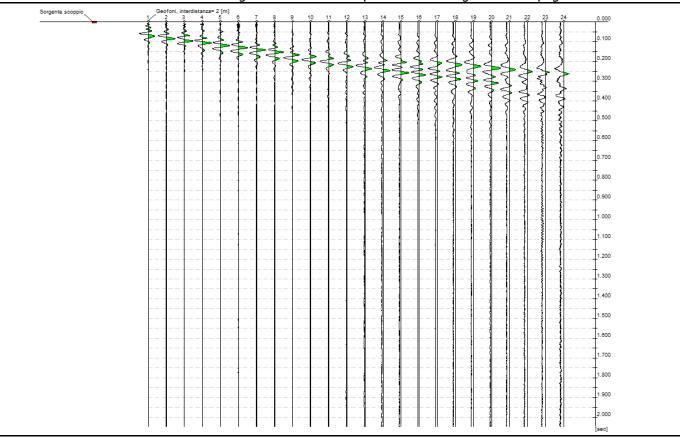
Geospace 4,5 Hz

Software Easy MASW - Geostru Software

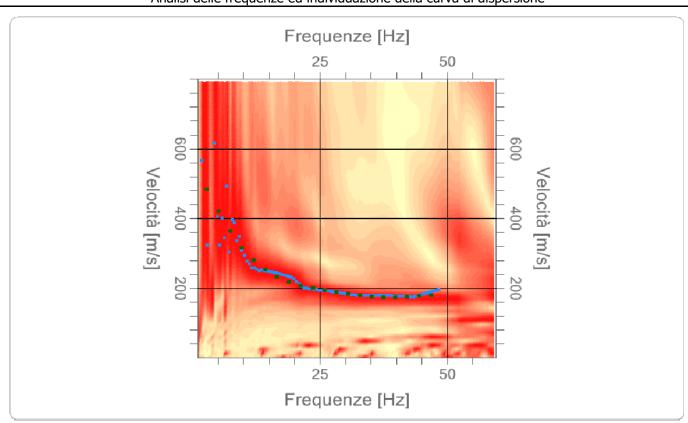
Caratteristiche indagine

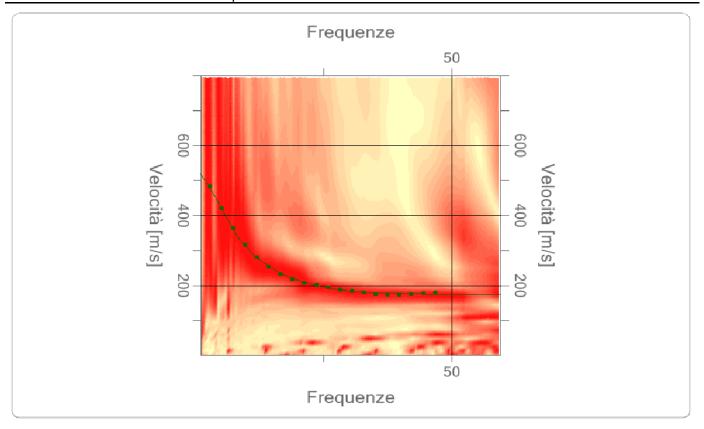
Sigla stendimento MASW-01 Lunghezza stendimento (m) 46 Offset - Spacing (m) 2

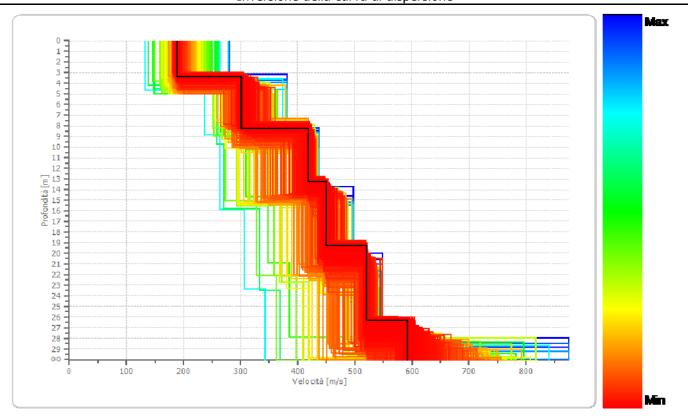
Ubicazione sito Lat. 40,613677 - Long 14,923459

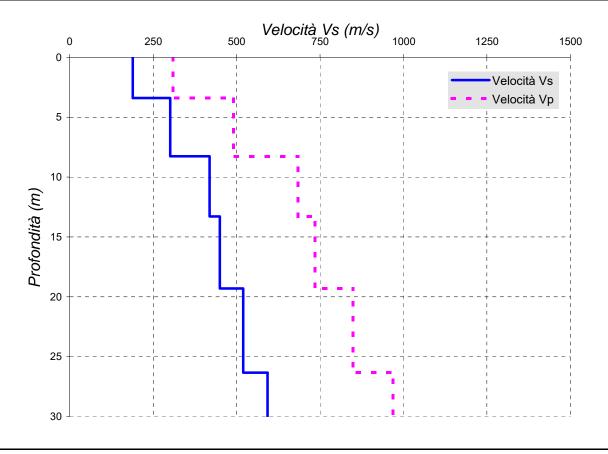

Ubicazione planimetrica

Documentazione fotografica




Grafico delle tracce registrate in fase di acquisiszione del segnale in campagna




Analisi delle frequenze ed individuazione della curva di dispersione

Curva di dispersione misurata - calcolata dal modello del terreno

Determinazione del valore di Vs30

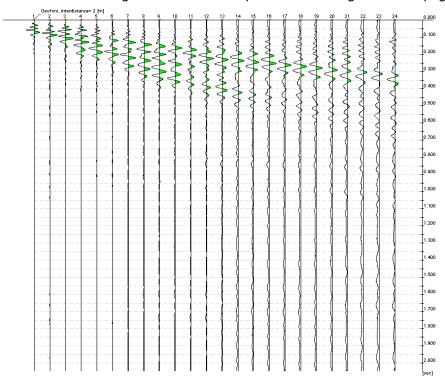
Profondità (m)		Spessore (m)	Velocità (m/s)	Rapporto Spessore/Velocità
0,00	3,40	3,40	189	0,017989
3,40	8,25	4,85	301	0,016113
8,25	13,30	5,05	419	0,012053
13,30	19,30	6,00	450	0,013333
19,30	26,35	7,05	520	0,013558
26,35	30,00	3,65	593	0,006155

VALORE DI Vs30 DETERMINATO	(m/s)	379
----------------------------	-------	-----

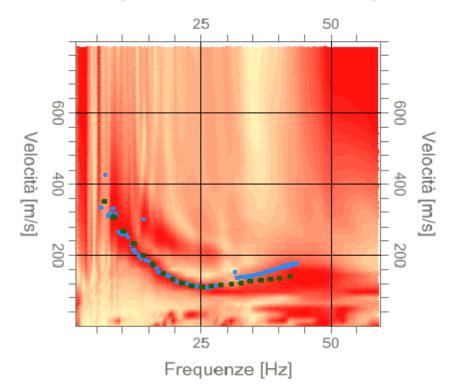
CATEGORIA DI SOTTOSUOLO B

MASW-01

DATA: Agosto 2013


COMMITTENTE: Sig. PISCITIELLO Martungello

LOCALITA': Bellizzi (SA) - Loc. Olmo - Via Rapaciceri


LAVORO: Lavori di manutenzione ordinaria e straordinaria da realizzarsi sull'immobile sito alla via Rapaciceri - località

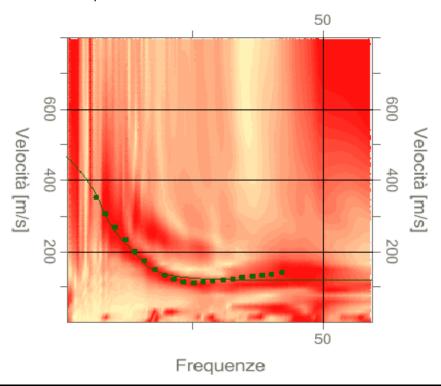
Olmo

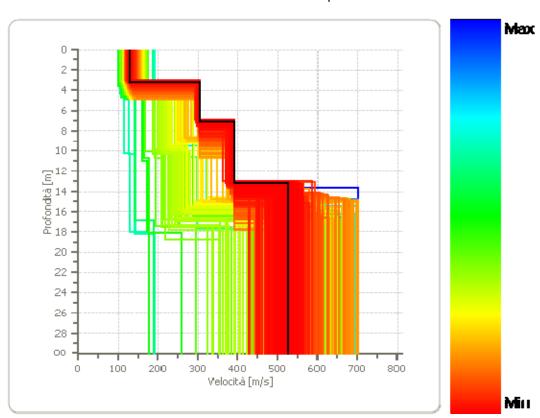
Grafico delle tracce registrate in fase di acquisiszione del segnale in campagna

Analisi delle frequenze ed individuazione della curva di dispersione

MASW-01

DATA: Agosto 2013


COMMITTENTE: Sig. PISCITIELLO Martungello


LOCALITA': Bellizzi (SA) - Loc. Olmo - Via Rapaciceri

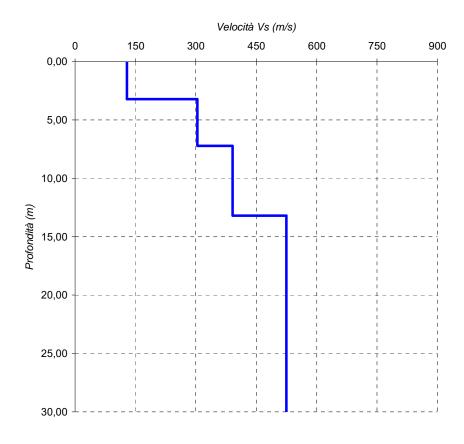
LAVORO: Lavori di manutenzione ordinaria e straordinaria da realizzarsi sull'immobile sito alla via Rapaciceri - località

Olmo

Curva di dispersione misurata - calcolata dal modello del terreno

MASW-01

DATA: Agosto 2013


COMMITTENTE: Sig. PISCITIELLO Martungello

LOCALITA': Bellizzi (SA) - Loc. Olmo - Via Rapaciceri

LAVORO: Lavori di manutenzione ordinaria e straordinaria da realizzarsi sull'immobile sito alla via Rapaciceri - località

Olmo

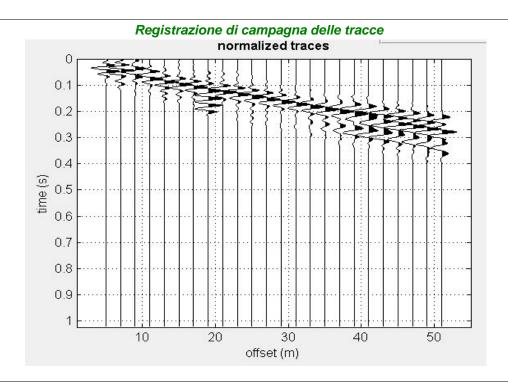
Variazione della velocità delle onde S con la profondità

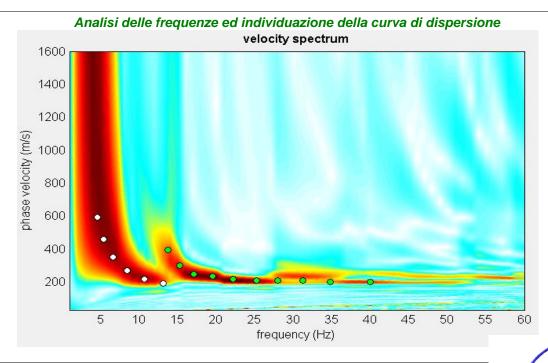
Determinazione del valore di Vs30

Profondità (m)		Spessore (m)	Velocità (m/s)	Rapporto Spessore/Velocità
0,00	3,20	3,20	129	0,024806
3,20	7,20	4,00	304	0,013158
7,20	13,20	6,00	391	0,015345
13,20	30,00	16,80	525	0,032000
		_	_	

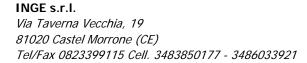
VALORE DI Vs30 DETERMINATO	(m/s)	352
----------------------------	-------	-----

CATEGORIA DI SOTTOSUOLO


С

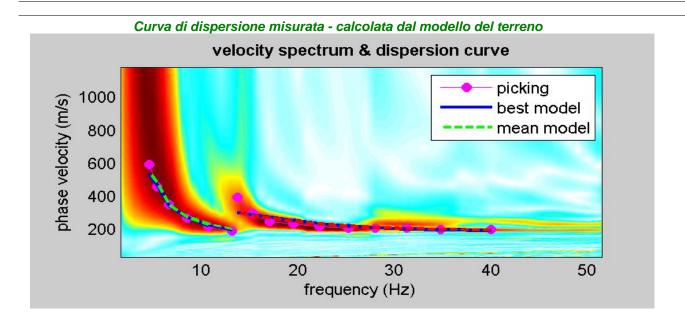


Committente: Dott.ssa Bassi per c/o della Sig.ra Pinto Pasqualina Protocollo n.: 062/2011


Cantiere: Via Picciola - Bellizzi (SA) Data esecuzione prova: 10/03/2011

Prova MASW: M1 Data emissione certificato: 16/03/2011

IL RESPONSABILE DEL SETTORE



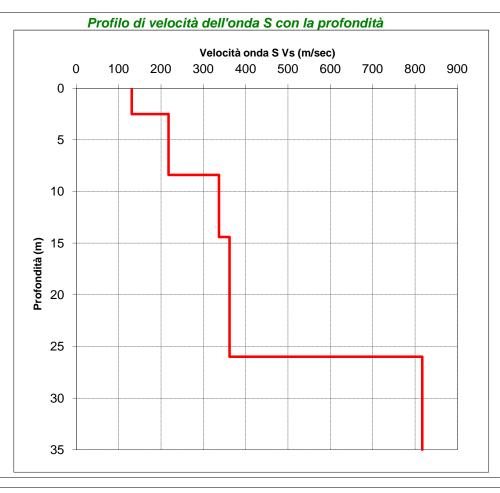
Committente: Dott.ssa Bassi per c/o della Sig.ra Pinto Pasqualina Protocollo n.: 062/2011

Cantiere: Via Picciola - Bellizzi (SA) Data esecuzione prova: 10/03/2011

Prova MASW: M1 Data emissione certificato: 16/03/2011

Risultati dell'inversione della curva di dispersione Vertical Vs profile 0 5 10 20 25 30 fittest model mean model half-space considered models 35 100 200 300 400 500 600 700 800 900 Vs (m/s)

IL RESPONSABILE DEL SETTORE



Committente: Dott.ssa Bassi per c/o della Sig.ra Pinto Pasqualina Protocollo n.: 062/2011

Cantiere: Via Picciola - Bellizzi (SA) Data esecuzione prova: 10/03/2011

Prova MASW: M1 Data emissione certificato: 16/03/2011

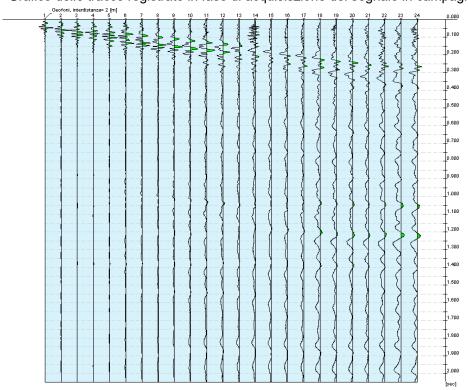
Calcolo del Vs30

			Ouroc	
Profon	dità (m)	Velocità	Spess/Veloc	
Da	а	(m/sec)	Hi/Vi	
0.00	2.50	131	0.0191	
2.50	8.40	218	0.0271	
8.40	14.40	337	0.0178	
14.40	26.00	362	0.0320	
26.00	35.00	817	0.0110	

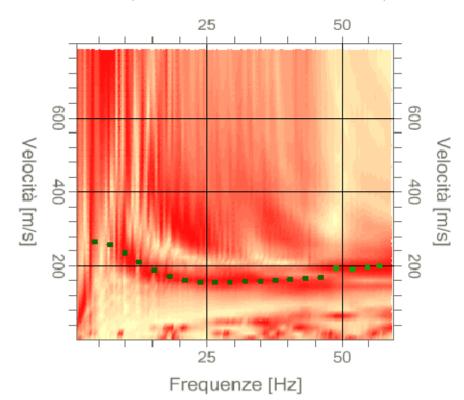
VALORE DI Vs30 CALCOLATO (m/sec)
297

Categoria di sottosuolo

SS-019


MASW-01

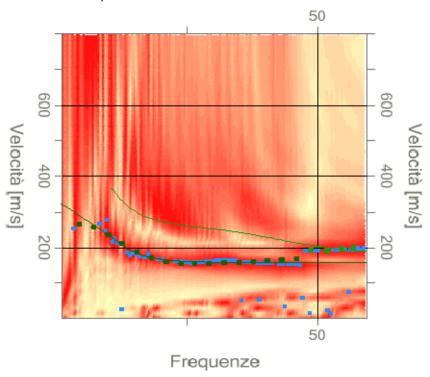
COMMITTENTE : Sig. Giuseppe SENESE DATA : Aprile 2012

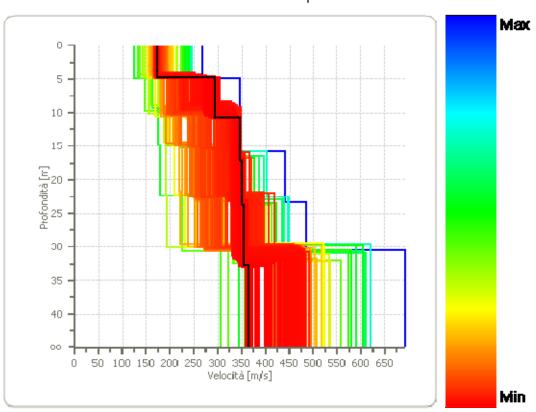

LOCALITA': Bellizzi (SA) - Via Olmo

LAVORO: Realizzazione di un capannone destinato allo stoccaggio e alla lavorazione di prodotti agricoli

Grafico delle tracce registrate in fase di acquisiszione del segnale in campagna

Analisi delle frequenze ed individuazione della curva di dispersione

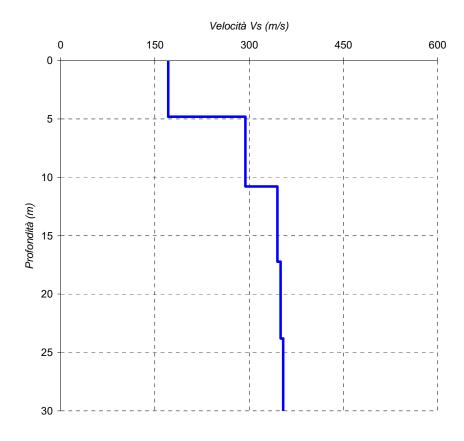

MASW-01


DATA: Aprile 2012

COMMITTENTE : Sig. Giuseppe SENESE LOCALITA' : Bellizzi (SA) - Via Olmo

LAVORO: Realizzazione di un capannone destinato allo stoccaggio e alla lavorazione di prodotti agricoli

Curva di dispersione misurata - calcolata dal modello del terreno


MASW-01

DATA: Aprile 2012

COMMITTENTE : Sig. Giuseppe SENESE LOCALITA' : Bellizzi (SA) - Via Olmo

LAVORO: Realizzazione di un capannone destinato allo stoccaggio e alla lavorazione di prodotti agricoli

Variazione della velocità delle onde S con la profondità

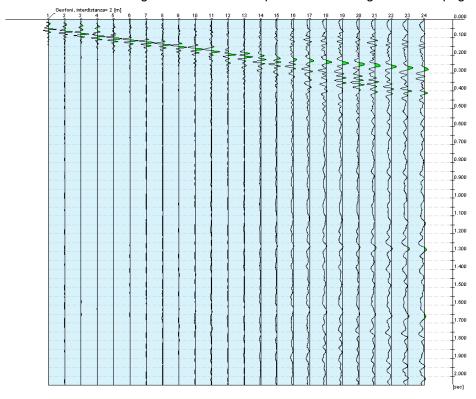
Determinazione del valore di Vs30

Profondità (m)		Spessore (m)	Velocità (m/s)	Rapporto Spessore/Velocità
0,00	4,79	4,79	171,28	0,027966
4,79	10,79	6,00	294,20	0,020394
10,79	17,22	6,43	345,20	0,018627
17,22	23,81	6,59	350,42	0,018806
23,81	30,00	6,19	354,54	0,017459

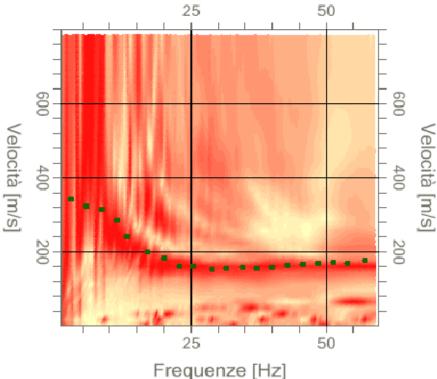
VALORE DI Vs30 DETERMINATO	(m/s)	291
----------------------------	-------	-----

CATEGORIA DI SOTTOSUOLO

С


MASW-02

DATA: Aprile 2012 COMMITTENTE : Sig. Giuseppe SENESE

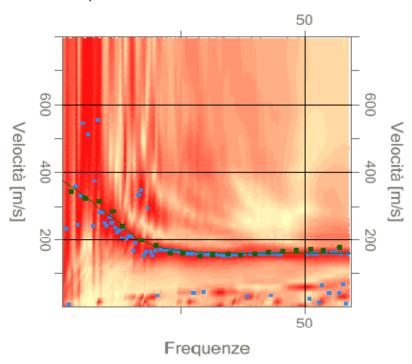

LOCALITA': Bellizzi (SA) - Via Olmo

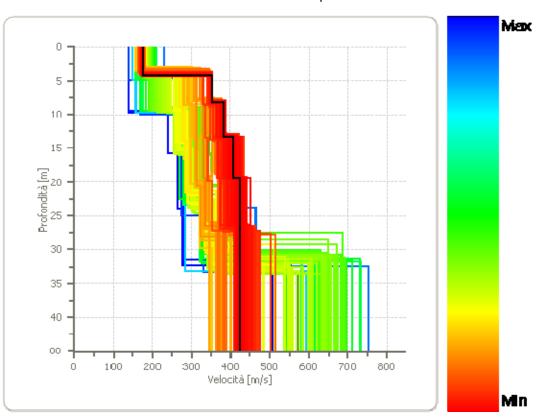
LAVORO: Realizzazione di un capannone destinato allo stoccaggio e alla lavorazione di prodotti agricoli

Grafico delle tracce registrate in fase di acquisiszione del segnale in campagna

Analisi delle frequenze ed individuazione della curva di dispersione

MASW-02

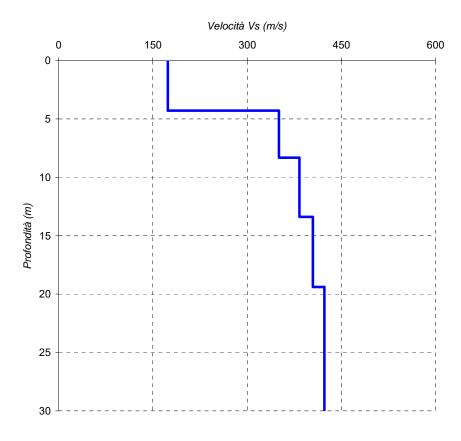

DATA: Aprile 2012


COMMITTENTE : Sig. Giuseppe SENESE LOCALITA' : Bellizzi (SA) - Via Olmo

LOCALITA': Bellizzi (SA) - Via Olmo

LAVORO: Realizzazione di un capannone destinato allo stoccaggio e alla lavorazione di prodotti agricoli

Curva di dispersione misurata - calcolata dal modello del terreno


MASW-02

DATA: Aprile 2012

COMMITTENTE : Sig. Giuseppe SENESE LOCALITA' : Bellizzi (SA) - Via Olmo

LAVORO: Realizzazione di un capannone destinato allo stoccaggio e alla lavorazione di prodotti agricoli

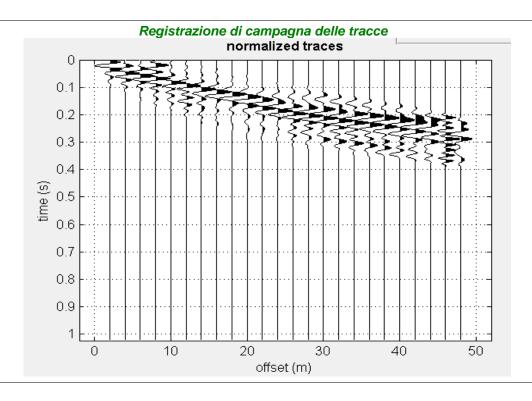
Variazione della velocità delle onde S con la profondità

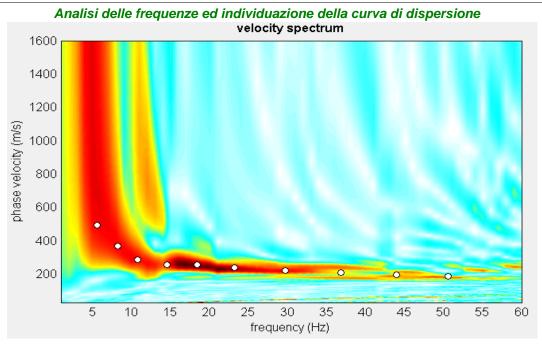
Determinazione del valore di Vs30

Profondità (m)		Spessore (m)	Velocità (m/s)	Rapporto Spessore/Velocità
0,00	4,27	4,27	174,03	0,024536
4,27	8,31	4,04	350,52	0,011526
8,31	13,37	5,06	383,36	0,013199
13,37	19,40	6,03	404,69	0,014900
19,40	30,00	10,60	423,10	0,025053

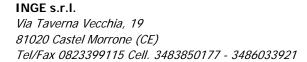
VALORE DI Vs30 DETERMINATO	(m/s)	336
----------------------------	-------	-----

CATEGORIA DI SOTTOSUOLO


С

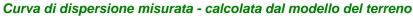


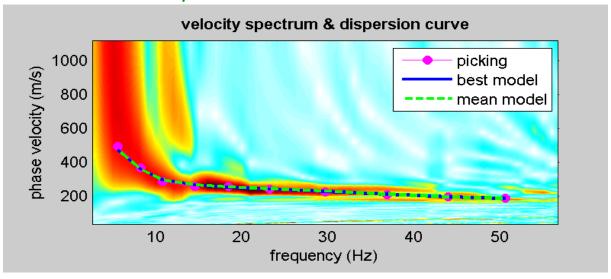
Committente: Dott.ssa Bassi Mariateresa per c/o della Sig.ra Mazza D. Protocollo n.: 313/2011

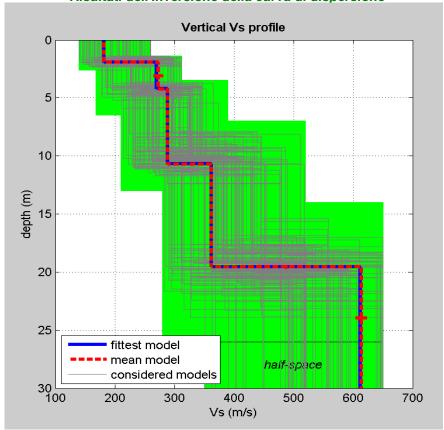

Cantiere: Via Curtatone - Bellizzi (SA) Data esecuzione prova: 08/07/2011

Prova MASW: M1 Data emissione certificato: 12/07/2011

IL RESPONSABILE DEL SETTORE



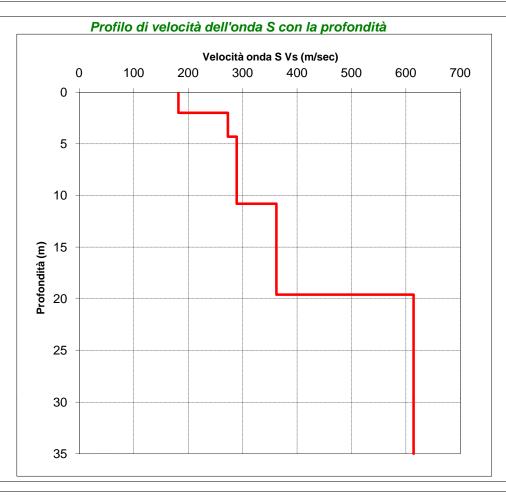



Committente:Dott.ssa Bassi Mariateresa per c/o della Sig.ra Mazza D.Protocollo n.:313/2011Cantiere:Via Curtatone - Bellizzi (SA)Data esecuzione prova:08/07/2011

Prova MASW: M1 Data emissione certificato: 12/07/2011

Risultati dell'inversione della curva di dispersione

IL RESPONSABILE DEL SETTORE



Committente:Dott.ssa Bassi Mariateresa per c/o della Sig.ra Mazza D.Protocollo n.:313/2011Cantiere:Via Curtatone - Bellizzi (SA)Data esecuzione prova:08/07/2011

Prova MASW: M1 Data emissione certificato: 12/07/2011

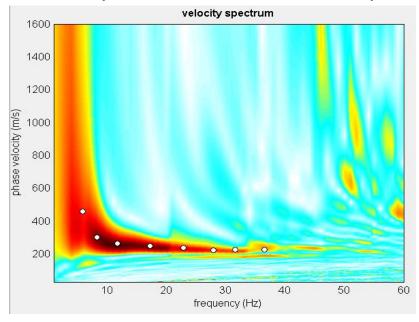
Calcolo del Vs30

Profon	dità (m)	Velocità	Spess/Veloc
Da	а	(m/sec)	Hi/Vi
0.00	2.00	182	0.0110
2.00	4.30	273	0.0084
4.30	10.80	289	0.0225
10.80	19.60	362	0.0243
19.60	35.00	614	0.0251

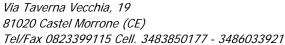
VALORE DI Vs30 CALCOLATO (m/sec) 362

Categoria di sottosuolo R

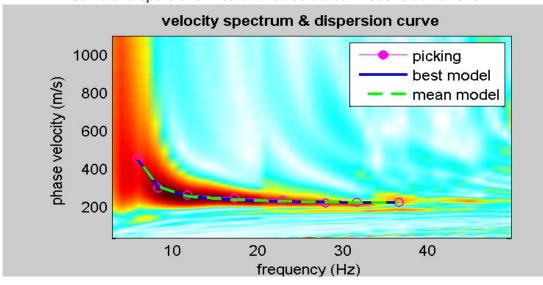
IL RESPONSABILE DEL SETTORE

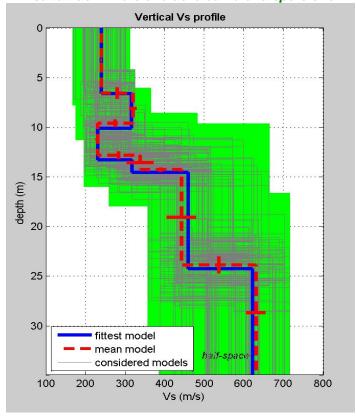


Committente:Sig. Laudisio GiovanniProtocollo n.:621/2010Cantiere:Via Piave - Bellizzi (SA)Data esecuzione prova:11/11/2010Prova MASW:M1Data emissione certificato:15/11/2010

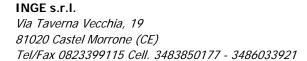

Analisi delle frequenze ed individuazione della curva di dispersione

IL RESPONSABILE DEL SETTORE

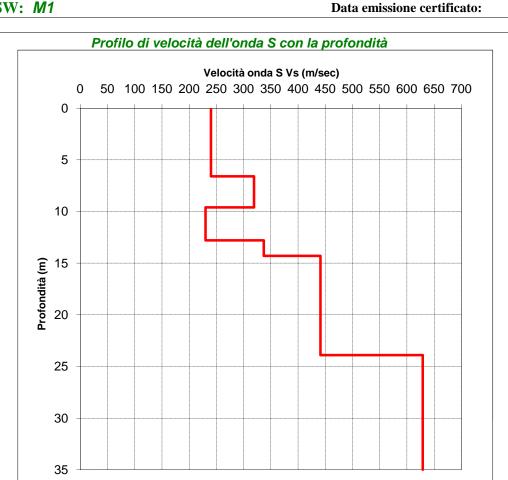




Committente: Sig. Laudisio Giovanni Protocollo n.: 621/2010 Via Piave - Bellizzi (SA) Cantiere: Data esecuzione prova: 11/11/2010 Prova MASW: M1 Data emissione certificato: 15/11/2010


Curva di dispersione misurata - calcolata dal modello del terreno

Risultati dell'inversione della curva di dispersione


IL RESPONSABILE DEL SETTORE

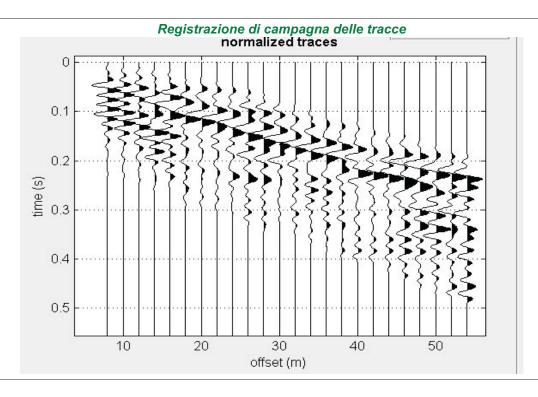
Committente:Sig. Laudisio GiovanniProtocollo n.:621/2010Cantiere:Via Piave - Bellizzi (SA)Data esecuzione prova:11/11/2010Prova MASW:M1Data emissione certificato:15/11/2010

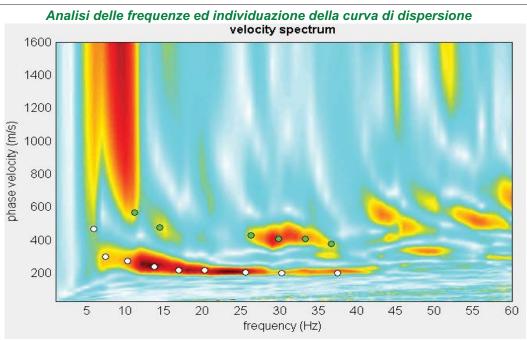
Calcolo del Vs30

Profon	Profondità (m)		Spess/Veloc
Da	а	(m/sec)	Hi/Vi
0.00	6.60	240	0.0275
6.60	9.60	319	0.0094
9.60	12.80	230	0.0139
12.80	14.30	337	0.0045
14.30	23.90	441	0.0218
23.90	35.00	629	0.0176

VALORE DI Vs30 CALCOLATO (m/sec) 346

Categoria di sottosuolo

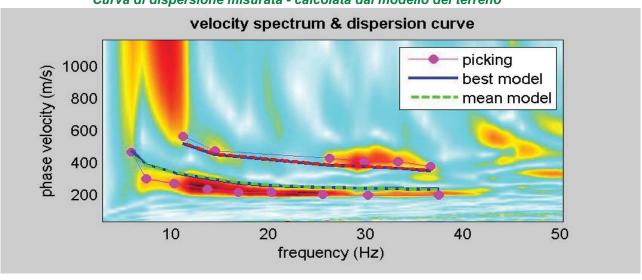




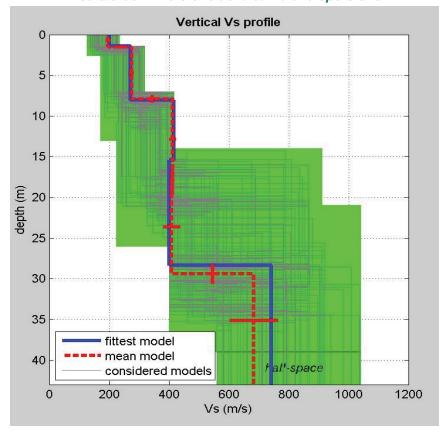
Committente:Dott.ssa Bassi per c/o del Sig. LanaroProtocollo n.:017/2011Cantiere:Via Olmo n°49 - Bellizzi (SA)Data esecuzione prova:14/01/2011

Prova MASW: M1 Data emissione certificato: 19/01/2011

IL RESPONSABILE DEL SETTORE



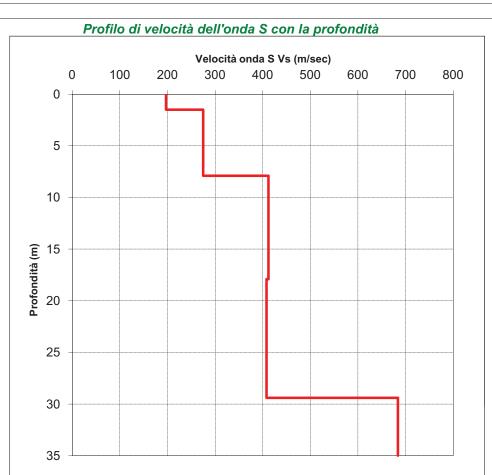
Committente: Dott.ssa Bassi per c/o del Sig. Lanaro Protocollo n.: 017/2011


Cantiere: Via Olmo n°49 - Bellizzi (SA) Data esecuzione prova: 14/01/2011

Prova MASW: M1 Data emissione certificato: 19/01/2011

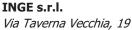
Curva di dispersione misurata - calcolata dal modello del terreno

Risultati dell'inversione della curva di dispersione


IL RESPONSABILE DEL SETTORE

Committente:Dott.ssa Bassi per c/o del Sig. LanaroProtocollo n.:017/2011Cantiere:Via Olmo n°49 - Bellizzi (SA)Data esecuzione prova:14/01/2011

Prova MASW: M1 Data emissione certificato: 19/01/2011


Calcolo del Vs30

Profon	Profondità (m)		Spess/Veloc
Da	а	(m/sec)	Hi/Vi
0.00	1.50	197	0.0076
1.50	7.90	275	0.0233
7.90	17.90	412	0.0243
17.90	29.40	408	0.0282
29.40	35.00	684	0.0082

VALORE DI Vs30 CALCOLATO (m/sec) 356

Categoria di sottosuolo C

IL RESPONSABILE DEL SETTORE

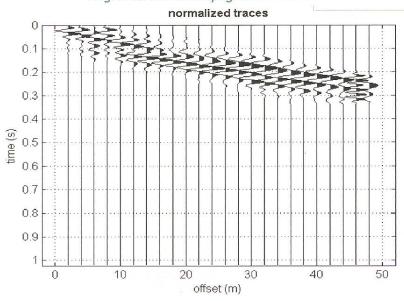
Committente:

Dott.ssa Bassi Mariateresa per c/o del Sig. Lamberti G.

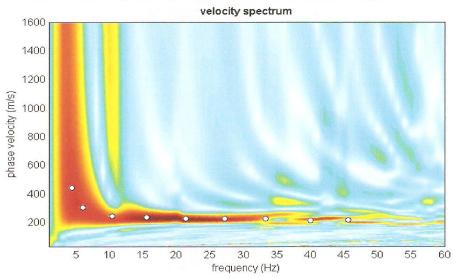
Protocollo n.:

586/11

Cantiere: Via Cuomo - Bellizzi (SA)


Data esecuzione prova:

15/11/2011


Prova MASW: M1 Data emissione certificato:

16/11/2011

Analisi delle frequenze ed individuazione della curva di dispersione

IL RESPONSABILE DEL SETTORE
Dott. Geol. Carmencita Ventrone

Via Taverna Vecchia, 19 81020 Castel Morrone (CE) Tel/Fax 0823399115 Cell. 3483850177 - 3486033921

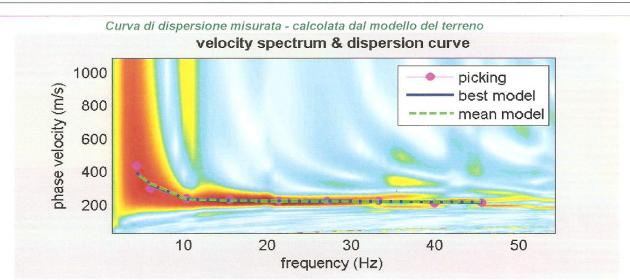
Prova MASW: M1

PROVA SISMICA Vs30 METODO MASW

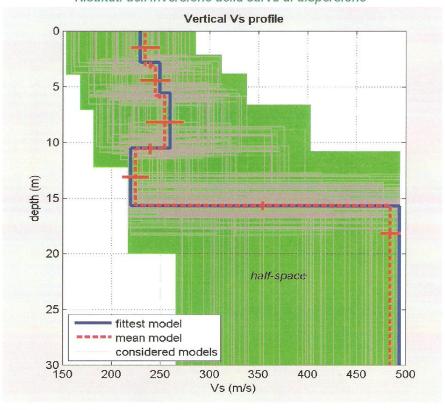
Committente: Dott.ssa Bassi Mariateresa per c/o del Sig. Lamberti G.

Protocollo n.:

586/11


Cantiere: Via Cuomo - Bellizzi (SA)

Data esecuzione prova:


15/11/2011

Data emissione certificato:

16/11/2011

Risultati dell'inversione della curva di dispersione

IL RESPONSABILE DEL SETTORE
Dott. Geol. Carmencita Ventrone

Via Taverna Vecchia, 19 81020 Castel Morrone (CE) Tel/Fax 0823399115 Cell. 3483850177 - 3486033921

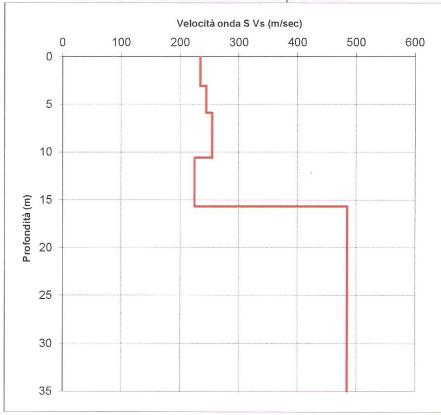
Committente: Dott.ssa Bassi Mariateresa per c/o del Sig. Lamberti G.

Protocollo n.:

586/11

Cantiere: Via Cuomo - Bellizzi (SA)

Data esecuzione prova:


15/11/2011

Prova MASW: M1

Data emissione certificato:

16/11/2011

Profilo di velocità dell'onda S con la profondità

Calcolo del Vs30

Profondità (m)		Velocità	Spess/Veloc
Da	а	(m/sec)	Hi/Vi
0.00	3.10	235	0.0132
3.10	5.90	245	0.0114
5.90	10.60	255	0.0184
10.60	15.70	225	0.0227
15.70	35.00	485	0.0398

VALORE DI Vs30 CALCOLATO (m/sec) 315

Categoria di sottosuolo

C

IL RESPONSABILE DEL SETTORE
Dott. Geol. Carmencita Ventrone

INGE s.r.l.

Via Taverna Vecchia, 19 81020 Castel Morrone (CE) Tel/Fax 0823399115 Cell. 3483850177 - 3486033921

PROSPEZIONE SISMICA CON METODOLOGIA MASW

Commitente FERTENIA Srl

Cantiere Realizzazione di un soppalco non abitabile, modifiche interne,

installazione di due cabine, elettrica e metano,

Località Bellizzi (SA) - Via Luca Giordano

Data Dicembre 2014

Caratteristiche tecniche-strumentali

Sismografo MAE A 6000 S

Risoluzione 24 bit

Sorgente sismica Massa battente 10 kg
Trigger/Starter Geofono Geospace 14 Hz

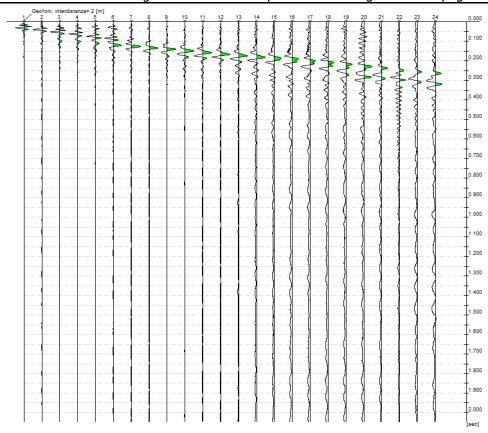
Geospace 4,5 Hz

Software Easy MASW - Geostru Software

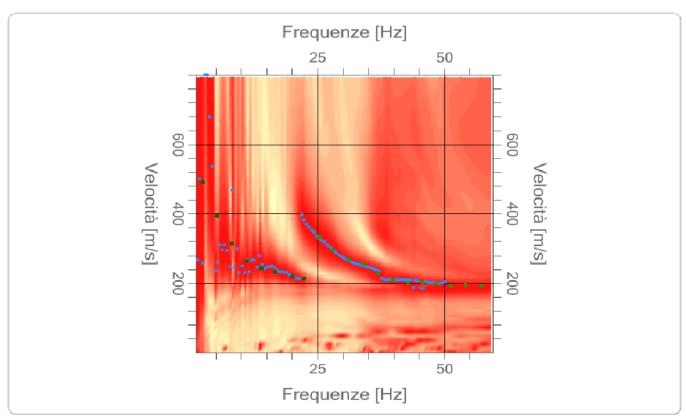
Caratteristiche indagine

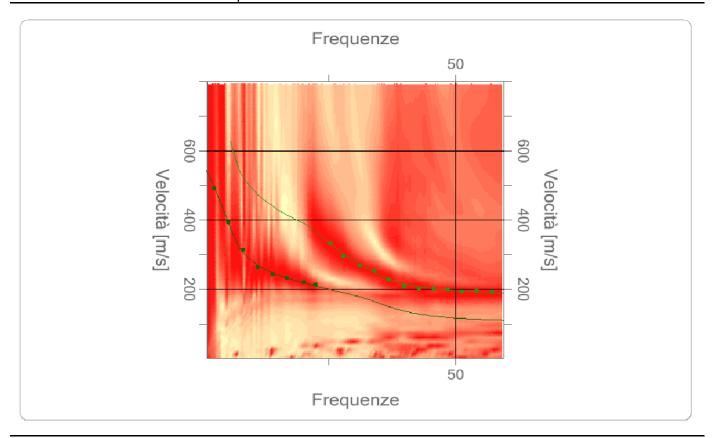
Sigla stendimento MASW-01 Lunghezza stendimento (m) 46 Offset - Spacing (m) 2

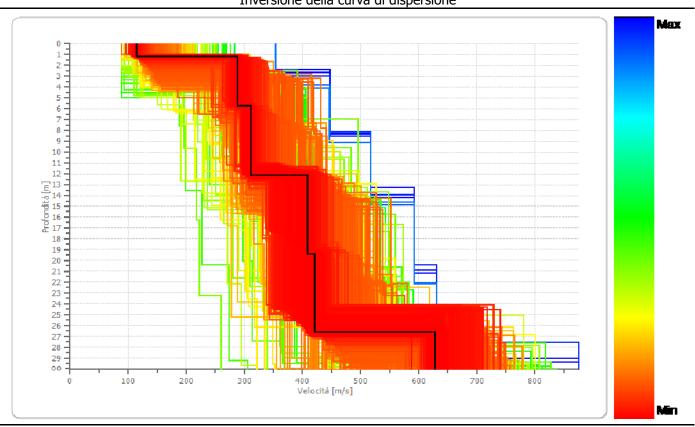
Ubicazione sito Lat. 40,632321 - Long 14,958330

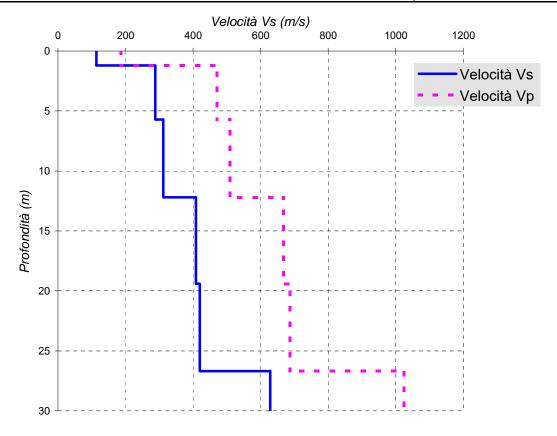

Ubicazione planimetrica

Documentazione fotografica




Grafico delle tracce registrate in fase di acquisiszione del segnale in campagna


Analisi delle frequenze ed individuazione della curva di dispersione


Curva di dispersione misurata - calcolata dal modello del terreno

Inversione della curva di dispersione

Variazione della velocità delle onde S e delle onde P con la profondità

Determinazione del valore di Vs30

Profond	lità (m)	Spessore (m)	Velocità (m/s)	Rapporto Spessore/Velocità
0,00	1,20	1,20	114,00	0,010526
1,20	5,70	4,50	288,00	0,015625
5,70	12,20	6,50	312,00	0,020833
12,20	19,40	7,20	409,00	0,017604
19,40	26,70	7,30	420,00	0,017381
26,70	30,00	3,30	628,00	0,005255

VALORE DI Vs30 DETERMINATO	(m/s)	344
-		

CATEGORIA DI SOTTOSUOLO	С
-------------------------	---

PROSPEZIONE SISMICA CON METODOLOGIA MASW

Commitente Cantiere Nautico Romar snc

Cantiere Realizzazione di un deposito artigianale ed industriale

Località Bellizzi (SA) - Via delle Industrie, 37

Data Aprile 2015

Caratteristiche tecniche-strumentali

Sismografo MAE A 6000 S

Risoluzione 24 bit

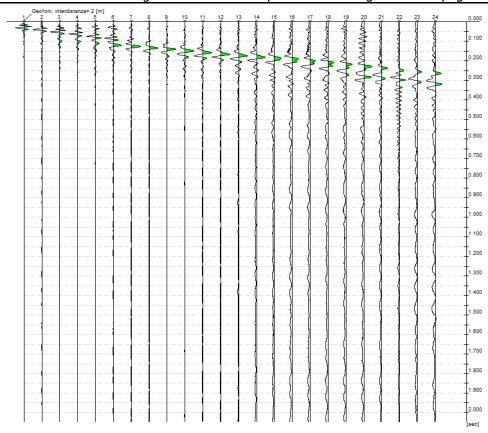
Sorgente sismica Massa battente 10 kg
Trigger/Starter Geofono Geospace 14 Hz

Geospace 4,5 Hz

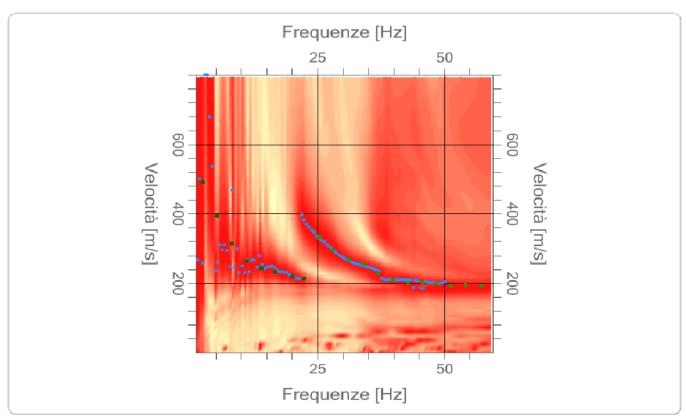
Software Easy MASW - Geostru Software

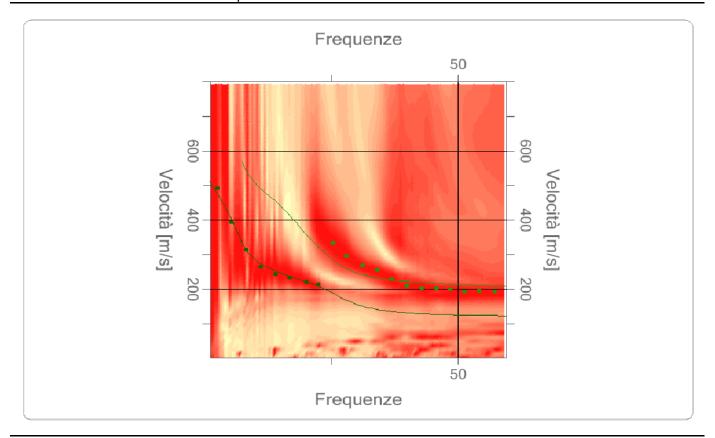
Caratteristiche indagine

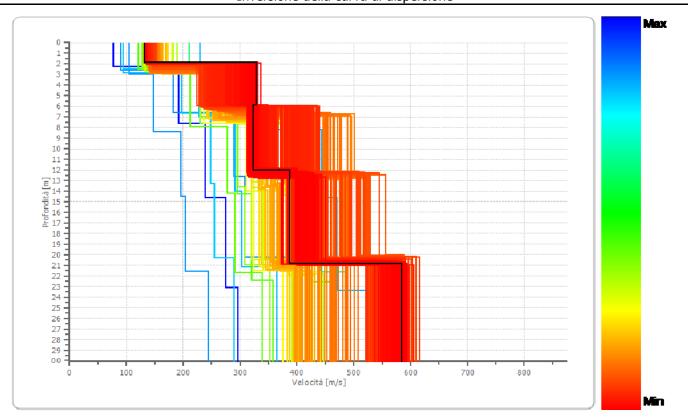
Sigla stendimento MASW-01 Lunghezza stendimento (m) 46 Offset - Spacing (m) 2

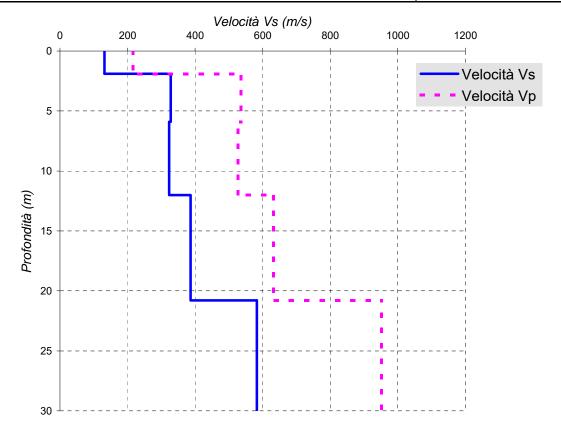

Ubicazione sito Lat. 40,631766 - Long 14,958482

Ubicazione planimetrica


Documentazione fotografica


Grafico delle tracce registrate in fase di acquisiszione del segnale in campagna


Analisi delle frequenze ed individuazione della curva di dispersione


Curva di dispersione misurata - calcolata dal modello del terreno

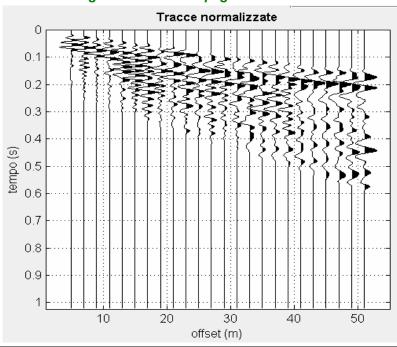
Inversione della curva di dispersione

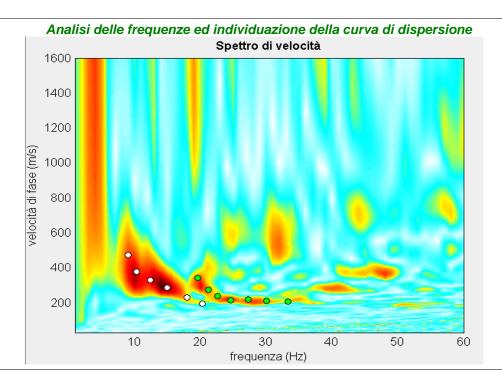
Variazione della velocità delle onde S e delle onde P con la profondità

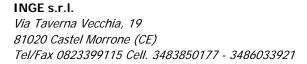
Determinazione del valore di Vs30

Profond	dità (m)	Spessore (m)	Velocità (m/s)	Rapporto Spessore/Velocità
0,00	1,90	1,90	132,00	0,014394
1,90	5,90	4,00	328,00	0,012195
5,90	12,00	6,10	323,00	0,018885
12,00	20,80	8,80	387,00	0,022739
20,80	30,00	9,20	583,00	0,015780

VALORE DI Vs30 DETERMINATO	(m/s)	347
•		

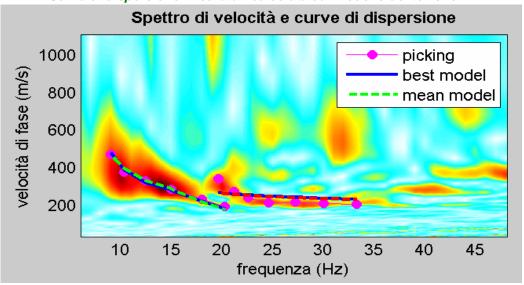

CATEGORIA DI SOTTOSUOLO	С
-------------------------	---

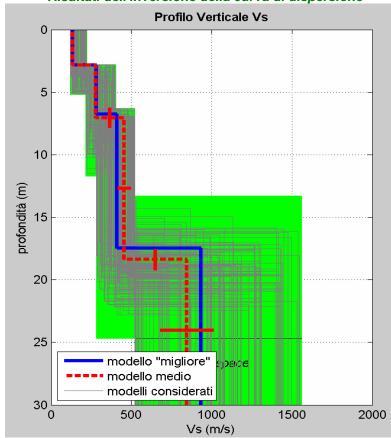



Committente:I.A.C.P. FuturaProtocollo n.:376/10Cantiere:Loc. Casermette Bellizzi (SA)Data esecuzione prova:26/05/2010Prova MASW:M1Data emissione certificato:15/06/2010

Registrazione di campagna delle tracce

IL RESPONSABILE DEL SETTORE



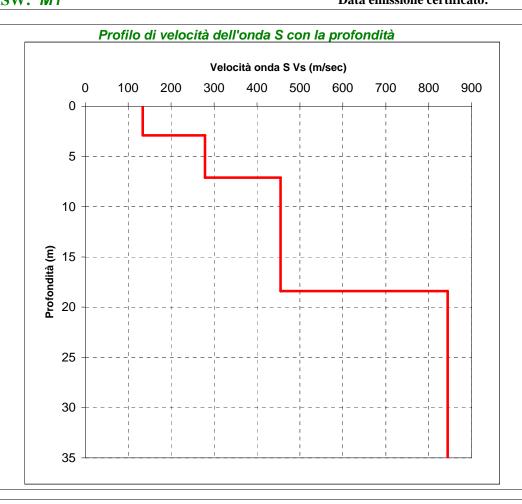


Committente:I.A.C.P. FuturaProtocollo n.:376/10Cantiere:Loc. Casermette Bellizzi (SA)Data esecuzione prova:26/05/2010Prova MASW:M1Data emissione certificato:15/06/2010

Curva di dispersione misurata - calcolata dal modello del terreno

Risultati dell'inversione della curva di dispersione

IL RESPONSABILE DEL SETTORE

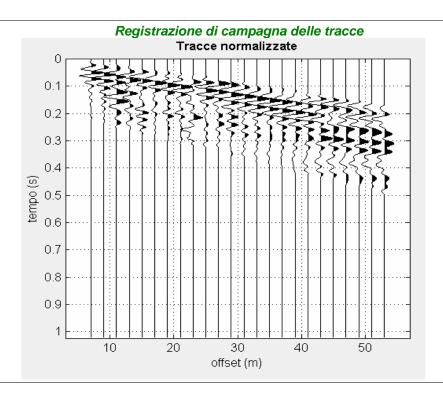

Dott. Geol. Carmencita Ventrone

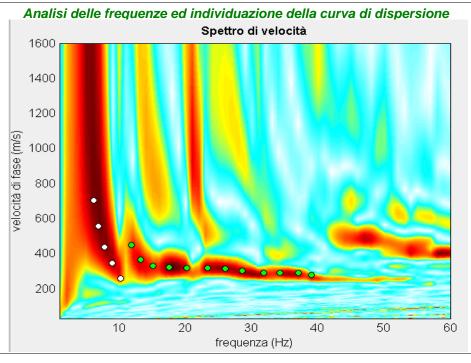
INGE s.r.l. Via Taverna Vecchia, 19 81020 Castel Morrone (CE) Tel/Fax 0823399115 Cell. 3483850177 - 3486033921

Committente:I.A.C.P. FuturaProtocollo n.:376/10Cantiere:Loc. Casermette Bellizzi (SA)Data esecuzione prova:26/05/2010Prova MASW:M1Data emissione certificato:15/06/2010

Calcolo del Vs30

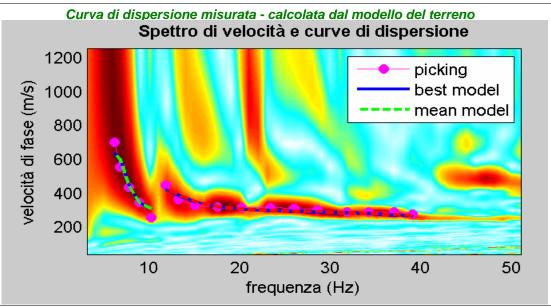
Profon	Profondità (m)		Spess/Veloc
Da	а	(m/sec)	Hi/Vi
0.00	2.90	134	0.0216
2.90	7.10	279	0.0151
7.10	18.40	455	0.0248
18.40	35.00	844	0.0197

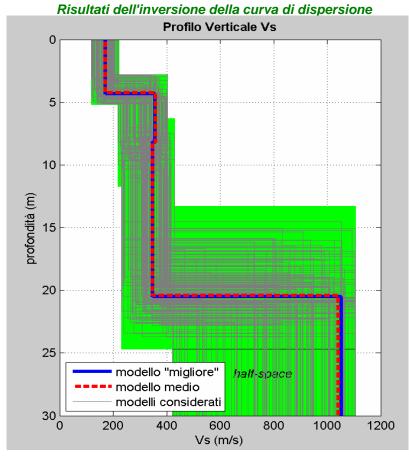

VALORE DI Vs30 CALCOLATO (m/sec) 400


Categoria di sottosuolo R

IL RESPONSABILE DEL SETTORE

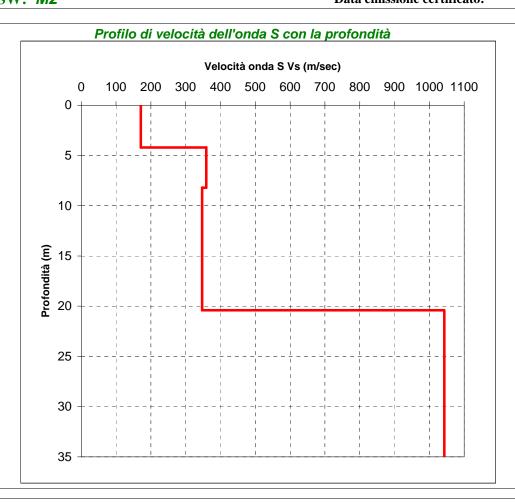
Committente:I.A.C.P. FuturaProtocollo n.:376/10Cantiere:Loc. Casermette Bellizzi (SA)Data esecuzione prova:26/05/2010Prova MASW:M2Data emissione certificato:15/06/2010


IL RESPONSABILE DEL SETTORE
Dott. Geol. Carmencita Ventrone


INGE s.r.l. Via Taverna Vecchia, 19 81020 Castel Morrone (CE) Tel/Fax 0823399115 Cell. 3483850177 - 3486033921

Committente: I.A.C.P. Futura
Protocollo n.: 376/10
Cantiere: Loc. Casermette Bellizzi (SA)
Data esecuzione prova: 26/05/2010
Prova MASW: M2
Data emissione certificato: 15/06/2010

IL RESPONSABILE DEL SETTORE

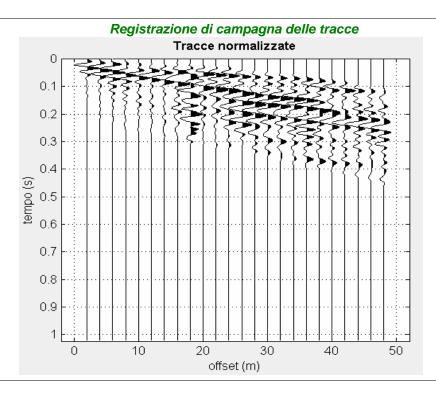

Dott. Geol. Carmencita Ventrone

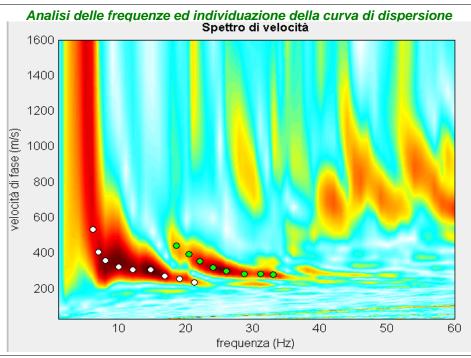
INGE s.r.l. Via Taverna Vecchia, 19 81020 Castel Morrone (CE) Tel/Fax 0823399115 Cell. 3483850177 - 3486033921

Committente:I.A.C.P. FuturaProtocollo n.:376/10Cantiere:Loc. Casermette Bellizzi (SA)Data esecuzione prova:26/05/2010Prova MASW:M2Data emissione certificato:15/06/2010

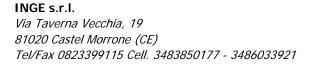
Calcolo del Vs30

Profon	Profondità (m)		Spess/Veloc
Da	а	(m/sec)	Hi/Vi
0.00	4.20	171	0.0246
4.20	8.20	359	0.0111
8.20	20.40	347	0.0352
20.40	35.00	1043	0.0140


VALORE DI Vs30 CALCOLATO (m/sec) 374

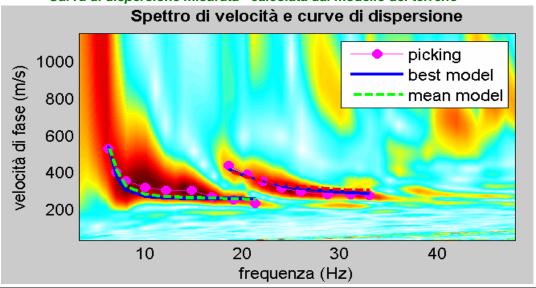

Categoria di sottosuolo R

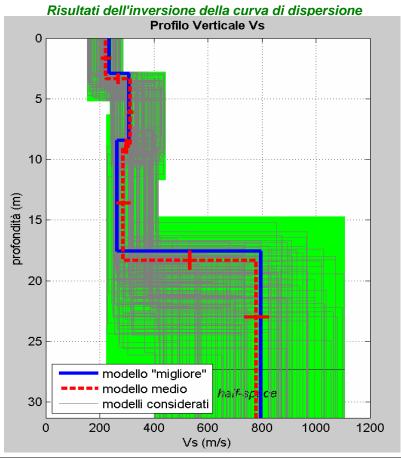
IL RESPONSABILE DEL SETTORE



Committente:I.A.C.P. FuturaProtocollo n.:376/10Cantiere:Loc. Casermette Bellizzi (SA)Data esecuzione prova:26/05/2010Prova MASW:M3Data emissione certificato:15/06/2010

IL RESPONSABILE DEL SETTORE

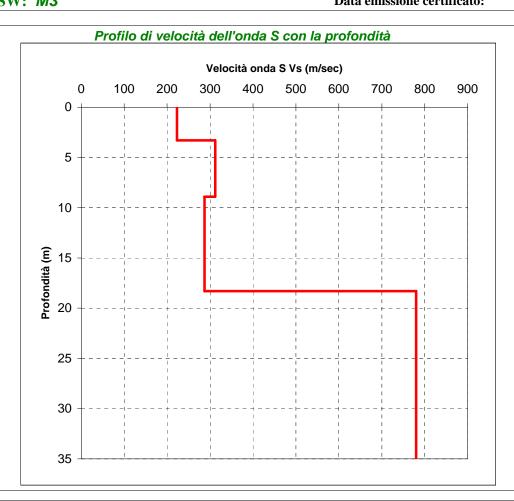




Committente: I.A.C.P. Futura
Protocollo n.: 376/10
Cantiere: Loc. Casermette Bellizzi (SA)
Data esecuzione prova: 26/05/2010
Prova MASW: M3
Data emissione certificato: 15/06/2010

IL RESPONSABILE DEL SETTORE

Dott. Geol. Carmencita Ventrone


INGE s.r.l. Via Taverna Vecchia, 19

81020 Castel Morrone (CE) Tel/Fax 0823399115 Cell. 3483850177 - 3486033921

Committente:I.A.C.P. FuturaProtocollo n.:376/10Cantiere:Loc. Casermette Bellizzi (SA)Data esecuzione prova:26/05/2010Prova MASW:M3Data emissione certificato:15/06/2010

Calcolo del Vs30

Profon	Profondità (m)		Spess/Veloc
Da	а	(m/sec)	Hi/Vi
0.00	3.30	223	0.0148
3.30	8.90	312	0.0179
8.90	18.30	287	0.0328
18.30	35.00	780	0.0214

VALORE DI Vs30 CALCOLATO (m/sec) 372

Categoria di sottosuolo R

IL RESPONSABILE DEL SETTORE

PROSPEZIONE SISMICA CON METODOLOGIA MASW

Commitente Sig. Giuseppe DEVIVO

Cantiere Realizzazione manufatto ad uso commerciale

Località Via Settembrini, 21 - Bellizzi (SA)

Data Marzo 2017

Caratteristiche tecniche-strumentali

Sismografo MAE A 6000 S

Risoluzione 24 bit

Sorgente sismica Massa battente 10 kg
Trigger/Starter Geofono Geospace 14 Hz

Geospace 4,5 Hz

Software Easy MASW - Geostru Software

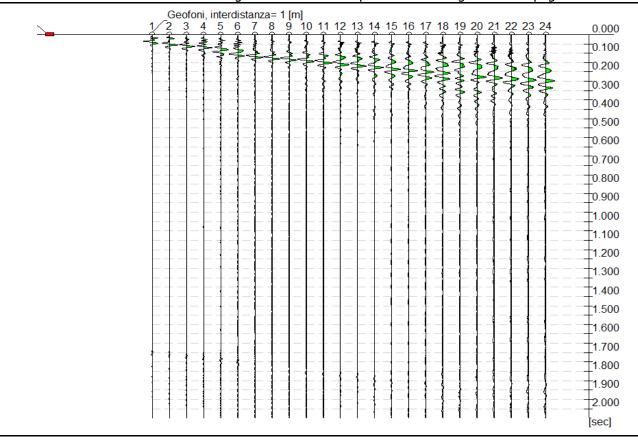
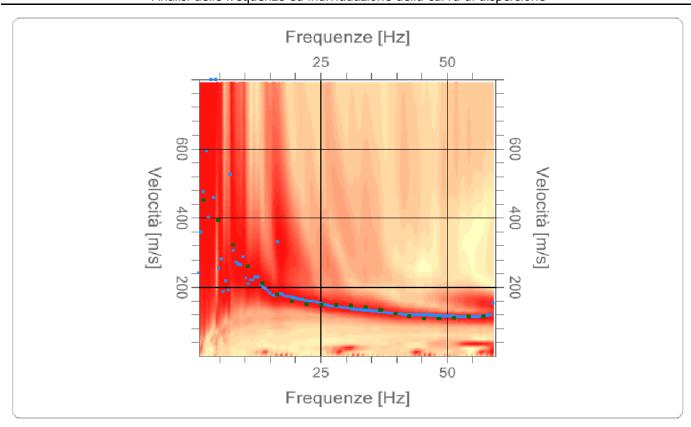
Caratteristiche indagine

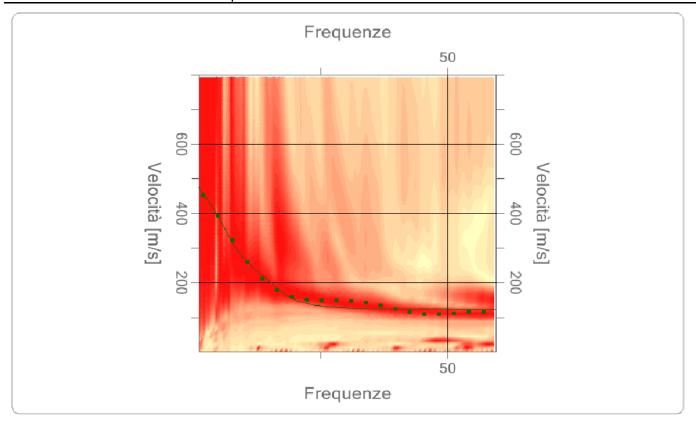
Sigla stendimento MASW-01 Lunghezza stendimento (m) 23 Offset - Spacing (m) 1

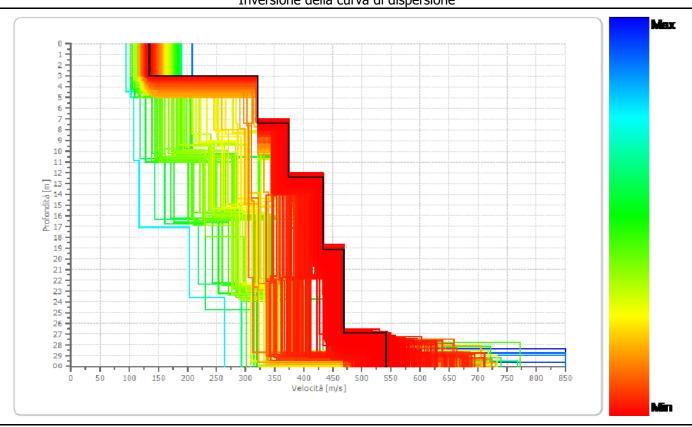
Ubicazione sito Lat. 40,6200 - Long 14,9425

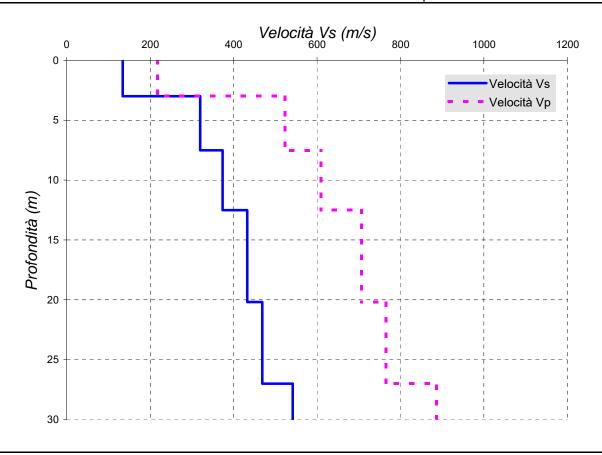
Ubicazione planimetrica

Documentazione fotografica


Grafico delle tracce registrate in fase di acquisiszione del segnale in campagna


Analisi delle frequenze ed individuazione della curva di dispersione



Curva di dispersione misurata - calcolata dal modello del terreno

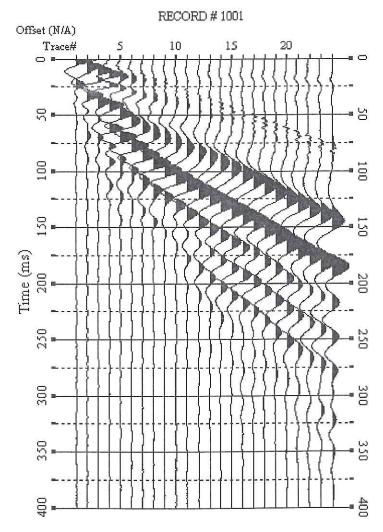
Inversione della curva di dispersione

Determinazione del valore di Vs30

Profondità (m)		Spessore (m)	Velocità (m/s)	Rapporto Spessore/Velocità
0,00	3,00	3,00	134	0,022388
3,00	7,50	4,50	320	0,014063
7,50	12,50	5,00	374	0,013369
12,50	20,20	7,70	433	0,017783
20,20	27,00	6,80	469	0,014499
27,00	30,00	3,00	542	0,005535

VALORE DI Vs30 DETERMINATO	(m/s)	342
·		

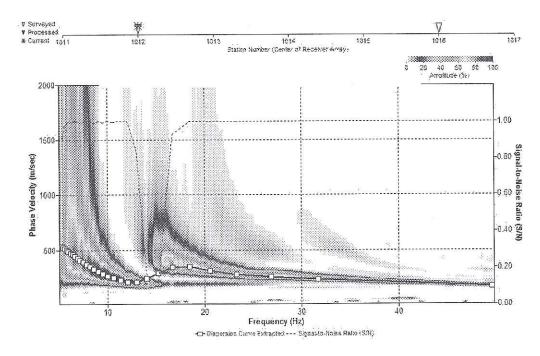
CATEGORIA DI SOTTOSUOLO	С
-------------------------	---

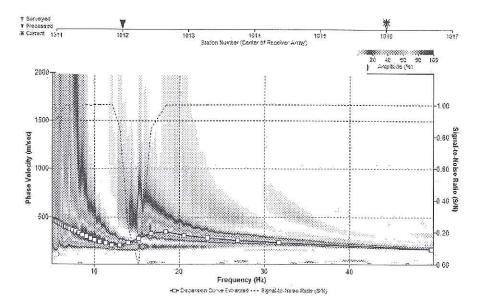


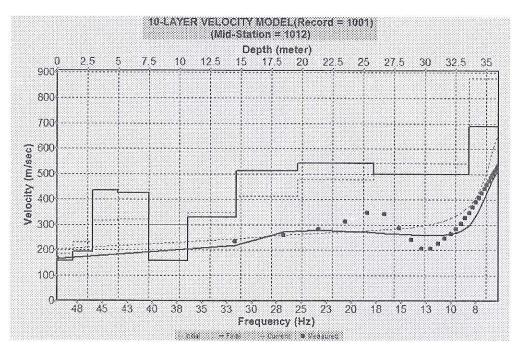
4 - ACQUISIZIONE ED ELABORAZIONE DATI

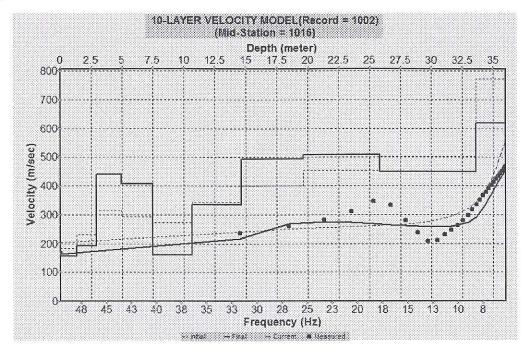
Le acquisizioni dei segnali, di lunghezza temporale T=2.048s, sono state effettuate con passo di campionamento dt=0.5ms. La frequenza di campionamento è data da: $f_{campionamento}$ =1/dt=2000Hz. La frequenza massima dei segnali, ovvero la frequenza di Nyquist, è data da: $f_{Nyquist}$ =1/2dt=1000Hz. La frequenza minima dei segnali è data da: f_{min} =1/T=0.488Hz.

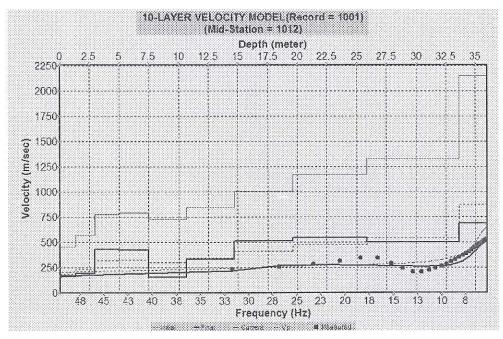
L'elaborazione dei dati e l'inversione delle curve di dispersione della velocità di fase delle onde superficiali di Rayleigh sono state effettuate con il programma SurfSeis 2.05 della Kansas Geological Survey che ha permesso di eseguire l'intero processo di elaborazione di $n^{\circ}1$ sezione sismostratigrafica 2D delle V_{S} .

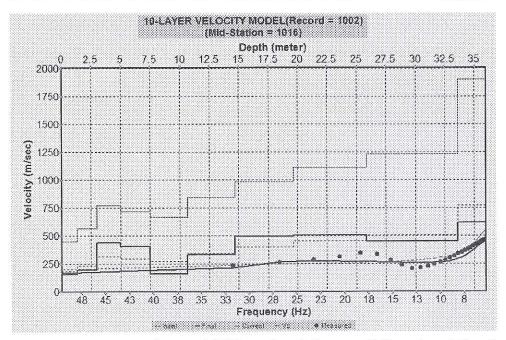

Gli elaborati relativi alla prova effettuata sono di seguito riportati.

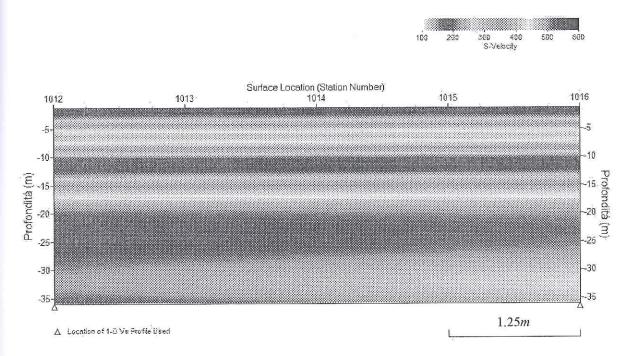

Sismogrammi relativi all'indagine Sismica MASW n. 1: acquisizione n. 1.


Sismogrammi relativi all'indagine Sismica MASW n. 1: acquisizione n. 2.


Curva di dispersione della velocità di fase delle onde superficiali di Rayleigh ottenuta dall'indagine Sismica MASW n. 1: acquisizione n. 1.


Curva di dispersione della velocità di fase delle onde superficiali di Rayleigh ottenuta dall'indagine Sismica MASW n. 1: acquisizione n. 2.


Profilo verticale 1D delle VS ottenuto dall'inversione della curva di dispersione della velocità di fase delle onde superficiali di Rayleigh: MASW n. 1 - acquisizione n. 1.


Profilo verticale 1D delle VS ottenuto dall'inversione della curva di dispersione della velocità di fase delle onde superficiali di Rayleigh: MASW n. 1 - acquisizione n. 2.

Profili verticali 1D delle VP e delle VS ottenuti dall'inversione della curva di dispersione della velocità di fase delle onde superficiali di Rayleigh: MASW n. 1 - acquisizione n. 1.

Profili verticali 1D delle VP e delle VS ottenuti dall'inversione della curva di dispersione della velocità di fase delle onde superficiali di Rayleigh: MASW n. 1 - acquisizione n. 2.

Modello sismostratigrafico 2D delle V_S ottenuto dall'indagine Sismica MASW n. 1.

5 - INTERPRETAZIONE ED ANALISI DEI DATI

L'indagine sismica MASW effettuata, considerando la sismostratigrafia fino alla profondità di 30*m* (0*m*-30*m*) dal p.c., ha fornito risultati che collocano i terreni oggetto d'indagine in categoria **B** del D.M. 14 gennaio 2008 (Tab. 2; Tab. 3). Questa categoria è stata ricavata, come da normativa, dalla relazione:

$$V_{S30} = \frac{30m}{\sum_{i=1,N} \frac{h_i}{V_i}}$$

dove h_i e V_i indicano lo spessore in metri e la velocità delle onde di taglio (per deformazioni di taglio $\gamma < 10^{-6}$) dello strato i-esimo per un totale di N strati presenti nei primi 30 metri di profondità al di sotto del piano fondale.

Categoria	Descrizione
A	Animassi rocciosi affioranti o terrani molto rigidi caratterizzati da valori di V _{5,30} superiori a 800 m/s. eventualmente comprendenti in superficie uno strato di alterazione, con spessore massimo pari a 3 m.
B	Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consistenti con spessori superiori a 30 m, caratterizzati da un graduale miglioramento delle proprietà meccaniche con la profondità e da valori di V _{6,30} compresì tra 360 m/s e 800 m/s (ovvero N _{SPT,30} > 50 nei terreni a grana grossa e c _{6,30} > 250 kPa nei terreni a grana fina).
€	Depositi di terreni a grana grossa mediamente addensati o terreni a grano fina mediamente consistenti con spessori superiori a 30 m, caratterizzati da un graduale miglioramento delle proprietà meccaniche con la profondità e da valori di V ₃₃₀ compresi tra 180 m/s e 360 m/s (ovvero 15 < N _{SPI,30} < 50 nei terreni a grana grossa e 70 < c _{0.30} < 250 kPa nei terreni a grana fina).
D	Depositi di terreni a grana grassa scarsamente addensati o di terreni a grana fina scarsamente consistenti, con spessori superiori a 30 m. caratterizzati da un graduale miglioramento delle proprietà meccaniche con la profondità e da valori di V _{8,30} inferiori a 180 m/s (ovvero N _{SPT,30} < 15 nei terreni a grana grossa e c _{0.30} < 70 kPa nei terreni a grana fina).
E	Terreni dei sottosuoli di tipo C o D per spessore non superiore a 20 m, posti sul substrato di riferimento (con $V_z > 800$ m/s).

Categoria	Descrizione		
SI	Depositi di terreni caratterizzati da valori di $V_{5,30}$ inferiori a 100 m/s (ovvero $10 \le c_{0,30} \le 20$ kPa), che includono uno strato di almeno 8 m di terreni a grana fina di bassa consistenza, oppure che includono almeno 3 m di torba o di argille altamente organiche.		
\$2	Depositi di terreni suscettibili di liquefazione, di argille sensitive o qualsiasi altra categoria di sottosuolo non classificabile nei tipi precedenti.		

Tab. 2 - Categorie Suoli di fondazione (D.M. 14 gennaio 2008).

Tab. 3 – Categoria Suolo di fondazione ottenuta dalla prospezione sismica MASW effettuata.

Categoria di suolo di fondazione B = Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consistenti con spessori superiori a 30m, caratterizzati da un graduale miglioramento delle proprietà meccaniche con la profondità e da valori di V_{S30} compresi tra 360m/s e 800m/s (ovvero $N_{SPT\cdot30} > 50$ nei terreni a grana grossa e $cu_{30} > 250kPa$ nei terreni a grana fina).

Categoria topografica T1 = Superficie pianeggiante, pendii e rilievi isolati con inclinazione media i ≤ 15°.

Battipaglia, Aprile 2017

Antonio Sepese

INDAGINI ESEGUITE

Al fine di caratterizzare sismicamente il suolo nelle aree oggetto di indagine, sono state eseguite n.5 prospezioni sismiche MASW, con stendimenti geofonici di 35m, considerando anche la sorgente energizzante e la traslazione su se stesso del singolo stendimento di 4 stazioni geofoniche (Figg. 1 - 5).

Le indagini sono state condotte mediante l'utilizzo di sismografo M.A.E. A6000-S 24 bit 24 canali, strumento compatto e versatile progettato e realizzato appositamente per eseguire indagini di prospezione sismica convenzionali (rifrazione, riflessione) e non convenzionali [Re.Mi. (Refraction Microtremor) - M.A.S.W. (Multichannel Analysis of Surface Waves) - S.A.S.W. (Spectral Analysis of Surface Waves)].

L'elevata dinamica (24 bit di risoluzione) unita alla notevole memoria per l'acquisizione, ne consente l'utilizzo per tecniche di indagine di tipo non convenzionale. Tali indagini risultano particolarmente adatte in aree fortemente antropizzate (aree urbane e industriali) con notevole presenza di rumore di fondo (noise).

La gestione dell'apparecchiatura è notevolmente semplificata dall'interfaccia grafica e dall'interazione con essa tramite il sistema di puntamento touch-screen, che consente di eseguire tutte le operazioni toccando con un pennino gli oggetti interessati direttamente sullo schermo.

L'ambiente operativo dello strumento è quello di Microsoft Windows XP embedded.

La sorgente sismica (Fig. 17) è costituita da un impatto transiente verticale (maglio dal peso di 6kg che batte su una piastra circolare in alluminio). Come trigger/starter è stato utilizzato un geofono verticale Geospace a 14Hz, posto in prossimità della piastra.

Fig. 17 – Sorgente energizzante, costituita da massa battente su piastra di alluminio. Come starter/trigger è stato utilizzato un geofono verticale Geospace a 14*Hz*.

Quando la battuta sulla superficie della piastra non risultava netta o veniva colpita due volte erroneamente, la prova veniva ripetuta.

Le oscillazioni del suolo sono state rilevate da 24 geofoni verticali (Geospace – 4.5*Hz*) posizionati lungo il profilo di indagine con offset e spacing di 1.25*m* (Fig. 18). La lunghezza complessiva di ogni stendimento geofonico è stata sufficiente a determinare la sismostratigrafia 2D dei terreni nei siti prescelti fino alla profondità di 33*m* dal p.c.

I segnali sismici acquisiti sono stati successivamente elaborati con apposito programma (SurfSeis2.05 della Kansas Geological Survey) per la determinazione della sismostratigrafia del sottosuolo.

Fig. 18 – Geofono verticale della Geospace a 4.5Hz utilizzato per il rilevamento delle oscillazioni del suolo,

ACQUISIZIONE ED ELABORAZIONE DATI

Le acquisizioni dei segnali, di lunghezza temporale T=2.048s, sono state effettuate con passo di campionamento dt=0.5ms. La frequenza di campionamento è data da: $f_{campionamento}$ =1/dt=2000Hz. La frequenza massima dei segnali, ovvero la frequenza di Nyquist, è data da: $f_{Nyquist}$ =1/2dt=1000Hz. La frequenza minima dei segnali è data da: f_{min} =1/T=0.488Hz.

L'elaborazione dei dati e l'inversione delle curve di dispersione della velocità di fase delle onde superficiali di Rayleigh sono state effettuate con il programma SurfSeis2.05 della Kansas Geological Survey che ha permesso di eseguire l'intero processo di elaborazione di 5 sezioni sismostratigrafiche 2D delle V_S (Figg. 19 - 23).

Gli elaborati relativi alle prove effettuate sono riportati in allegato alla presente relazione illustrativa (vedi tavola n.5).

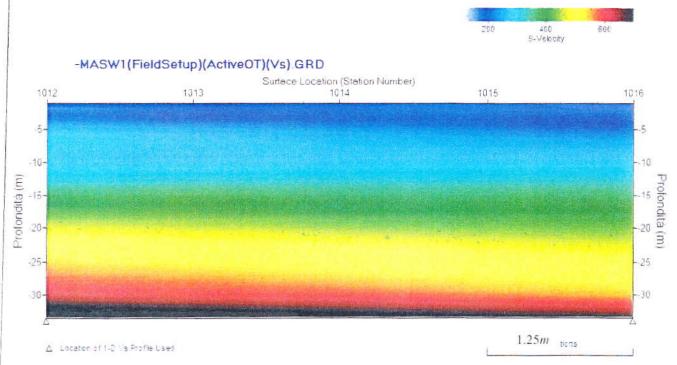
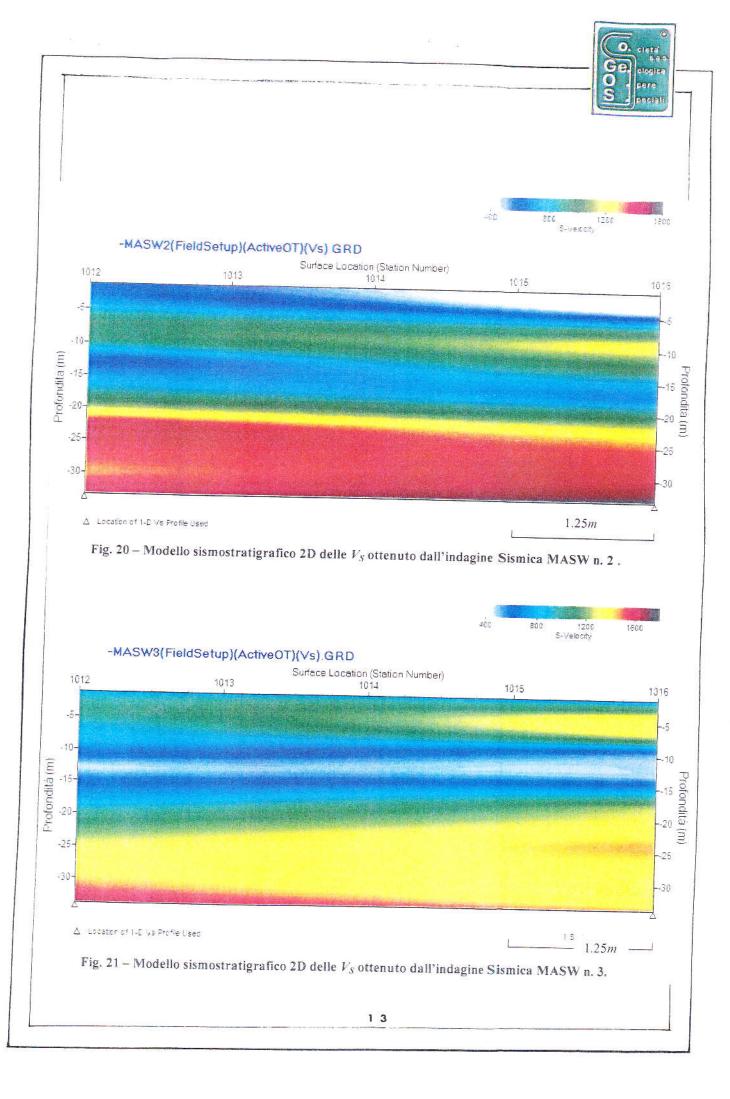



Fig. 19 – Modello sismostratigrafico 2D delle V_S ottenuto dall'indagine Sismica MASW n. 1.

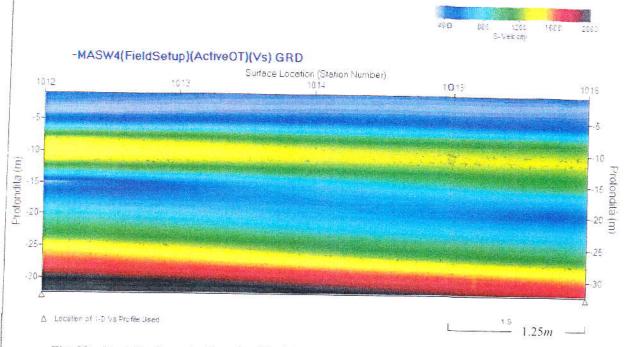


Fig. 22 – Modello sismostratigrafico 2D delle V_S ottenuto dall'indagine Sismica MASW n. 4.

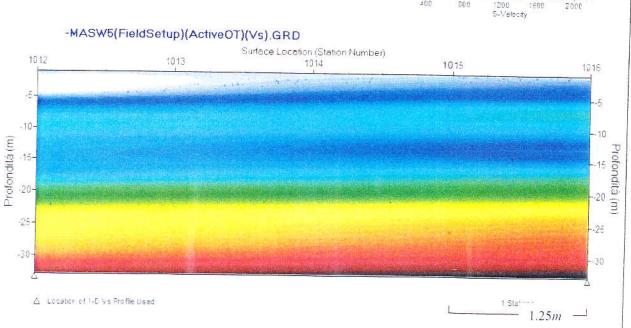


Fig. 23 – Modello sismostratigrafico 2D delle V_S ottenuto dall'indagine Sismica MASW n. 5.